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Abstract. Frama-C is a source code analysis platform that aims at con-
ducting verification of industrial-size C programs. It provides its users
with a collection of plug-ins that perform static analysis, deductive veri-
fication, and testing, for safety- and security-critical software. Collabora-
tive verification across cooperating plug-ins is enabled by their integra-
tion on top of a shared kernel and datastructures, and their compliance
to a common specification language. This foundational article presents
a synthetic view of the platform, its main and composite analyses, and
some of its industrial achievements.

1 Introduction

The past forty years have seen much of the groundwork of formal software anal-
ysis being laid. Several angles and theoretical avenues have been explored, from
deductive reasoning to abstract interpretation to program transformation to con-
colic testing. While much remains to be done from an academic standpoint,
some of the major advances in these fields are already being successfully imple-
mented [18,41,21,47,52] – and met with growing industrial interest. The ensuing
push for mainstream diffusion of software analysis techniques has raised several
challenges. Chief among them are: a. their scalability, b. their interoperability,
and c. the soundness of their results.

Point a is predictably important from the point of vue of adoptability. Scaling
to large problems is a prerequisite for the industrial diffusion of software analysis
and verification techniques. It also represents a mean to better understand how
language idioms (e.g. pointers, unions, or dynamic memory allocation) influence
the underlying architecture of large software developments. Overall, achieving
scalability in the design of software analyzers for a wide range of software pat-
terns remains a difficult question.
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Point b – interoperability – enables the design of elaborate program analy-
ses. Consider indeed the interplay between program analyses and transforma-
tions [23], the complementarity of forward and backward analyses [2], or the
precision gain afforded when combining static and dynamic approaches [4]. Yet
running multiple source code analyses and synthesizing their results in a coherent
fashion requires carefully thought-out mechanisms.

Point c – soundness – is a strong differentiator for formal approaches. By
using tools that over-approximate all program behaviors, industrial users are
assured that none of the errors they are looking for remain undetected. This
guarantee stands in stark contrast with the bug-finding capabilities of heuristic
analyzers, and is paramount in the evaluation of critical software. But the design
and implementation costs of such high-integrity solutions are hard to expend.

The Frama-C software analysis platform provides a collection of scalable, in-
teroperable, and sound software analyses for the industrial analysis of ISO C99
source code. The platform is based on a common kernel, which hosts analyzers
as collaborating plug-ins and uses the ACSL formal specification language as a
lingua franca. Frama-C includes three fundamental plug-ins based on abstract in-
terpretation, deductive verification, and concolic testing; and a series of derived
plug-ins which build elaborate analyses upon the former. The extensibility of the
overall platform, and its open-source licensing, have fostered the development of
an ecosystem of independent third-party plug-ins [12,19,22,24,43,45]. This article
is intended as a foundational reference to the platform, its three main analyses,
and its most salient derived plug-ins.

2 The Platform Kernel

2.1 Architecture

Figure 1 shows a functional view of the Frama-C architecture. Frama-C is based on
CIL [44], a front-end for C that parses ISO C99 programs into their normalized
representation: loop constructs are given a single form, expressions have no side-
effects, etc. Frama-C extends CIL to support dedicated source code annotations
expressed in ACSL (see § 2.2). This modified CIL front-end produces the C + ACSL

AST, an abstract view of the program shared among all analyzers.
The Frama-C kernel provides several services, helping plug-in development [50]

and providing convenient features to the end-user.

– Messages, source code and annotations are uniformly displayed; parameters
and command line options are homogeneously handled.

– A journal of user actions can be synthesized, and be replayed afterwards, a
feature of interest in debugging and qualification contexts.

– A project system, presented in § 2.3, isolates unrelated program representa-
tions, and guarantees the integrity of their analyses.

– Consistency mechanisms control the collaboration between analyzers (§ 2.4).

Analyzers are developed as separate plug-ins on top of the kernel. Plug-ins
are dynamically linked against the kernel to offer new analyses, or to modify
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Fig. 1. Frama-C’s Functional View

existing ones. Any plug-in can register new services in a plug-ins database stored
in the kernel, making these services available to all plug-ins.

2.2 ACSL

Functional properties of C programs can be expressed within Frama-C as ACSL an-
notations [3]. ACSL is a formal specification language inspired by Java’s JML [10],
both being based on the notion of function contract introduced by Eiffel [42]. In
effect, the specification of a function states the pre-conditions it requires from
its caller and the post-conditions it ensures when returning. Among these post-
conditions, one kind of clause plays a particular role by saying which memory
locations the function assigns, i.e. which locations might have a different value
between the pre- and the post-state.

For instance, Fig. 2 provides a specification for a swap function. The first pre-
condition states that the two arguments must be valid (int) pointers, i.e. that
dereferencing a or b will not produce a run-time error. In addition, the second
pre-condition asks that the two locations do not overlap. \valid and \separated

are two built-in predicates: ACSL features various functions and predicates to
describe memory states. However, it does not introduce any notion beyond the
C standard, leaving each plug-in free to perform its own abstractions over the
concrete memory layout. The assigns clause states that only the locations pointed

1 /*@ requires \valid(a) && \valid(b); requires \separated(a,b);
2 assigns *a, *b;
3 ensures *a == \at(*b,Pre) && *b == \at(*a,Pre); */
4 void swap(int* a, int* b);

Fig. 2. Example of ACSL specification
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to by a and b might be modified by a call to swap; any other memory location is
untouched. Finally, the post-condition says that at the end of the function, *a

contains the value that was in *b in the pre-state, and vice versa.
In addition to function specifications, ACSL offers the possibility of writing

annotations in the code, in the form of assertions (properties that must be true
at a given point) or loop invariants (properties that must be preserved across
any number of loop steps). Annotations are written in first-order logic, and
it is possible to define custom functions and predicates for use in annotations
together with ACSL built-ins. Plug-ins can provide a validity status to any ACSL

property and generate ACSL annotations. This allows ACSL annotations to play
an important role in the communication between plug-ins, as explicited in § 2.4.

2.3 Projects

Frama-C allows a user to work on several programs in parallel thanks to the
notion of project. A project consistently stores a program with all its required in-
formation, including results computed by analyzers and their parameters. Several
projects may coexist in memory at the same time. A non-interference theorem
guarantees project partitioning [49]: any modification on a value of a project P
does not impact a value of another project P ′.

Such a feature is of particular interest when a program transformer like Slicing

(§ 6.1) or Aoräı (§ 6.2) is used. The result of the transformation is a fresh AST that
coexists with the original, making backtracking and comparisons easy. Another
use of projects is to process the same program in different ways – for instance
with different analysis parameters.

2.4 Analyzers Collaboration

In Frama-C, analyzers can collaborate in two different ways: either sequentially,
by chaining analysis results to perform complex operations; or in parallel, by
combining partial analysis results into a full program verification.

The former consists in using the results of an analyzer as input to another
one thanks to the plug-ins database stored by the Frama-C kernel. Refer to § 6.1
for a comprehensive illustration of a sequential analysis.

The parallel collaboration of analyzers consists in verifying a program by het-
erogeneous means. ACSL is used to this end as a collaborative language: plug-ins
generate program annotations, which are then validated by other plug-ins. Par-
tial results coming from various plug-ins are integrated by the kernel to provide
a consolidated status of the validity of all ACSL properties. For instance, when
the Value plug-in (§ 3) is unable to ensure the validity of a pointer p, it emits an
unproved ACSL annotation assert \valid(p). In accordance with the underlying
blocking semantics, it assumes that p is valid from this program point onwards.
The WP plug-in (§ 4) may later be used to lift this hypothesis. The kernel au-
tomatically computes the validity status of each program property from the
information provided by all analyzers and ensures the consistency of the entire
verification process [16]: “if the consolidated status of a property is computed as
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valid [resp. invalid] by the kernel, then the property is valid [resp. invalid] with
respect to ACSL’s semantics”.

3 Fundamental Analysis: Abstract Interpretation

The Value plugin (short for Value Analysis) is a forward dataflow analysis based
on the principles of abstract interpretation [17]. Abstract interpretation links
a concrete semantics, typically the set of all possible executions of a program,
to a more coarse-grained, abstract one. Any transformation in the concrete se-
mantics must have an abstract counterpart that captures all possible outcomes
of the concrete operation. This ensures that the abstract semantics is a sound
approximation of the runtime behavior of the program.

Value, and abstract interpreters in general, proceed by symbolic execution of
the program, translating all operations into the abstract semantics. Termination
of looping constructs is ensured by widening operations. For function calls, Value
proceeds essentially by recursive inlining of the function (recursive functions are
currently not handled). This ensures that the analysis is fully context-sensitive.
If needed, the user can abstract overly complex functions by an ACSL contract,
verified by hand or discharged with another analysis.

Abstract domains The domains currently used by Value to represent the ab-
stract semantics are described below.

Integer computations. Small sets of integers are represented as sets, whereas large
sets are represented as intervals with congruence information [30]. For instance,
x ∈ [3..255], 3%4 means that x is such that 3 ≤ x ≤ 255 and x ≡ 3mod 4.

Floating-point computations. The results of floating-point computations are rep-
resented as IEEE 754 [34] double-precision finite intervals. Operations on single-
precision floats are stored as doubles, but are rounded as necessary. Obtaining
infinities or NaN is treated as undesirable errors.

Pointers and memory. To verify that invalid (e.g. out-of-bounds) array/pointer
accesses cannot occur in the target program, Value assumes that the program does
not purposely use buffer overflows to access neighboring variables [35, §6.5.6:8].
Abstract representation of memory states in a C program reflects this assump-
tion: addresses are seen as offsets with respect to symbolic base addresses, and
have no relation with actual locations in virtual memory space during execution.

Memory representation is untyped. It is thus straightforward to handle unions
and heterogeneous pointer conversions during abstract interpretation. The ab-
stract memory state maps each base address to a representation of a chunk of
linear memory. Each such object itself maps ranges of bits to values. Given an
array of 32-bit integers t, and reading from *(((char*)t) + 5), the analyzer deter-
mines that the relevant abstract value is to be found between bits [40..47]
of the value bound to &t. Using bit as unit, instead of byte, allows to handle
bit-fields [35, §6.2.6.1:4] by fixing a layout strategy (the C standard itself does
not specify bit-fields layout, but then again, no more than any kind of data).
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Finally, the content of some memory locations is deemed indeterminate by
the C standard. Examples include uninitialized local variables, struct padding,
and dereferencing pointers to variables outside their scope [35, §6.2.4:2]. Having
indeterminate contents in memory is not an error, but accessing an indeterminate
memory location is. To detect those, the values used to represent the contents of
memory locations are taken, not directly from the abstract domain used for the
values of an expression, but from the lattice product of this domain with two
two-valued domains, one for initializedness and the other for danglingness.

Propagation of unjoined states Value’s domains are non-relational. Instead,
the datastructures representing the abstract semantics have been heavily opti-
mized for speed and reduced memory footprint, to allow the independent propa-
gation of k multiple states. Typically, the user can set a high enough k, so that
finite loops are entirely unrolled. Successive conditionals are also handled more
precisely. This parameter can be adjusted on a per-function basis, alleviating for
a large part the need for relational domains, by implicitly encoding relations in
the disjunction of abstract states.

Alarms Each time a statement is analyzed, any operation that can lead to an an
undefined behavior (e.g. division by zero, out-of-bounds access, etc.) is checked,
typically by verifying the range of the involved expression – the denominator of
the division, the index of the array access, etc.

If the abstract semantics guarantees that no undesirable value can occur, one
obtains a static guarantee that the operation always executes safely. Otherwise,
Value reports the possible error by an alarm, expressed as an ACSL assertion.
This alarm may signal a real error if the operation fails at runtime on at least
one execution, or a false alarm, caused by the difference in precision between the
concrete and abstract semantics. More precise state propagation typically results
in fewer false alarms, but lenghten analysis time. Upon emitting an alarm, the
analyzer reduces the propagated state accordingly, and proceeds onwards.

4 Fundamental Analysis: Deductive Verification

The WP plug-in is named after the Weakest Precondition calculus, a technique
used to prove program properties initiated by Hoare [32], Floyd [28] and Di-
jkstra [25]. Recent tools implement this technique efficiently, for instance Boo-

gie [38] and Why [27]. Jessie [39], a Frama-C plug-in developed at INRIA, also
implements this technique for C by compiling programs into the Why language.
Frama-C’s WP plug-in is a novel implementation of a Weakest Precondition calcu-
lus for generating verification conditions (VC) for C programs with ACSL anno-
tations. It differs from other implementations in two respects. First, WP focuses
on parametrization with respect to the memory model. Second, it aims at being
fully integrated into the Frama-C platform, and to ease collaboration with the
other verification plug-ins (especially Value) as outlined in § 2.4.
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The choice of a memory model is a key ingredient of Hoare logic-based VC
generators that target C programs (or more generally a language with mem-
ory references). A weakest precondition calculus operates over a language that
only manipulates plain variables. In order to account for pointers, memory ac-
cesses (both for reading and writing) must be represented in the underlying logic.
The simplest representation uses a single functional array for the whole memory.
However, this has a drawback: any update to the array (the representation of
an assignment *p=v) has a potential impact on the whole memory – any vari-
able might have been modified. In practice, proof obligations quickly become
intractable. Thus, various refinements have been proposed, in particular by Bor-
nat [7], building upon earlier work by Burstall [11]. The idea of such memory
models is to use distinct arrays to represent parts of the memory known to be
separated, e.g. distinct fields of the same structure in the “component-as-array
trick” of Burstall and Bornat. In this setting, an update to one of the arrays will
not affect the properties of the others, leading to more manageable VC.

However, abstract memory models sometimes restrict the functions that can
be analyzed. Indeed, a given model can only be used to verify code that does
not create aliases between pointers that are considered a priori separated by the
model. In particular, Burstall-Bornat models that rely on static type information
to partition the memory are not able to cope with programs that use pointer
casts or some form of union types.

In order to generate simpler VC when possible while still being able to verify
low-level programs, WP provides different memory models that the user can
choose for each ACSL property. The current version offers three main models:

– The most abstract model, hoare, roughly corresponds to Caveat’s model [47].
It can only be used over functions that do not explicitly assign pointers or
take the address of a variable, but provides compact VC.

– The default model is store. It is a classical Burstall-Bornat model, that
supports pointer aliasing, but neither cast nor union types.

– The runtime model is designed for code that perform low-level memory
operations. In this model, the memory is seen as a single array of char, so
that most C operations can be taken into account, at the expense of the
complexity of the generated VC.

As a refinement, store and runtime can avoid converting assignments into
array updates when the code falls in the subset supported by hoare. In particu-
lar, variables whose addresses are not taken and plain references – pointers that
are neither assigned nor used in a pointer arithmetic operation – are translated
as standard Hoare logic variables. This way, the overhead of other models with
respect to hoare is kept to the places where it is really needed.

Once a VC has been generated, it must be discharged. WP natively supports
two theorem provers: the automated SMT solver Alt-ergo [6], and the Coq proof
assistant [15]. Other automated provers can also be used through the multi-
prover backend of Why. Advantages of using a dedicated back-end rather than
relying completely on Why are twofold. First, it removes a dependency over
an external tool, meaning that for verification of critical software, there is one
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(G1) initialize, set precondition, π := ε

(G2) symbolically execute π in f

(G5) compute next π

(G3) generate test t

(G4) execute f on t

finish

ok

ok
fail

failok

no more paths in f

Fig. 3. The PathCrawler test generation method

component less that needs to be assessed. Second, WP can take advantage of
specific features of Alt-ergo, most notably native support for arrays and records
(that occur quite often in typical VC), that are not supported by Why yet.

In contrast to Jessie, that relies on an external tool for VC generation, WP

operates entirely within Frama-C. In particular, WP fills the property status table
described in § 2.4 for each annotation on which it is run. The dependencies of such
a status are the annotations taken as hypothesis during the weakest-precondition
calculus, the memory model that has been used, and the theorem prover that
ultimately discharged the VC. The memory model has a direct impact on the
validity of the result: an annotation can very well be valid under model store
but not under runtime, as the former entails implicit separation hypotheses
that are not present in the latter. In theory, the choice of a theorem prover is
not relevant for the correctness of the status, but this information is important
to fully determine a trusted toolchain.

Having WP properly embedded into Frama-C also allows for a fine-grained
control over the annotations one wants to verify with the plug-in. WP provides
the necessary interface at all levels (command-line option, programmatic API,
and GUI) to verify targetted annotations (e.g. those yet unverified by other
means in Frama-C, cf § 2.4) as well as to generate all the VC related to a C

function.

5 Fundamental Analysis: Concolic Testing

Given a C program p under test and a precondition restricting its inputs, the
PathCrawler plug-in generates test cases respecting various test coverage criteria.
The all-path criterion requires covering all feasible program paths of p. Since the
exhaustive exploration of all paths is usually impossible for real-life programs,
the k-path criterion restricts exploration to paths with at most k consecutive it-
erations of each loop. The PathCrawler [52,8] method for test generation is similar
to the so-called concolic (concrete+symbolic) approach and to Dynamic Sym-
bolic Execution (DSE), implemented by other tools (e.g. DART, CUTE, PEX,
SAGE, KLEE).
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PathCrawler starts by: a. constructing an instrumented version of p that will
trace the program path exercised by the execution of a test case, and b. generat-
ing the constraints which represent the semantics of each instruction in p. The
next step, illustrated by Fig. 3, is the generation and resolution of constraint
systems to produce the test cases for a set of paths Π that satisfy the coverage
criterion. This is done in the ECLiPSe Prolog environment [48] and uses Con-
straint Logic Programming. Given a path prefix π, i.e. a partial program path
in p, the main idea [37] is to solve the constraints corresponding to the symbolic
execution of p along π. A constraint store is maintained during resolution, and
aggregates the various constraints encountered during the symbolic execution
of π. The test generation method follows the following steps:

(G1) Create a logical variable for each input. Add constraints for the precondition
into the constraint store. Let the initial path prefix π be empty (i.e. the first
test case can be any test case satisfying the precondition). Continue to Step
(G2).

(G2) Symbolically execute the path π: add constraints and update the memory
according to the instructions in π. If some constraint fails, continue to Step
(G5). Otherwise, continue to Step (G3).

(G3) Call the constraint solver to generate a test case t, that is, concrete values
for the inputs, satisfying the current constraints. If it fails, go to Step (G5).
Otherwise, continue to Step (G4) .

(G4) Run a traced execution of the program on the test case t generated in the
previous step to obtain the complete execution path. The complete path
must start by π. Continue to Step (G5).

(G5) Compute the next partial path, π, to cover. π is constructed by “taking
another branch” in one of the complete paths already covered by a previous
test case. This ensures that all feasible paths are covered (as long as the
constraint solver can find a solution in a reasonable time) and that only the
shortest infeasible prefix of each infeasible path is explored.

PathCrawler uses Colibri, a specialized constraint solving library developed at
CEA LIST and shared with other testing tools GATeL [40] and OSMOSE [1]. Col-
ibri provides a variety of types and constraints (including non-linear constraints),
primitives for labelling procedures, support for floating point numbers and effi-
cient constraint resolution. PathCrawler is a proprietary plug-in, also available in
the form of a freely accessible test-case generation web service [36].

6 Derived Analyses

6.1 Distilling values

The outputs of the Value plugin are twofold. In addition to emitting alarms for
statements it cannot guarantee are safe (§3), Value automatically computes a
per-statement over-approximation of the possible values for all memory loca-
tions. The derived analyses below reuse those synthetic results. In each case, the
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analysis is sound. Value’s results are used to evaluate array indexes or resolve
pointers, ensuring that e.g. pointer aliasing are always detected.

Outputs: over-approximates the locations a function may write to.
Operational inputs: over-approximates the locations whose initial values are

used by the function.
Functional dependencies: computes a relation between outputs and inputs of

a function; x FROM y, t[1] (and SELF) means that output x is either
unchanged (SELF), or that its new value can be computed exclusively from
inputs y and t[1].

Program Dependency Graph (PDG): produces an intra-procedural graph
that expresses the data and control dependencies between the instructions
of a function, used as a stepping stone for various analyzes [26].

Defs: over-approximates which statements define a given memory location.
Impact: computes the values and statements impacted (directly or transitively)

by the side effects of a chosen statement.
Slicing: returns a reduced program (a slice), equivalent to the original program

according to a given slicing criterion [33]. Possible criteria include preserving
a given statement, all calls to a function, a given alarm, etc.

Analyses such as Defs or Impact make compelling code understanding tools, as
they express in a very concise way the relationships between various parts of a
program. Slicing goes one step further: while it is essentially dual to the impact
analysis, it also builds reduced, self-contained programs, that can be re-analyzed
independently. Those three analyses are fully inter-procedural.

The analyses above illustrate sequential collaboration (§ 2.4). PDG makes
heavy use of Functional dependencies, while Defs, Impact and Slicing leverage
the information given by PDG. Some of those analyses can optionally compute
callwise versions of their results, yielding one result per syntactic call, instead
of one result per function. The improved precision automatically benefits the
derived analyses. All the results are stored by the Frama-C kernel, and can be
reused without being recomputed.

6.2 Annotation Generator

The Aoräı plug-in [51,31] plays a particular role among the core Frama-C plug-ins.
Indeed, it is one of the few whose primary aim is to generate ACSL annotations
rather than attempting to verify them. Aoräı provides a way to specify that all
possible executions of a program respect a given sequence of events, namely the
call and return of functions, possibly with constraints on the program’s state
at each event. The specification itself can be given either as a Linear Temporal
Logic (LTL,[46]) formula or in the form of an automaton. In the former case,
Aoräı uses ltl2ba [29] to obtain an equivalent Büchi automaton.

Given such an automaton, Aoräı provides ACSL specifications for each function
f in the original C code. This instrumentation is summarized in Fig. 4. It con-
sists of two main parts: prototypes whose specification takes care of performing
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1 /*@ behavior transition_1: assumes aorai_state_S_0 == 1 && condition;
2 ensures aorai_state_S_next == 1; ... */
3 void advance_automaton_call_f(int x);
4

5 /*@ requires aorai_state_S_0 == 1 || aorai_state_S_1 == 1 || ...;
6 requires aorai_state == S_0 ==> has_possible_transition_S0; ...
7 ensures aorai_state_S_2 == 1 || aorai_state_S_3 == 1 || ...;
8 ensures \old(aorai_state_S_0 == 1) ==> aorai_state_S_2 == 1 || ...; ...
9 ensures aorai_state_S_2 == 1 ==> program_state_when_in_S_2; ... */

10 int f(int x) {
11 advance_automaton_call_f(x);
12 // Body of f
13 advance_automaton_return_f(result);
14 return result; }

Fig. 4. Aoräı’s instrumentation

transitions for the corresponding atomic event (call or return from f), and the
specification of f itself. As the automaton is not deterministic in general, Aoräı
uses a set of boolean variables to represent possible active states (aorai_state_S_*).
Functions advancing the states of the automaton provide, for each of those vari-
ables, a complete set of behaviors indicating when they are set to 1 or 0.

The specification of f comprises various items. First, at least one state among
a given set must be active before the call. This set is determined by a rough static
analysis made by Aoräı beforehand. In addition, for each active state, at least
one transition must be activated by the call event. The main post-condition is
that when the function returns, at least one state is active among those deemed
possible by Aoräı’s static analysis. It is refined by additional clauses relating
active initial states with active final states, and the state of the program itself
with the active final states. Finally the main function has an additional post-
condition stating that at least one of the acceptance states must be active at the
end of the function (Aoräı does not consider infinite programs at the moment).

Annotation generation is geared towards the use of deductive verification
plugins such asWP and Jessie for the verification of the specification. In particular,
the refined post-conditions are mainly useful for propagating information to the
callers of f in an Hoare-logic based setting. Likewise Aoräı also generates loop
invariants for the same purpose. However it does not preclude the use of the
Value plug-in to validate its specification, and therefore attempts to generate
annotations that fit in the subset of ACSL that is understood by Value.

6.3 SANTE

The Sante Frama-C plug-in (Static ANalysis and TEsting) [14] enhances static
analysis results by testing. Given a C program p with a precondition, it detects
possible runtime errors (currently divisions by zero and out-of-bound array ac-
cesses) in p and aims to classify them as real bugs or false alarms.

The Sante method contains three main steps illustrated in Fig. 5. Sante first
calls Value to analyze p and to generate an alarm for each potentially unsafe
statement. Next, Slicing is used to reduce the whole program with respect to one
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Value analysis

p, Alarms

Program slicing

p1 p2 . . . pn

Test generation

Option: all, each,
min, smart

For smart:

try smaller slices
if necessary

Diagnostic

Fig. 5. Overview of the Sante method

or several alarms. It produces one or several slices p1, p2, . . . , pn. Then, for each
pi, PathCrawler explores program paths and tries to generate test cases confirming
the alarms present in pi. If a test case activating an alarm is found, the alarm
is confirmed and classified as a bug. If all feasible paths were explored for some
slice pi, all unconfirmed alarms in pi are classified safe, i.e. they are in fact false
alarms. If PathCrawler was used with a partial criterion (k-path), or stopped by a
timeout before finishing the exploration of all paths of pi, Sante cannot conclude
and the statuses of unconfirmed alarms in pi remain unknown.

The number of slices generated, hence the number of test generation sessions,
is influenced by various Sante options. The all option generates a unique slice
p1 including all alarms of p, while the converse option each generates a slice
for each alarm. Options min and smart take advantage of alarm dependencies
(as computed by the dependency analysis) to slice related alarms together. The
smart option improves min by iteratively refining the slices as long as one can
hope to classify more alarms running PathCrawler on a smaller slice.

7 Adoption

Adoption in the academic world has stemmed from a variety of partnerships.
Foremost is the Jessie plug-in [39] developed at Inria, which relies on a separa-
tion memory model but whose internal representation precludes its combination
with other plug-ins. Verimag researchers have implemented a taint analysis [12],
producing explicit dependency chains pondered by risk quantifiers. Demay et al
generate security monitors based on fine-grained feedback from the Value plug-
in [24]. Berthome et al [5] propose a source-code model for verifying physical
attacks on smart cards, and use Value to verify it. Bouajjani et al [9] automati-
cally synthesize invariants of sequential programs with singly-linked lists.
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The variety of objectives a static analyzer can have, and the variety of design
choices for a given objective, make it difficult to benchmark static analyzers.
Chatzieleftheriou and Katsaros [13] have valiantly produced one such compari-
son, including the Value plug-in. Industrial reception has been extremely positive.
Delmas et al verify the compliance to domain-specific coding standards [22]; their
plug-in is undergoing deployment and qualification. At the same company, the
value analysis is used to verify the control and data flows of a DAL C, 40-kloc
ARINC 653 application [19]. Pariente and Ledinot [45] verify flight control sys-
tem code using a combination of Frama-C plugins, including Value and Slicing.
Their contribution includes a favorable evaluation of the cost-effectiveness of
their adoption compared to traditional verification techniques. Yakobowski et
al use Value in collaboration with WP to check the absence of runtime errors in
a 50 kloc instrumentation and control (I&C) nuclear code [20]. Through these
successes and over the past few years, Frama-C has demonstrated its adoptability
within numerous industrial environments.

8 Conclusion

This article attempts to distill a synthetic presentation of the Frama-C platform
from a software analysis perspective. Frama-C answers the combined introductory
challenges of scalability, interoperability, and soundness with a unique architec-
ture and a robust set of analyzers. Its core set of tools and functionalities –
about 150 kloc. developed over the span of 7 years – has given rise to a flour-
ishing ecosystem of software analyzers. In addition to industrial achievements
and partnerships, a community of users and developers has grown and strived,
contributing to the dissemination of the tools. This growth, fostered by a number
of active communication channels1, should be interpreted as a testimony to the
health and stability of the platform, and good omens for its future success.
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27. J.-C. Filliâtre. Why: a multi-language multi-prover verification tool. Research
Report 1366, LRI, Université Paris Sud, March 2003.
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