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CONDENSED MATTER PHYS ICS

The phonon quantum of thermal conductance: Are
simulations and measurements estimating the same
quantity?
Carlos A. Polanco1*, Ambroise van Roekeghem1, Boris Brisuda2, Laurent Saminadayar2,
Olivier Bourgeois2, Natalio Mingo1*

The thermal conductance quantum is a fundamental quantity in quantum transport theory. However, two
decades after its first reported measurements and calculations for phonons in suspended nanostructures, rec-
onciling experiments and theory remains elusive. Our massively parallel calculations of phonon transport in
micrometer-sized three-dimensional structures suggest that part of the disagreement between theory and ex-
periment stems from the inadequacy of macroscopic concepts to analyze the data. The computed local temper-
ature distribution in the wave ballistic nonequilibrium regime shows that the spatial placement and dimensions
of thermometers, heaters, and supporting microbeams in the suspended structures can noticeably affect the
thermal conductance’s measured values. In addition, diffusive transport assumptions made in the data analysis
may result in measured values that considerably differ from the actual thermal conductance of the structure.
These results urge for experimental validation of the suitability of diffusive transport assumptions in measuring
devices operating at sub-kelvin temperatures.
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INTRODUCTION
The quantum of thermal conductance (QTC) is one of the funda-
mental transport quantities of meso- and nanoscopic physics, as it
sets a limit to the amount of heat, entropy, and information that can
flow through an individual quantum channel (1, 2). This quantity
describes the ratio of maximum heat flowing through a quantum
channel, over the temperature difference between the thermal res-
ervoirs driving this heat. After its theoretical prediction in the early
1980s, the QTC has been robustly measured by independent groups
in systems where electrons (3–5) and photons (6, 7) are the main
heat carriers. However, measuring the phonon-mediated QTC has
been a more elusive endeavor.
In 1998, a seminal article theoretically showed how the shape of a

nanoconstriction affects its ability to transmit phonons and suggest-
ed a catenary-shaped constriction [see Fig. 1 (A to C)] to improve
the chances of observing quantized thermal conduction by individ-
ual phonon channels (8). Following this idea, Schwab et al. (9)
carried out an experimental measurement of quantized thermal
conductance (see Fig. 1A), in apparently good agreement with the
earlier theoretical predictions for a single scalar field quantum
channel in the catenary-shaped structure. Subsequent attempts to
model the structure beyond the single-channel scalar field case,
however, unveiled discrepancies between predicted and measured
data (10).
Although more theoretical developments, including phonon

nonequilibrium Green functions (NEGFs), have known important
progress since then (11), the problem of measuring the phonon
QTC in suspended microstructures has not been very much ad-
dressed from the theoretical point of view after 2005. Computing

power at the time was not enough to tackle the micrometer-sized
experimental structures without using simplifications. Only recent-
ly, an implementation of NEGF with finite elements has been used
to simulate phonon transport in several model systems (12). This
represents a step forward with respect to previous models, as it in-
vestigates vector (rather than scalar) phonon fields in fully three-di-
mensional (3D) realistic structures. Despite this capability, no
theoretical investigation has yet directly tackled the measurement
problem. Experimentally, there has been further reporting on the
direct detection of the phonon QTC (13). However, recent attempts
at a more detailed measurement using a setup different from
Schwab et al.’s (see Fig. 1C) have been inconclusive regarding
whether the phonon QTC can be easily observed (14). This poses
the question of whether the difficulties to experimentally detect
the theoretically predicted quantized conductance per phonon
channel may result from some parasitic effects at the material or in-
terface level or perhaps stem from the measurement design or the
analysis assumptions.
To address this question, we have carried out massively parallel

calculations of phonon conduction in suspended structures similar
to those in the experiments in (14) and (9) using a fully 3D imple-
mentation of NEGF for the phonon field of an elastic medium. The
results unveil important aspects of experimental design, where in-
tuitive assumptions may lead to “measured” conductance values
that ostensibly disagree with the actual thermal conductance.
These aspects explain part of the difficulties encountered in the
quest to observe the phonon QTC and should be taken into
account when designing low-temperature nanoscale devices operat-
ing in the quantum regime.
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RESULTS
Simulated conductance of ideal geometry models
compared to experimental values
To simulate lattice thermal conductance at sub-kelvin temperatures,
we assume that heat propagates in a continuous medium, described
as a harmonic system, i.e., neglecting inelastic phonon scattering
processes arising from the anharmonic part of the potential. The

calculations use the NEGF formalism (11) adapted to a continuous
medium description using the linear theory of elasticity and finite
element analysis techniques (see Materials and Methods). Our sim-
ulations capture coherent phonon transport in 3D geometrical
structures, including confinement effects and elastic phonon scat-
tering from surfaces, boundaries, and material interfaces.

Fig. 1. Comparison of experimental and simulated thermal conductance. (A) Simplified sketch of the top view of the experiment in (9). (B) Simplified sketch of a
catenary-shaped structure connected to ideal thermal baths that drive heat across the nanowire. (C) Simplified sketch of the top view of the experiment in (14). (A) to (C)
The catenary-shaped structure of interest is highlighted by a yellowish-shaded area. Outside this yellowish region is the measuring platform with the heat sources
(heaters) represented by reddish regions, the thermometers by purple regions, and the heat sinks by blue regions. The suspended SiN sheets correspond to the
gray-shaded regions. (D) Thermal conductance normalized by the QTC, G0 ¼ ðπ2k2BTÞ=ð3hÞ. Solid curves show our NEGF simulations for an infinitely long nanowire
with a cross-sectional area of 180 nm by 60 nm (gray curve) and for a catenary-shaped structure (green curve) similar to that in Schwab’s experiment (9). Reddish triangles
correspond to measurements in (9), and the dashed reddish curve shows previous calculations in (10). (E) NEGF calculations of thermal conductance for an infinitely long
nanowire with a cross-sectional area of 100 nm by 100 nm (gray curve) and for catenary-shaped structures (blue, red, yellow, and purple curves) similar to those in
Tavakoli’s experiments (14). Triangles show measurements in (14). (F and G) Total phonon transmission computed from NEGF for the nanowires and catenary-shaped
structures of subfigure (D) and (E), respectively. The monotonically decreasing black curves correspond to the mode heat capacity (see Eq. 1) at the labeled temperatures
normalized by 10/kB.
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Within the NEGF formalism, the phonon thermal conductance
can be expressed similarly to Landauer’s formulation as (11, 15)

G ¼
ð1

0

dω
2π

CðωÞMTðωÞ ð1Þ

with ω being the angular frequency, CðωÞ ¼ ħω ∂N
∂T being the mode

heat capacity, ℏ being the reduced Planck constant, N being the
Bose-Einstein distribution, T being the temperature, and ℳT(ω)
being the sum of transmissions across the region of interest from
all the phonon modes in the hot reservoir to all the phonon
modes in the cold one (see Materials and Methods). In particular,
for a system with a single quantum transport channel with perfect
phonon transmission [ℳT(ω) = 1], Eq. 1 yields the
QTC, G0 ¼ ðπ2k2BTÞ=ð3hÞ.
Expectations from early calculations
Early calculations for infinitely long dielectric nanowires showed
that the QTC should be observable only up to temperatures below
the temperature equivalent energy of the lowest optical phonon sub-
bands (8). This upper bound temperature is typically less than 1 K
and depends on the cross-sectional area and elastic properties of the
nanowire. Above this temperature, the phonon distribution tail
begins to reach the optical subbands, and the conductance switches
from a linear to a cubic temperature dependence [gray curve in
Fig. 1 (D and E)]. For instance, infinitely long SiN nanowires
similar in cross-section to those used by Schwab et al. (9) (with a
cross-sectional area of 200 nm by 60 nm) and Tavakoli et al. (14)
(with a cross-sectional area of 100 nm by 100 nm) present a
perfect phonon transmission over the four acoustic subbands up
to ~15 and ~30 GHz, respectively, above which optical subbands
become available for transport. Thus, their upper bound tempera-
tures to observe the QTC are around 0.1 and 0.2 K, respectively
(Fig. 1, F and G). Decreasing the cross-sectional area of the nano-
wire increases the upper bound temperature at which the QTC can
be observed. For instance, SiN nanowires with cross-sectional areas
of 50 nm by 50 nm and 25 nm by 25 nm have upper bound temper-
atures of about 0.4 and 0.8 K (see fig. S1).
To measure the QTC, a nanowire needs to be smoothly connect-

ed to the thermal reservoirs to minimize reflections that affect the
unity transmission per transport channel (see Fig. 1B). A good
choice is to join the nanowire to nanoribbon-shaped reservoirs
with the same thickness (t) by smoothly changing its width (w) ac-
cording to a catenary function (8)

wðzÞ ¼+
Wn

2
cosh2

z
λ

� �
; λ ¼ Lc 2cosh� 1

ffiffiffiffiffiffiffi
Wc

Wn

r� �� �� 1

ð2Þ

withWn andWc being the widths of the nanowire and nanoribbon,
respectively, and Lc and λ being the length and characteristic length
of the catenary-shaped structure (see Fig. 1B). The intuitive
meaning of λ is the length of the wire over which its cross section
can be regarded to be uniform (10).
The calculated phonon transmission in SiN catenary-shaped

structures closely follows that of infinitely long nanowires except
at the lower frequencies [below 4 GHz in Fig. 1 (F and G)]. Increas-
ing λ decreases this lower frequency limit (Fig. 1G) (8, 10). Thus, the
conductance approaches 4G0 as the temperature tends to the upper
bound temperature, and the approaching rate is faster for structures
with larger λ [see Fig. 1 (D and E)]. For the catenary-shaped struc-
tures simulated in Fig. 1E, the conductance reaches 3.48G0, 3.69G0,

3.79G0, and 3.64G0 at the upper bound temperature (T = 0.2 K) for
the blue, red, yellow, and purple curves, respectively. Above 0.3 K,
the conductance of the catenary-shaped structures should transition
to that of a 3D system, closely following that of the infinitely long
nanowires [gray curves in Fig. 1 (D and E)]. However, our available
computing power prevents us from using grid sizes tighter than l =
0.05 μm (Fig. 1, E and G) and l = 0.06 μm (Fig. 1, D and F), which
limits the maximum temperatures of these simulations to about 0.2
and 0.1 K, respectively (see Materials and Methods).
Comparison with experimental values
Our calculated thermal conductances disagree with measured data
on catenary-shaped structures of the same size and shape as in (14)
(Fig. 1E). Whereas all the calculations converge into a single curve
above 0.2 K, experimental curves are spread over an order of mag-
nitude at any temperature. In particular, simulations predict a
similar conductance for systems with Wc = 2.0 μm and Wc = 2.7
μm, while experimental data show an order of magnitude difference
between the two systems above 1 K. Regarding the experiment by
Schwab et al. (9), our simulations do fit the measurements to a
certain extent, yielding a similar overall value and trend (see fig.
S2). However, they do not reproduce the curve’s fine detail, a
problem that has remained unresolved for over 20 years. Specifi-
cally, our calculations, as well as previous ones including only the
six lowest vibrational modes (10), show a normalized conductance
that increases monotonically with temperature, opposite to the ex-
perimental trend between 0.08 and 0.2 K (Fig. 1D). Moreover, pre-
vious calculations in SiN catenary-shaped structures similar to
those used in Schwab’s experiment suggested that λ > 5 μm is nec-
essary to observe the plateau in normalized conductance that dem-
onstrates the existence of the QTC before the contribution of optical
subbands prevents its observation [see figure 5 from (10)]. However,
existing experimental setups in (9, 14) had λ < 1.6 μm.
The lack of agreement between simulations and experiments

hints at potential difficulties to observe phonon quantized
thermal conduction in suspended structures. Although the dis-
agreement might perhaps indicate that elastic-coherent-wave-like
vibrational lattice transport is not the dominant heat transport
process in SiN catenary-shaped structures at the microscale at
sub-kelvin temperatures (see Discussion), it may also be the result
of experimental limitations. Regarding the latter, a measurement of
the QTC ideally requires two blackbody reservoirs at different
thermal equilibrium temperatures, as described by Swartz and
Pohl (16) (Fig. 1B). However, at sub-kelvin temperatures, the
phonon-phonon interaction processes that drive a phonon distribu-
tion toward equilibrium are weak. Therefore, the membranes that
are intended to behave as reservoirs may not be at thermal equilib-
rium. This may cause two problems: (i) The suspended measuring
platform, external to the catenary-shaped structure [see outside of
the yellowish regions in Fig. 1 (A and C)], may affect the measure-
ment, and/or (ii) the experimental protocol to extract the thermal
conductance may not be appropriate. The “Influence of the measur-
ing platform on the conductance values” and “Influence of experi-
mental data analysis on the conductance values” sections below
discuss these two problems by studying the effect of elements exter-
nal to the catenary-shaped structure on the calculated conductance.
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Influence of the measuring platform on the
conductance values
To evaluate the first category of possible experimental problems in-
dicated above, we consider three design features in the actual
devices: abrupt width changes at the junction between the cate-
nary-shaped structure and the membrane (Fig. 2A), thermal reser-
voirs that inject phonons perpendicular to the catenary-shaped
structure (Fig. 3A), and the effect of supporting beams that hold
the platform suspended (Fig. 4A).
Effect of the junctions between the catenary-shaped
structure and the membranes
Adding two abrupt changes in width at the edges of the catenary-
shaped structure, as done in Tavakoli’s experiment, decreases the
calculated conductance only slightly (see Fig. 2B). Thus, differences
between simulations and experiments cannot be explained by the
presence of such abrupt junctions. Figure 2A shows a catenary-
shaped structure, where the width of the nanoribbon increases
abruptly fromWc = 2 μm toWr = 4 μm. The total phonon transmis-
sion for such a structure (purple curve) is compared to that from a
structure without the abrupt junction (green curve) in Fig. 2C. Both
functions follow a similar trend except for localized resonances and
antiresonances up to about 10 GHz. At higher frequencies, themesh
density (l = 0.1 μm) is not fine enough to describe vibrations prop-
erly. Increasing the mesh density should increase the frequency in-
terval where the transmission functions of the two systems are
similar. Therefore, we expect that the conductance of the cate-
nary-shaped structure with abrupt junctions closely follows that
of the catenary-shaped structure without abrupt junctions from
0.02 to 0.3 K and that of the infinite nanowire after 0.3 K.
Effect of injecting heat normal to the catenary-shaped
structure plane
In experiments, heat is not coming from a semi-infinite nanorib-
bon-shaped contact but is injected by a heater touching the top
surface of a membrane connected to the catenary-shaped structure
(Fig. 3A). Part of the injected heat scatters at the bottom surface of
the membrane back into the heater. Thus, the thermal conductance
of the catenary-shaped structure with top contacts (insets with
yellow and purple structures in Fig. 3B) can be less than that of
the catenary-shaped structure with side contacts (inset with green
structure in Fig. 3B). To evaluate such decrement in conductance,

we calculate phonon transmission across catenary-shaped struc-
tures with top contacts of various sizes. As the contact area of the
heater with themembrane increases, phonon transmission and con-
ductance tend to that of the catenary-shaped structure with side
contacts (Fig. 3, B and C). In particular, when the contact area of
the heater is 1.2 μm by 1.2 μm, the phonon transmission oscillates
around 3.5 at 10 GHz and its average continues to increase for larger
frequencies (see fig. S3), pushing the conductance closer to four
times the QTC. Because, in both experiments, the contact area of
the heater with the membrane is larger than 2 μm by 2 μm, the
top-grown monolithic junction cannot account for the differences
between simulations and experiments in Fig. 1. Nevertheless, a very
rough or patchy contact between the heater and the platform might
result in a smaller contact area than the apparent one. Experiments
varying the contact size might be able to check for any such
contact effects.
Effect of beams that keep the catenary-shaped structure
suspended
In the experiment by Tavakoli et al. (14), the suspended membranes
plus catenary-shaped structures are supported by 2-μm-wide beams
(Fig. 4A). These beams influence the vibrational modes of the
systems and the phonon transmission across the nanowire.
Figure 4 (B and C) shows the partial conductance and phonon
transmission function from the heater to the heat sinks on the
beams at the opposite side of the nanowire (see Materials and
Methods). The transmission across the nanowire is strongly sup-
pressed (≪4), which limits the observation of the QTC. As we
explain in the next section, the experimental analysis protocol is
meant to account for this leakage through the supporting beams
and to single out the conductance inherent to the catenary-
shaped structure itself. However, classical heat conduction assump-
tions do not necessarily hold in the quantum regime, which could
render such analysis protocol nontrivial.

Influence of experimental data analysis on the
conductance values
In addition to the aforementioned differences between the ideal
models and the actual measurement setup, a second potential
source of disagreement between theory and experiment may
come from the data analysis protocols. Experiments interpret

Fig. 2. Effect on the thermal conductance of the junctions between the membranes and the catenary-shaped structure. (A) Sketch of a catenary-shaped structure
abruptly connected to wider nanoribbons at the edges. (B and C) NEGF calculations of the conductance, G, and total phonon transmission,ℳT, of a catenary-shaped
structure with (purple curves) and without (green curves) abrupt junctions at the edges. The structures in question are shown as insets and are defined byWc = 2 μm, Lc =
3 μm, Wn = 0.1 μm, t = 0.1 μm, and Wr = 4 μm. The monotonically decreasing black curve in (C) corresponds to the mode heat capacity (see Eq. 1) at the labeled tem-
perature normalized by 5/kB. The gray curves in (B) and (C) show the conductance and total transmission of an infinitely long nanowire with a cross-sectional area of 0.1
μm by 0.1 μm.
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measurement results via a thermal resistors model, but this may not
properly account for the wave nature of lattice vibrations carrying
heat and/or for the highly out-of-equilibrium nature of the
phonon distribution in these systems. In this section, we discuss
possible errors that may arise from implicit assumptions about
the measuring platform, notably from presuming that the mem-
branes behave like phonon “blackbodies” at thermal equilibrium.
To test this, we apply the same protocol used to extract the experi-
mental conductance to our phonon transport simulations, in which
lattice vibrations behave as elastic and coherent waves.
Following the protocol used in the structure with
supporting beams
Let us evaluate the conductance of a catenary-shaped nanowire
mimicking Tavakoli’s experiment (14), via different protocols. For
this, we consider a catenary-shaped structure embedded in the mea-
suring platform shown in Fig. 5A, which includes two membranes,
eight supporting beams, a heater, and three thermometers. The
heater is modeled as a semi-infinite nanowire perpendicular to
the top surface of the platform acting as a thermal reservoir (as in
Fig. 4A). The thermometers are assumed to be ideal, so they sample
the average local temperature of the surfaces without perturbing
them. The local temperature in nonequilibrium is the temperature
that an infinitesimally small local thermometer would measure.
Thus, local temperature relates to local energy content, and it is
defined as the temperature that yields the same calculated energy
content when a Bose-Einstein distribution is assumed (seeMaterials
and Methods). For each chamber temperature T0, we set the heater
temperature to Tinj = 1.2T0 and calculate the current flowing
through the nanowire, INW, as well as the temperatures on the ther-
mometers—T2, T3, and T4—using the Green’s function approach.
With these values, one could define the conductance of the nano-
wire in several ways

G1 ¼
INW

Tinj � T0
;G2 ¼

INW
T2 � T3

;G3 ¼
GbðT3 � T0Þ

T2 � T3
ð3Þ

G1 defines a conductance between the ideal thermal reservoirs of
the calculation, placed out of the system and defined to be at thermal
equilibrium. This would be a “theorist’s” thermal conductance of
the nanowire embedded in the measuring platform, where the
role of blackbodies, as defined by Swartz and Pohl (16), would be

played by the heater and the chamber. G2 defines a conductance
of the nanowire assuming that the regions close to the catenary-
shaped structure acting as thermometers are at thermal equilibrium
and using the direct knowledge of INW, which is available in some
experiments (9) but only indirectly in others (14). G3 is the conduc-
tance obtained using Tavakoli’s protocol: in addition to assuming
that T2 and T3 represent equilibrium “blackbody” temperatures,
G3 also estimates INW using the conductance of the beams Gb,
which is measured from the calibration platform shown in Fig. 5B.
In the idealized, infinitely long side contact nanoribbon struc-

ture of the early calculations (Fig. 1B), the measurement would
yield the theoretical conductance of the catenary-shaped structure
(green curve in Fig. 5C). G1 lies below these values because the heat
current injected at the heater can leak through the supporting
beams before reaching the catenary-shaped nanowire (purple dots
in Fig. 5C). Thus, for the temperature difference Tinj − T0, the
current crossing the nanowire is less than that without supporting
beams. In addition, injected phonons incoming perpendicular to
the top surface of the platform can be reflected back into the
contact at the bottom surface of the platform, lowering transmission
through the nanowire.

G2, in turn, can overestimate the conductance of the catenary-
shaped structure (yellow dots in Fig. 5C). This is because, as the
two thermometers get closer to the nanowire, the temperature dif-
ference between them, T2 − T3, decreases below the actual temper-
ature difference between the left- and right-traveling phonon
distributions in the nanowire. If one places the thermometers di-
rectly on the nanowire and sufficiently far from its edges, then
their temperatures become virtually identical (although they are
located away from each other) because the ballistic nonequilibrium
phonon distribution in the wire varies very little along its central
segment. Thus, in this case, the measured G2 would tend to infinity.
In practice, G2 could be the right way of evaluating the nanowire’s
thermal conductance, provided that the two membranes behave as
effective phonon blackbodies at mostly uniform temperatures and
that the thermometer in the hot (cold) membrane is placed shaded
from the cold (hot) phonons originated in the other membrane,
which emerge out of the nanowire.
To calculate G3, Gb needs to be computed first. For that, we sim-

ulate a calibration platform with four supporting beams, a heater,
and two thermometers (Fig. 5B). As before, for each chamber

Fig. 3. Effect on the thermal conductance of the top contacts. (A) Sketch of a catenary-shaped structure where heat is injected and ejected perpendicular to the plane
of the structure. (B and C) NEGF calculations of the conductance, G, and total phonon transmission,ℳT, of a catenary-shaped structure with heat injected and ejected
parallel (green curves) and perpendicular (yellow and purple curves) to the plane of the structure. For those structures with heat injected perpendicular to the structure
plane, the contacts are semi-infinite squared nanowires with side a = 0.2 μm (yellow curves) and a = 0.6 μm (purple curves). The top views of the structures being
compared are depicted as insets, with the catenary-shaped structures defined by Wc = 0.6 μm, Lc = 1 μm, Wn = 0.1 μm, and t = 0.1 μm. The gray curves in (B) and (C)
show the conductance and total transmission of an infinitely long nanowire with a cross-sectional area of 0.1 μm by 0.1 μm.
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temperature T0, the heater temperature is set to Tinj = 1.2T0 and the
ensemble of the currents from the heater to all supporting beams Is,
as well as the temperature at the thermometers, T3 and T4 (below the
heater), are calculated. Then, the conductance of the beams,
between the membrane and the surrounding material, is computed
as (see Fig. 5B)

Gb ¼
Is

T3 � T0
ð4Þ

Figure 5D shows that Gb grows faster than T because of the in-
crease of total transmission with frequency from the heater to the
beams (see fig. S4). Using the experimental protocol to extract G3
from the temperatures in the simulation yields conductances
above the QTC (orange dots in Fig. 5C). Additionally to the error
in G2, G3 also overestimates the current flowing through the beams
because of the nonuniform temperature profile of the membrane: In
the calibration step, Gb is defined using a temperature profile where
T4 > T3 (Fig. 5F), while in the actual measurement, T4 < T3 (Fig. 5E).
Having the current estimated from Gb(T3 − T0) is only possible if
the region labeled T4 is at a higher temperature than that labeled T3,
which is not the case in the temperature profile of the measurement
(Fig. 5E). For instance, defining Gb in terms of T4 instead of T3 as
Gb* = Is/(T4 − T0) results in about half the conductance (Fig. 5D),
which would halve G3 in Fig. 5. Thus, G3 overestimates the conduc-
tance of the catenary-shaped structure even more so than does G2.
In contrast, measurements in (14) are much below theoretical ex-
pectations. We discuss possible reasons in Discussion.
Overall, the simulated local temperature profiles vary noticeably

throughout the two membranes (Fig. 5, E and F). Thus, we are not
in the ideal situation of two connected blackbody reservoirs pro-
posed by Swartz and Pohl in their definition of interface thermal
conductance (16), which challenges experimental assumptions in
the data analysis protocol.
Following the protocol used in the beamless structure
We model a beamless structure, as is the case in Schwab’s experi-
ment (9) sketched in Fig. 1A, as two catenary-shaped structures sup-
porting a suspended central membrane. Heat is injected by a
monolithic top-contact similar to that in Fig. 4A (heater, Tinj),
and temperature is measured by an ideal thermometer on the
region labeled T2 (Fig. 6A). Within this measuring platform, the
conductance of a catenary-shaped structure can be computed in

various ways

G4 ¼
INW1 þ INW2

2ðTinj � T0Þ
;G5 ¼

INW1 þ INW2

2ðT2 � T0Þ
ð5Þ

Similar to G1, G4 would be the theorist’s thermal conductance of
the nanowire within the measuring platform because the thermal
reservoirs are ideal, outside of the system, and at thermal equilibri-
um. On the other hand, G5 is the conductance obtained using
Schwab’s protocol, where T2 is assumed to be a good estimate for
the temperature of the phonon distribution within the membrane.
As expected, G4 is less than the conductance of the ideal cate-

nary-shaped nanowire with infinitely long nanoribbon side contacts
(purple dots versus green curve in Fig. 6B) because G4 includes ad-
ditional phonon scattering at the junction between the top contact
and the membrane. However, it is unexpected thatG5 lies almost on
top of the conductance of the ideal catenary-shaped structure
(yellow dots in Fig. 6B). For the particular system in Fig. 6A, the
phonon transmission, and thus the heat current from the heater
to the cold reservoirs, are about half of what an ideal catenary-
shaped structure would have (Fig. 6C), but T2 − T0 is also about
half Tinj − T0. Thus, the additional thermal resistance of the top
contact with the membrane is balanced by the temperature drop
measured at T2.
The protocol to calculate G5 has some resilience to the nonuni-

form and nonsymmetric temperature profile in the membrane,
which has a maximum and minimum temperature of 114.5 and
109.3 mK, respectively (Fig. 6D). On one hand, despite the lack of
symmetry in the temperature profile (Fig. 6D), phonon transmis-
sions from the heater through the catenary-shaped nanowires at
either side of the membrane are similar (red and blue curves in
Fig. 6C). Thus, our computed heat currents INW1 and INW2 differ
by less than 5%. This surprising result may follow from the lack
of phonon scattering in the membrane, causing phonon transmis-
sion to be dominated by scattering in the catenary-shaped struc-
tures, and in our particular case, also scattering from the top
contact to the membrane. On the other hand, shrinking the ther-
mometer from the region T2 to T3 results in almost the same con-
ductance (orange dots in Fig. 6B), as the average temperatures over
those regions differ by less than 1%. The resemblance between the
conductance mimicking Schwab’s protocol (G5) and that from the

Fig. 4. Effect on the thermal conductance of the supporting beams. (A) Sketch of a catenary-shaped structure with the supporting beams that hold the structure
suspended. In this case, heat is injected perpendicular to the plane of the structure, and it is ejected parallel to the plane of the structure at the edges of the beams. (B and
C) NEGF calculations of the conductance, G, and total phonon transmission,ℳT, of a catenary-shaped structure with (purple curves) and without (green curves) sup-
porting beams. For the structure with beams, conductance and transmission are computed from the heater to all the heat sinks on the opposite side of the nanowire.
Insets show the top view of the structures being contrasted, with the catenary-shaped structures defined byWc = 1 μm, Lc = 1 μm,Wn = 0.1 μm, and t = 0.1 μm. The gray
curves in (B) and (C) show the conductance and total transmission of an infinitely long nanowire with a cross-sectional area of 0.1 μm by 0.1 μm.
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ideal catenary-shaped structure with side contacts may not hold for
other sizes of the measuring platform. As shown in Fig. 3C, the
phonon transmission function changes with the size of the top
contact. Thus, more simulations are required to evaluate the robust-
ness of such finding.

Nonclassical features on the temperature profiles
The temperature profiles of our simulations show non-Fourier fea-
tures arising from wave-dominated heat transport. For example, the
valley of temperature close to the right edge of the membrane on the
right in Fig. 7A would imply the existence of a heat sink in the

diffusive transport regime by virtue of Fourier’s heat equation.
There is no sink, however. Instead, this valley arises from interfer-
ence of phonon waves reflecting specularly from the platform edges.
Another example of nonclassical temperature behavior is the local
maximum of temperature in the catenary-shaped structure in
Fig. 7A (see black arrow), which is also shown in Fig. 7B at
around −0.25 μm. This maximum can be understood from wave
properties of vibrations in a finite quantum barrier, which conspire
to increase the local density of states close to the barrier. This trans-
lates into an accumulation of local energy, seen here as an increase
in temperature. Similar temperature local maxima appear in 1D
chains analogous to the catenary-shaped structure (see Fig. S5).
Heat transfer features arising from the ballistic nature of vibra-

tional transport are also visible in our temperature profiles. Outside
the colder part of the catenary-shaped structure, temperature de-
creases inversely proportional to distance, just like a radiative

Fig. 5. Simulation of Tavakoli’s platform tomeasure the thermal conductance
of a nanowire. (A and B) Top view of simulated measuring and calibration plat-
forms. Heat is injected perpendicular to the structure plane but ejected parallel to
that plane, similar to Fig. 4A. The catenary-shaped structure has dimensionsWc = 1
μm, Lc = 1 μm,Wn = 0.1 μm, and t = 0.1 μm, while each membrane is 1 μm by 1 μm,
and the width of each supporting beam is 0.3 μm. The thermometer labeled T4 in
(B) is below the heater. In addition, note that the heater is above the plane of the
structure, while all the thermometers are in the top surface plane of the structure.
(C) Simulated conductancemeasurements of the catenary-shaped structurewithin
the measuring platform (purple, yellow, and orange dots). The green curve shows
the conductance of the catenary-shaped structure with ideal heat baths at its
edges, as shown by the inset, and the gray curve shows the conductance of an
infinitely long nanowire with a cross section of 0.1 μm by 0.1 μm. (D) Simulated
conductance measurements of the supporting beams (Gb and Gb*) within the cal-
ibration platform. Conductance is computed from the heater to all the heat sinks.
(E to F) Computed temperature profiles at the top plane of the measuring and cal-
ibration platforms when the heater and chamber temperatures are set to Tinj = 120
mK and T0 = 100 mK, respectively.

Fig. 6. Simulation of Schwab’s platform to measure thermal conductance of a
nanowire. (A) Top view of a simplifiedmodel of Schwab’smeasuring platform. The
heater injects energy perpendicular to the structure plane while the heat sinks
draw energy parallel to that plane, like in Fig. 4A. The catenary-shaped structure
is defined byWc = 1 μm, Lc = 1 μm,Wn = 0.1 μm, and t = 0.1 μm, and themembrane
is 1.1 μm by 1 μm. (B) Simulated measurements of thermal conductance of the
catenary-shaped structure within the measuring platform (purple, yellow, and
orange dots). The conductance of an infinitely long nanowire with a cross-
section of 0.1 μm by 0.1 μm is given by the gray curve and that of the catenary-
shaped structure with ideal heat baths, as shown in the inset, is given by the green
curve. (C) Total phonon transmission for the infinitely long nanowire (gray curve),
for the catenary-shaped structure with ideal heat baths (green curve), and for
Schwab’s measuring platform. For the latter, transmission is computed from the
heater to the heat sink on the left (red curve) and to that on the right (blue
curve), as shown in the lower inset. (D) Computed temperature profile at the
top plane of the measuring platforms when the heater and chamber temperatures
are set to Tinj = 120 mK and T0 = 100 mK, respectively.
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point source on a 2D system (see Fig. 7C and the Supplementary
Materials). This is different from the behavior predicted by the
heat equation, where temperature decreases logarithmically (see
the Supplementary Materials). Note that on a purely ballistic
system where phonon transmission equals one for each phonon
subband, the temperature should be constant along the nanowire.
This is not seen in the catenary-shaped structure because the
width of the catenary shape changes continuously, generating
reflections.

DISCUSSION
Our simulation results unveil a non-negligible influence of the mea-
suring platform on the experimental estimation of the QTC. At sub-
kelvin temperatures, wave-dominated heat conduction can extend
for up to tens of micrometers, permeating the sample of interest
and the measuring device (17–19). Thus, a fully nonequilibrium
phonon transport model is necessary not only on the sample but
also on the measuring platform, including membranes, supporting
beams, and heaters, to properly interpret experimental data.
However, a greater challenge when trying to measure quantized

thermal conductance is for the experimental setup itself to satisfy
certain criteria, as explained by Swartz and Pohl. In their article,
they show that the thermal conductance between two blackbody
cavities connected through a hole has a finite value, although
“there is no interface except the imagined one between the two

cavities, and there is no temperature discontinuity at that interface”
(16). In our case too, the beginning and end boundaries of the nano-
wire are not well defined, and the temperature can remain rather
constant along the wire, but nevertheless, its thermal conductance
must have a finite value, according to Swartz and Pohl. This value is
well defined only if the nanowire joins two ideal blackbody phonon
reservoirs (or “cavities”), just as in the thought experiment depicted
in figure 7 of (16). From that figure, it is also apparent that the po-
sition of the thermometers matters. Placing the thermometers just
facing the nanowire on both sides would result in a vanishing tem-
perature difference between them, yielding an infinite thermal con-
ductance, in disagreement with Swartz and Pohl. As shown in figure
7 of (16), the best location for the thermometers is such that they
cannot directly “see” the phonons coming out of the nanowire
(which are at the other reservoir’s temperature) but only receive
thermalized phonons from the reservoir that they are in. Such an
ideal, uniform-temperature blackbody reservoir can however be dif-
ficult to achieve on the measuring membranes of the real experi-
ment. If the local temperature is not uniform throughout the
membranes, as our calculations suggest, this can lead to errors in
the reported conductance. Furthermore, at the low temperatures
and sizes involved, this variation cannot be predicted via Fourier’s
heat equation but stems from ballistic and wave-mechanical
phonon transport. Therefore, experimental setups must pay
special attention to the topology of the measurement platforms.
The two existing topologies to measure the QTC have their own

advantages and challenges. In Schwab’s topology (9), the support-
ing beams of the membrane are the nanowires themselves. Thus, the
heat flowing across the nanowires equals the power dissipated in the
heater, which is directly known without any approximated estima-
tion. However, the nanowires are topped with superconducting and
metal wires to drive the heater and thermometer on the membrane.
Therefore, heat flowing through the top layers may influence the
measurement of the nanowires’ conductance. This might be
solved using alternative ways of injecting heat and measuring tem-
perature, such as optical methods. In Tavakoli’s topology (14),
nanowires do not have top layers, but knowing the heat flowing
through them is not straightforward, as it depends on the system
outside the catenary-shaped structure.
The question remains, why do our simulated results not match

experimental measurements? A possible source of disagreement
might be that our simulations assume coherent, elastic lattice vibra-
tional transport in a continuum medium. Thus, they neglect three-
phonon interactions, surface roughness, and the amorphous nature
of SiN. At low temperatures, three-phonon scattering is generally a
negligible process for lattice thermal transport (20, 21). For in-
stance, Klemens’ formula for Umklapp phonon-phonon scattering
rates τ� 1u ¼ BTω2e� C=T in silicon (B = 1.73 × 10−19 s/K and C =
137.39 K) (22, 23) decrease more than 60 orders of magnitude
when the temperature drops from 300 to 1 K. Overall, three-
phonon scattering should have negligible effects on thermal con-
ductance below 0.1 K. Thus, those effects cannot reconcile the dis-
agreement between simulation and experiments shown in Fig. 1.
The role of phonon scattering from rough surfaces and rough

interfaces with thermometers and heaters is not included in our
simulations. However, as temperature decreases, the influence of
surface roughness on thermal conductivity is expected to decrease
because waves with longer wavelengths are less sensitive to surface
imperfections. In particular, for SiN samples like those of Tavakoli

Fig. 7. Non-Fourier features in the temperature profiles. (A) Simulated temper-
ature profile at the top plane of Tavakoli’s platform to measure thermal conduc-
tance of a nanowire. The system geometry equals that of Fig. 5A, but the heater
and chamber temperatures are set to Tinj = 24mK and T0 = 20mK, respectively. The
black arrow points to a local maximum temperature. (B) Average temperature of
the measuring platform taken in the xy plane but not including the supporting
beams (see dark gray region in the inset). The yellow and purple curves display
local maximum temperatures at about −0.25 μm. (C) Average temperature of
the measuring platform taken in the xy plane over the cross-section of 0.1 μm
by 0.1 μm that overlaps with the nanowire (see darker gray region in the inset).
The vertical line shows the right edge of the catenary-shaped structure, and the
dashed lines are proportional to z−1.
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et al. (14), where the root mean square of deviation of the surface
from a reference plane is about 3 nm, Ziman’s model at temperature
0.1 K predicts that most of the heat is carried by waves with surface
scattering limited mean free paths larger than 12 μm (see the Sup-
plementary Materials). Thus, most of the phonons may be negligi-
bly affected by surface roughness. On the other hand, any defects or
voids present at the interfaces of the SiN membranes with heaters
and thermometers may act as diffusive scattering centers adding in-
coherence and destroying some of the effects discussed here that
rely on coherent phonon transport. Evidence of non-negligible
surface phonon scattering at sub-kelvin temperatures when submi-
crometer particles, as well as thin films, are deposited on SiN is
found in the study of Holmes et al. (24). Further studies are neces-
sary to evaluate the extent of this effect.
Regarding amorphous materials, their properties differ funda-

mentally from those in crystals. At temperatures of a few K, amor-
phous materials present a heat capacity larger, as well as a thermal
conductivity orders of magnitude lower, than those of their crystal-
line counterparts (25, 26). Moreover, their thermal conductivity is
proportional to T2 instead of the usual T3 in crystals (27). These
properties imply the existence of low-frequency vibrational modes
and scattering processes beyond those attributed to phonons, which
may be important to reconcile our simulations with experimental
measurements on the QTC.
Although several models exist to explain the anomalous thermal

properties of amorphous materials, there is no consensus about the
microscopic mechanism causing them (28–32). Thus, here, we
focus on existing experimental evidence on amorphous SiN sus-
pended membranes at low temperatures, which is also inconclusive.
On the one hand, the noncrystalline behavior of heat capacity and
thermal conductivity has been demonstrated in SiN membranes
with various geometries and measuring techniques (33–38), imply-
ing the existence of nonphononic lattice vibrations and scattering
processes. On the other hand, ballistic and coherent thermal trans-
port properties have also been shown in SiNmembranes (17, 19, 24,
39), implying a lack of intrinsic scattering processes and, in the co-
herent case, a dominant role of long-wavelength phonons in trans-
port. It remains an open question to quantify the role of
nonphononic processes in the measurement of the QTC.
Our simulations of temperature on Tavakoli’s (14) and Schwab’s

(9) measuring platforms are limited to temperatures and membrane
sizes about an order of magnitude smaller than those in the actual
experiments. Exceeding these boundaries may blur coherent wave
effects from the temperature profiles, as more phonons contribute
to the heat transfer process and are involved in the spectral integrals
to calculate temperatures (see Materials and Methods). Quantifying
the extent of temperature changes across membranes sized as those
in experiments requires further investigation. From the current state
of our code, increasing the size and temperature range of our sim-
ulations requires considerable effort in code development, but
besides that, the simulations are, in principle, possible.
In summary, we have simulated heat transport in existing exper-

imental setups to measure the QTC, including the sample and the
measuring platform. Our simulations assume that heat is carried by
elastic and noninteracting vibrational waves, thus capturing purely
wave-like heat conduction. We show that the disagreement between
existing measurements and simulations on idealized catenary-
shaped structures is not reconciled by including parts of the mea-
suring platform in the simulations. Thus, wave-like phonon

transport phenomena, like reflections from surfaces and junctions,
along the measuring platform and sample are not the culprit for the
discrepancies. Moreover, we show the detrimental effects on
thermal conductance values computed with current measuring pro-
tocols that assume diffusive heat transport within the measuring
platform. At sub-kelvin temperatures, wave-like heat conduction
may be dominant even in the measuring platforms. Thus, future ex-
perimental efforts should account for non-Fourier heat conduction
effects in parts of the measuring platform, such as suspended mem-
branes and supporting beams. Our simulations suggest that the key
to finally measuring the QTC lies in finding how to create phonon
blackbody reservoirs at uniform, sub-kelvin temperatures, in quasi-
2D suspended membranes.

MATERIALS AND METHODS
We compute vibrational thermal transport properties using the
NEGF formalism (11, 40–42) adapted to work with a finite
element mesh instead of atomistically (12). At low temperatures
(~1 K), excited vibrational waves have wavelengths much larger
than the atomic scale. Thus, such waves are well described by the
linear theory of elasticity [see section 2.7 in (21)]. Discretizing the
continuum displacement vector field with finite element tech-
niques, the equation of motion in the frequency domain that dic-
tates the dynamics of elastic waves is given by [see section 11 of (43)]

ðω2M � CÞ u!¼ 0! ð6Þ

with ω being the angular frequency and u!being a vector containing
the deviations from equilibrium at each node. M is a diagonal
matrix containing the masses assigned to each node mn according
to the so-called lumped mass method [see section 11.3 of (43)], i.e.,
mn =

P
βmβ/Nβ, with β running over the elements that contain node

n. For each element β, mβ equals its mass and Nβ is its number of
nodes. C is the so-called element stiffness matrix containing the in-
ternode force constants, which depend on the tensor of elastic con-
stants and the types and shapes of the elements. In particular, we use
tetrahedron elements and calculate their internode force constants
according to finite element techniques described in (43) (using
equation 3.3-7, mimicking the process outlined in section 7.2 for
a tetrahedron instead of a linear triangle and assembly element-
wise variables according to section 2.5). The equation of motion
in Eq. 6 is analogous to that describing lattice vibrations atomisti-
cally (11, 40); thus, the NEGF machinery to calculate transport can
be applied, replacing atoms by nodes, atomic masses by lumped
masses, and interatomic force constants by internode force
constants.
Within the NEGF formalism, heat is driven across the region of

interest by two reservoirs set at two different thermal equilibrium
temperatures. The reservoirs inject phonons with an equilibrium
distribution and perfectly absorb incoming vibrations out of equi-
librium. In particular, we neglect phonon-phonon interactions, as
they are not important at low temperatures (~1 K); thus, thermal
conductance can be expressed similar to Landauer’s formulation
(11, 15), as given by Eq. 1. ℳT(ω) is defined as the
Trace⌈ΓLGRΓR(GR)†⌉, with ΓL(R) the so-called broadening matrix
for the left (right) contact, GR the retarded Green’s function [see
equations 4 to 7 in (11) for more details]. Trace⌈ΓLGRΓR(GR)†⌉
equals the sum of transmissions across the region of interest from
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all the phonon modes in the hot reservoir to all the phonon modes
in the cold one. Our choice to replace Trace⌈ΓLGRΓR(GR)†⌉ as
ℳT(ω) in Eq. 1 emphasizes the relationship between NEGF and
Landauer’s formalism (44). ℳ refers to the number of transport
channels, sub-bands available for transport or modes, and T to
an average transmission over these modes. In particular, for an in-
finitely long, narrow (~100 nm by 100 nm) dielectric nanowire at
sub-kelvin temperatures, like the ones studied here, there are four
available transport channels corresponding to one longitudinal, two
transverse, and one torsional vibrational subbands, and phonon
transmission is 1. Thus, the conductance of the wire equals four
times the QTC (G = 4G0). Be aware that the retarded Green’s func-
tion is noted with a bold letter GR, not to be confused with conduc-
tance, which is denoted byG. For the calculations in Figs. 4C and 6C
and fig. S4B, ℳTi,j(ω) = Trace⌈ΓiGRΓj(GR)†⌉ defines the total
phonon transmission from all the phonons in contact i to all the
phonons in contact j, and Γi is the broadening matrix for contact
i. For Fig. 4B, Gi,j is found using Eq. 1 but replacing ℳT(ω) by
ℳTi,j(ω).
Our NEGF simulations capture energy flow carried solely by

elastic lattice vibrations. Wave effects such as transmission, reflec-
tion, diffraction, and interference within the specific system geom-
etries are fully considered. For the particular systems simulated
here, SiN is considered an isotropic medium with Young’s
modulus E0 = 289 GPa, Poisson’s ratio ν = 0.2, and mass density
ρ = 3100 kg m−3 (45, 46). Then, the tensor of elastic constants is
defined in terms of c ¼ E0

ð1þνÞð1� 2νÞ and G ¼ E0
2ð1þνÞ as [equation

3.1-5 in (43)] C11 = C22 = C33 = (1 − ν)c = 321.1 GPa, C44 = C55
= C66 = G = 120.4 GPa, and C12 = C21 = C13 = C31 = C23 = C32 =
νc = 80.3 GPa. From these constants, the longitudinal and transverse
sound velocities are given by vL ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
C11=ρ

p
¼ 10;177:63 m s−1 and

vT ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
C44=ρ

p
¼ 6232:50 m s−1, respectively. The edges of the

structures simulated here that are not connected to a contact are
free to move.
Our in-house transport code has been benchmarked for consis-

tency and correctness. Numerical phonon dispersions for bulk SiN
yield longitudinal and transverse sound velocities vL = 10,177.60 m
s−1 and vT = 6232.48 m s−1, respectively. The close agreement with
the analytical predictions above validates the extraction of internode
force constants from a given mesh. We also computed the phonon
dispersion of GaAs nanowires, which are in excellent agreement
with the analytical calculations in (47). Our atomistic NEGF
solver has been benchmarked and used in the past to model
phonon transport across GaN/AlN interfaces (48). The full trans-
port code, including the finite element methods that extract node
masses and internode force constants for a particular mesh integrat-
ed with the NEGF solver, was benchmarked against independent
transmission and conductance calculations in defective GaAs nano-
wires in (12). Our in-house transport code is available online (49).
The numerical convergence of our in-house code is closely

related to the mesh. The usual rule of thumb consists of choosing
the maximum distance between grid points smaller than four times
the minimum wavelength desired in the simulation. For example,
the mesh used in the contact regions of the simulations in Fig. 1
(E and G), described by a characteristic length l = 0.05 μm, translates
to a grid density of 64,000 nodes per μm3 and describes well lattice
frequencies up to about 35 GHz or conductance up to 0.2 K.Most of
the simulations presented here combine a periodic mesh grid at the

contacts, convenient to describe infinite regions, with a randomly
generated grid on the device region, convenient to easily generate
meshes using existing tools. This generates two virtual thermal re-
sistances that are not physical. The randomness of the grid acts like
random impurities. Thus, larger backscattering results from larger
samples and at higher frequency vibrations. At the interfaces
between the ordered and disordered meshes, there is a resistance
similar to the Kapitza resistance. The effect of these two virtual re-
sistances in simulations decreases as the mesh becomes finer.
In out-of-equilibrium systems, the local temperature, as mea-

sured by an ideal thermometer, can be defined in terms of the
local energy content. Intuitively, an ideal thermometer is, at every
instant, taking in the phonons present in the infinitesimally small
domain of space that it occupies and putting the same (infinitesi-
mally small amount of) energy contained in those phonons back
into the system but with a mode occupation distribution corre-
sponding to that of thermal equilibrium. The local temperature at
the thermometer’s position is thus the one that guarantees that the
energies being taken in and out are the same. Within the Green’s
function formalism, the energy taken out from node i by the ther-
mometer is the local energy associated with the three degrees of
freedom α of node i

Ei ¼
X

α[node i

ð1

0

ωdω
π

ħωGn
α ð7Þ

with Gn
α being the diagonal term in row and column α of the spec-

tral number operator defined as GR½
P

c ΓcNðTcÞ�ðGRÞ
y, the sum

running over all contacts c, and N(Tc) being the Bose-Einstein dis-
tribution at the contact temperature Tc [the notation follows closely
that of (11) and that of chapters 8, 9, and 10 in (44); do not confuse
Gn

a with conductance, denoted by the unbold letter G]. The energy
taken in by the thermometer is calculated as the local density of
states weighted by an equilibrium distribution. Then, the local tem-
perature at node i, Ti, is the temperature for which

Ei ¼
X

α[node i

ð1

0

ωdω
π

ħωAαNðTiÞ ð8Þ

with Aα the diagonal element in row and column α of the spectral
operator A = i[GR − (GR)†], which is related to the local phonon
density of states (LDOS) at the degree of freedom α by

LDOSα ¼
ω
π

Aα and
ð1

0

ωdω
π

Aα ¼ 1 ð9Þ

In particular, Figs. 5 to 7 show an interpolation of the tempera-
ture assigned to each node.
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This PDF file includes:
Supplementary Text
Figs. S1 to S6
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