Oana Stan 
  
Vincent Thouvenot 
  
Aymen Boudguiga 
  
Katarzyna Kapusta 
  
Martin Zuber 
  
Renaud Sirdey 
  
A Secure Federated Learning: analysis of different cryptographic tools

Keywords: federated learning, homomorphic encryption, multi-party computation, differential privacy

Federated Learning is established as one of the most efficient collaborative learning approaches aiming at training different client models using private datasets. By private, we mean that clients' datasets are never disclosed as they serve to train clients' models locally. Then, a central server is in charge of aggregating the different models' weights. The central server is generally a honest-but-curious entity that may be interested in collecting information about clients datasets by using model inversion or membership inference. In this paper, we discuss different cryptographic options for providing a secure Federated Learning framework. We investigate the use of Differential Privacy, Homomorphic Encryption and Multi-Party Computation (MPC) for confidential data aggregation while considering different threat models. In our homomorphic encryption approach, we compare results obtained with an optimized version of the Paillier cryptosystem to those obtained with BFV and CKKS. As for MPC technique, different general protocols are tested under various security assumptions. Overall we have found HE to have better performance, for a lower bandwidth usage.

Introduction

Federated Learning (FL), a recent ML distributed paradigm allowing to train a common model without sharing sensitive local data, seems an appealing option to build high-quality and robust models with large amounts of training sets from various sources. In FL a set of participating clients collaboratively learn a global model by uploading their local models updates to a central server, which coordinates the training. This central server updates the global model by averaging the local model parameters, and sends it back to the data owners. Even if federated learning has the advantage of not sharing local data, recent research showed that the local data of distributed devices can be leaked through the local model parameters. Sharing intermediate models with the coordinator server, or among the participants, can lead to various privacy attacks, e.g., extracting participants' inputs or membership inference (e.g. [START_REF] Hitaj | Deep models under the gan: Information leakage from collaborative deep learning[END_REF], [START_REF] Melis | Exploiting unintended feature leakage in collaborative learning[END_REF]).

To address these problems, several works employ different cryptographic techniques such as Differential Privacy (DP), Homomorphic Encryption (HE) or Multi-Party Computation (MPC) to propose more privacy-preserving and secure federated learning ap-proaches. However, none of these solutions is yet completely satisfactory (in terms of performances of AI models and/or security constraints) and moreover they are often tested for different applications and on different datasets.

In this paper, we propose a first work on secure federated learning in which for the same use-case and datasets, different cryptographic solutions are conceived, implemented and compared. More precisely, our contributions are as follows:

• We propose different architecture configurations for a Secure Federated Learning taking into account threats coming from the aggregation server (by means of Homomorphic Encryption or Multi-Party Computation) and/or the other clients (by means of Differential Privacy) and we analyse the impact of these countermeasures.

• We present a comparison of three HE schemes (Paillier, BFV, CKKS) when applied to federated learning averaging.

• We evaluate the performance of FL aggregation implemented using general MPC protocols for four different security configurations. We show the cost of increasing the protection from a semihonest adversary to a dishonest one.

• We implement global differential privacy on a Federated Learning framework and evaluate the privacy of the resulting model.

• We provide a comparative analysis between MPC and Homomorphic Encryption solutions for our Federated Learning model in terms of accuracy of the AI model, the additional training overhead but also from a security point of view.

Overview of Federated Learning

The main idea of Three settings of FL exist: horizontal FL, vertical FL and Transfer FL. In this paper we focus on horizontal FL, or sample-based federated learning, which corresponds to the scenarios in which datasets share the same features. We assume honest participants and security against different adversarial settings for the server. For more details about FL, interested readers can refer to these recent surveys [Li et al., 2021, Kairouz andet al., 2021].

3 Architectural options for a more secure Federated Learning

HE-based variant

One of the security assumptions we made with this variant of architecture is an honest-but-curious aggregation server, i.e. a server following honestly the protocol and trying to infer as much information as possible from the data it has access to. Homomorphic Encryption can prevent this from happening, by providing a secure countermeasure to protect the models parameters during FL training. Before the training actually begins, the central server shares with the M clients the global architecture of the neural network that will be trained. For now, we assume a default setting, with a simple key distribution, in which each of the K clients selected randomly to participate in a round has the same pair of secret and public homomorphic keys (sk, pk). sk is the private key while pk is the public key. The preliminary step of key setup is independent of this work. For example, we can assume that the key generation is made locally by one random client. The latter can be randomly selected by the server or be the result of a leadership election protocol. All the clients will then share the same pair of (sk, pk). The central server holds only the pk required for the homomorphic evaluation of the global model. At each round of the training which is an iterative process, the server randomly selects K out of the M clients. Therefore, the only function to be computed encrypted is the federated averaging of the encrypted weights provided by the K clients participating to the FL round t. That is, the central server has to compute per round t the function:

w t+1 ←-∑ K k=1 n k n •w k t+1
, where n k is the size of the training set of client k, and n = ∑ K k=1 n k is the total size of the training datasets used in round t.

MPC-based variant

As discussed in the previous section, the homomorphic encryption is a good choice for securing the averaging by the aggregation server in the semi-honest setting. However, MPC can provide a solution in a situation where such a server is not available due to lack of trust between the participants. It can replace the semi-honest aggregator server by two or more semihonest or untrusted aggregator servers that would perform the aggregation in a distributed way. MPCbased distributed aggregators could solve two problems that a single semi-honest aggregator server cannot address. First is that the secure aggregator server cannot be also a participant of the computation: as a participant has the decryption key that the aggregator server cannot possess. For the same reason, an aggregation server is not supposed to collude with one or more participants. In MPC, the aggregators can be independent or not from the participants to the learning. Therefore, a participant to the learning can also have the role of an aggregator. Second, homomorphicencryption prevents the server from decrypting the data but does not come with mechanisms addressing the dishonest threat model, in which the aggregation server could deviate from the agreed protocol. For instance, an aggregation server corrupted by an active adversary could omit some of the inputs provided by the participants (and therefore modify the aggregation results, and in consequence the final model). Homomorphic encryption could be enriched with additional verification mechanisms that would detect dishonest behavior of the aggregator. However, implementing those mechanisms is not straightforward. In contrast, MPC protocols addressing the active adversary embed already mechanisms that enable to detect deviations of the participants from the agreed protocol. The advantages of MPC come at the cost of increased communications and expensive computations (especially in the active threat model). Therefore, although MPC is an interesting alternative to HE, it can be judged impractical for use-cases where the communications costs are an important factor.

In the example of architecture from Figure 2, the aggregation servers are different from the clients and a secret-sharing MPC algorithm is used to protect the data (computation is realized on the shares of inputs and its secure unless all shares of a given data are gathered). 

Adding DP guarantees to FL training

In order to address threats coming from other honestbut-curious clients, the above frameworks can be completed with Differential Privacy (DP) guarantees.

In the case of a malicious server, one may use local DP with noises generated by each client. Otherwise, if one can trust the aggregation server for the noise generation, global DP can be applied. Let us also note that for the secure variant of FL using local DP and HE, specific quantization techniques are necessary for the noise sampling to ensure high DP guarantees (refer to [START_REF] Amiri | Compressive differentially-private federated learning through universal vector quantization[END_REF] for more details).

4 Experimental results

FL implementation with DP

We have implemented a federated learning with global differential privacy based on Tensorflowfederated. To demonstrate the results, we use the Turbofan dataset [START_REF] Saxena | Damage propagation modeling for aircraft engine runto-failure simulation[END_REF]. This learning process is similar to [START_REF] Mcmahan | Learning Differentially Private Recurrent Language Models[END_REF]. To simulate the federated learning between three participants, we split the data into three using the column "unit", this way each participant gets the full data. Two participants have 33 engines and one has 34 engines. The standard deviation of the noise that we add is equal to z/3, where z is a hyperparameter that we make varying and 3 comes from the fact that we have 3 participants. In Figure 3, we vary z and consider 20 rounds of training. We collect for each z the maximum validation accuracy after 20 rounds. We denote that the process does not converge after 20 rounds for the 6 strongest z. Moreover, for the strongest z values, we obtain the maximum validation accuracy for less than 8 rounds. The results shown in Figure 3 are quite intuitive: the more noise we add the less accurate the model is. The evolution of the accuracy during the training process gives a more precise understanding of what happens. In Figure 4, we display the categorical accuracy obtained at each round on the training dataset and on the test dataset. It displays on the same plot, the curves for the three different learning settings:

• Federated Learning with global differential privacy

• Federated Learning without differential privacy

Local training on the global dataset

In Figure 4 the differential privacy was computed with z=0.0.1, a small amount of noise. Its affects the convergence rate, the accuracy increases slowly but the performances are good. We also compute the differential privacy for z=0.1, a larger amount of noise, but still quite small. The learning is affected. There is some randomness in the evaluation accuracy. The model is learnt on the training dataset but its perfor- mances on the test dataset are not predictable. In our first results of this sandbox dataset, it seems that z=0.1 is the larger amount noise that allow us to learn a model, while ensuring some privacy. We evaluate the privacy guarantees obtained after 20 rounds in order to find a trade-off between model performances and data privacy. In Figure 5 we show the validation accuracy, and the vertical line at z=0.1 highlights the limit between a learning for which we achieve a convergence and a learning that does not ends with convergence. Here, we see that the convergence is achieved only with a good accuracy and that the resulting privacy metrics are high, and thus the privacy guarantees are low.

(F)HE for FL

All the experiments presented in this section are done with parameters that support a security level of λ = 128. We have trained three models of different sizes: 197, 1000 and 10000 weights. Note that 197 is the number of weights of the neural network that was trained, in the previous section, using FL with DP and the Turbofan dataset.

Implementation with Paillier

Our implementation using the Paillier cryptosystem relies on a simple packing technique as well as a faster Regev-style encryption function (encrypts by homomorphically adding a random subset of public encryptions of 0 to a pseudo-encryption of the message). Because we parameterize for exact arithmetic (as opposed to approximate arithmetic for some homomorphic schemes or depending on the parameters) we only need to concern ourselves with the time performance on the server here and the bandwidth use.

On the client side, the encryption time for a given client depends on the number of ciphertexts needed to be encrypted. That in turn is determined by the precision p (in bits) needed for the weights, the number of weights per client N w , and the number of training points used by every client n k . We assume for our tests, for simplicity sake, that all n k have the same values and that all clients have the same number of weights N w . Table 1 presents our implementation's time and bandwidth performance for several sets of parameters from small to big. Obviously the parameter sets are not exhaustively chosen and are designed to give a good idea of the scaling of our implementation. Because deciphering time is fixed (at roughly 0.05 seconds) for every set of parameters it is not included in the Table . The bandwidth size corresponds to what a client needs to send to the server. It gets back roughly the same amount of data, therefore for a total bandwidth, that needs to be doubled.

Implementation with BFV/CKKS

We did our tests for FL aggregation with BFV or CKKS schemes with Microsoft SEAL 3.7.2 library. For batching with BFV and CKKS, we set the encryption parameters with respect to the considered precision and the number of batched slots. For BFV, the plaintext modulus size is at least equal to the global precision p + ⌈log 2 (n k )⌉ + ⌈log 2 (K)⌉. Meanwhile for CKKS, the scaling factor size ⌈log 2 (δ)⌉ is at least equal to p + ⌈log 2 (n k )⌉ + ⌈log 2 (K)⌉ + ⌈log 2 (K × noise)⌉ where noise corresponds to the noise induced by a homomorphic addition. We do so to ensure that the final precision with CKKS is equal to ⌈log 2 (δ)⌉ -⌈log 2 (K × noise)⌉ = p + ⌈log 2 (n k )⌉ + ⌈log 2 (K)⌉. This precision is needed for ensuring a correct aggregation result.

Note that the FL aggregation takes at most 15 milliseconds (Tables 2 and3). It is very efficient with BFV or CKKS, as it only consists in computing additions (no multiplication needed). However, the ciphertext size reaches at most 1.8 MB with BFV. 

MPC for FL

We implemented the MPC-based secure FL aggregation procedure using the recently released MP-SPDZ framework [START_REF] Keller | MP-SPDZ: A versatile framework for multi-party computation[END_REF] that allows fast translation of a python-like code into MPC operations and that implements more than 30 variants of MPC protocols. We measured the aggregation performance in terms of time and communication costs. The number of participants was set to 5 and models of 1000 weights were considered. A configuration of 2 or 3 computing parties was chosen, which is a common choice for MPC computations. Two setting were tested: honest majority and dishonest majority.

Three different MPC protocols were selected for the test: a Shamir's secret sharing-based protocol for semi-honest honest majority, the MASCOT protocol for dishonest setting, and a version of MAS-COT stripped of active security mechanisms for semihonest dishonest majority.

Performance results are presented in Table 4. They were obtained on a device with a 4-th generation i5 processor running at 1.30 GHz using 16 GiB of RAM on Linux. They confirmed that a straightforward implementation of distributed aggregation using general MPC protocols leads to a rather large overhead in terms of communication and computation costs. However, the advantage of this approach is that it enables to switch smoothly between different protocols and thus to easily adjust the security level and the number of parties. It shows that securing the computation against an active attacker is possible, although it comes at a high cost (that can be potentially acceptable for some of the use cases where securing is a much higher priority than the speed of the learning). Moreover, such implementation is robust to dynamic client or aggregation server dropouts.

Analysis

The preliminary results presented in the above sections showed interesting perspectives when securing Federated Learning with DP, FHE and MPC. As expected, there is a delicate trade-off to find between the guarantees offered by the global DP and the accuracy of the training model.

As for the results obtained with (F)HE and MPC, let us analyse and compare the concrete case of 5 clients and a model size of 1000 weights. The tests show that, under the hypothesis of a honestbut-curious server, the homomorphic encryption under various flavors (either optimized version of additive Pailier cryptosystem or classical batching of levelled BFV and CKKS) has better performance results in terms of execution times and bandwidths requirements than the general MPC protocols. This general conclusion of homomorphic encryption performing better for the aggregation in the context of federated learning remains valid for other testing parameters. Of course, the results with MPC could be ameliorated through specific protocols and it is still useful in situations in which homomorphic encryption cannot be used (see Section 3.2 for details).

  FL is highly similar to Distributed Learning (DL) where the data is spread among workers, while a central server is in charge of computing the updates. A global model is computed by averaging the local model trained on-device using the dataset owned locally by each worker (data-owner). The FL training is described below: 1. Central server sends the latest model parameters to the nodes 2. Data is collected at each node 3. Each local model is trained based on the latest pa-4. Updated model parameters are communicated back to the global model 5. Combine updates from each model and retrain the global model to get a new model 6. Restart from step 1
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 1 Figure 1: Cross-silo federated learning architecture with Homomorphic Encryption

  Figure 1 depicts a round of FL training with federated averaging with homomorphic encryption. During this round, each client runs several epochs of minibatch stochastic gradient descent minimizing a local loss function. Once the clients perform this local training, they encrypt their local models and send them to the central server. The latter will perform a weighted averaging of the updated local models to obtain an encrypted updated global model. The current iteration ends by sending the global model to each of the K clients that decrypt it with the sk.
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 2 Figure 2: Cross-silo federated learning architecture with MPC
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 3 Figure 3: Maximum validation accuracy during 20 rounds in function of z.
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 4 Figure 4: Categorical Accuracy during the training with different settings. Global differential privacy is computed with z=0.01, and the epsilon (dashed curve) is estimated for delta=0.01.
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 5 Figure 5: Validation accuracy and privacy metrics after 20 rounds of training in function of parameter z.

Table 1 :

 1 Computation time (t c ) in s, encryption time (t e ) in s per client, and bandwidth overhead (B w ) in KB per client for different sets of precision (p) in bits, number of weights per client (N w ), number of training dataset size per client n k and number of clients (K).

	p	N w	n k	K	t e	t c	B w
		197	100	3 0.04 0.05 2.5
	8	1000	1000	5 0.13 0.06 14
		10000 10000 10 1.2 0.26 153
		197	100	3 0.05 0.06 3.7
	16	1000	1000	5 0.16 0.06 19
		10000 10000 10 1.6 0.32 200
		197	100	3 0.08 0.06 6.2
	32	1000	1000	5 0.24 0.07 28
		10000 10000 10 2.7 0.45 295

Table 2 :

 2 Results with BFV-Computation time (t c ) in ms, encryption time (t e ) in ms per client, and bandwidth overhead (B w ) in MB per client for different sets of precision (p) in bits, number of weights per client (N w ), number of training dataset size per client n k and number of clients (K).

	p	N w	n k	K	t e	t c	B w
		197	100	3	1.091 0.043 0.031
	8	1000	1000	5	1.397 0.056 0.031
		10000 10000 10 15.97 3.216	1.8
		197	100	3	1.349 0.024 0.031
	16	1000	1000	5	1.052	0.04 0.031
		10000 10000 10 14.264 3.422	1.8
		197	100	3	0.973 0.024 0.031
	32	1000	1000	5	3.001 0.091 0.087
		10000 10000 10 14.561 4.47	1.8

Table 3 :

 3 Results with CKKS-Computation time (t c ) in ms, encryption time (t e ) in ms per client, and bandwidth overhead (B w ) in MB per client for different sets of precision (p) in bits, number of weights per client (N w ), number of training dataset size per client n k and number of clients (K).

	p	N w	n k	K	t e	t c	B w
		197	100	3	2.015 0.051 0.081
	8	1000	1000	5	2.089 0.093 0.081
		10000 10000 10 21.412 1.733 0.973
		197	100	3	2.021 0.051 0.081
	16	1000	1000	5	2.03	0.086 0.081
		10000 10000 10 22.443 1.735 0.973
		197	100	3	2.025	0.05 0.081
	32	1000	1000	5	4.532 0.192 0.23
		10000 10000 10 23.76 1.696 0.973

Table 4 :

 4 Performance results using general MPC protocols: straightforward aggregation of 5 FL contributions containing 1000 updates each, aggregated by two or three computing parties (CP) acting as aggregator servers. Communication cost is measured for both one CP (2nd row) and all CPs (3rd row) in MB, as well as for both dishonest (DM) and honest majority (HM) configuration. There is a visible performance gap between semi-honest and dishonest model, as well as between honest and dishonest majority.

	Semi-honest, DM, 2CP Semi-honest, HM, 3CP Dishonest, DM, 2CP Dishonest, DM, 3CP
	Time [sec] 69,9	11,8	476,48	518,8
	Send, 1CP 7666,7	83,6	41817,3	83634,6
	Total send 15333,4	250,2	83613,9	250643

Acknowledgements

The research leading to these results has received funding from the European Union's Preparatory Action on Defence Research (PADR-FDDT-OPEN-03-2019). This paper reflects only the authors' views and the Commission is not liable for any use that may be made of the information contained therein.