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Abstract

This short paper presents a compilation of feedback about online runtime verification
competitions from an active contestant. In particular, it points out several issues and how
they could possibly be fixed.
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1 Introduction

CRV, the runtime verification competition, was created in 2014 [3], then organized again in
2015 [9] and 2016 [19]. Each year, the competition was split in three categories: the C track,
the Java track and the offline track. The number of competitors used to be low in each track.
The C track was even cancelled in 2016 because the E-ACSL tool [16] was eventually the only
contestant. Then the organizers decided to take a break and to not organize the competition
this year (2017). I think that it is an appropriate moment to summarize what could be learned
from the first editions in order to try to improve the next ones. This paper is an attempt in that
direction for the online tracks (C and Java). Yet some ideas could also apply to the offline track.
It is based on my own experience from my participation in the C track with the E-ACSL tool
in 2014 (2nd place) and 2015 (winner). It is also based on informal discussions with a few other
contestants and organizers. The main goal of this paper is to encourage discussions between
the competition organizers and the tool developers in order to improve the next editions of any
online runtime verification competition.

2 Areas of Improvement

This section introduces several areas of improvement. First, Section 2.1 introduces the compe-
tition goals, while Section 2.2 discusses the scoring method. Then, Section 2.3 and Section 2.4
respectively describe the wide variety of properties and input languages targeted by CRV. Next,
Section 2.5 details benchmark issues. Finally, Section 2.6 deals with a few organization concerns.

2.1 Competition Goals

The official goals of the competition organizers are multiple [3]:

• stimulate the runtime verification tool development;

• produce shared runtime verification benchmarks;
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• discuss measures for comparing tools;

• compare different aspects of tools with different benchmarks and criteria;

• enhance runtime verification tool visibility.

All these goals are perfectly fine and were actually shared by almost all contestants, even if
possibly with different priorities. For instance some of them were more interested in measuring
runtime and memory overhead, some others preferred to focus on tool expressiveness, while
others would like to experiment with new benchmarks. However it is often difficult to kill
several birds with a single stone and the risk is high to kill no bird at all. In particular,
organizers and contestants have only a limited amount of time to devote to the competition.
For instance if contestants spend a lot of time to create new benchmarks, they have almost
no time left to run benchmarks from the other contestants. Indeed it is always important
to remember that tool developers do not participate if it requires too much efforts for not
enough benefits. However, if they do not invest enough effort, then the organization team may
quickly be demotivated and would not organize the competition anymore. Though removing
motivating goals is always annoying. A workaround could be to just fix priorities between them,
so organizers and contestants would reach the most important goals but could just skip a few
others according to their available time.

2.2 Scoring

Fixing priorities could also help to improve tool evaluation. Indeed runtime verification tools
are usually evaluated according to three main criteria:

• efficiency: what is the time and memory overhead of the instrumented program with
respect to the input program?

• expressiveness: what properties is the tool able to verify?

• correctness: does the tool solve correctly the input problem?

The current scoring methodology of CRV tries to take into account these three criteria by
including a correctness score, a time overhead score and a memory score in a same formula [3],
while correctness is measured by a score of 0 for every unanswered problem. It leads to a final
score which mixes all these criteria. However it is difficult (or even impossible) to interpret
such a result: is tool A better than tool B because it is more time efficient or more expressive?
We just do not know. A practical solution could be to compute two different scores, one for
expressiveness and another one for efficiency, while unsoundness should result in any case to
very low (or even negative) scores.

2.3 Properties

The above-mentioned question of expressiveness is particularly important because runtime ver-
ification tools may verify very broad kinds of properties, including but not limited to various
timed or temporal properties, informal flow properties, concurrency properties, integer and
memory overflows, memory errors and functional properties. It seems unlikely that a single
tool is able to tackle all of them. It usually focuses on one single class of properties even if
it could possibly encode a few more. But comparing tools which verify different properties is
dubious, even if the target programming language is the same. Consequently creating several
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categories corresponding to different properties is necessary. However, the usual low number of
contestants is probably an evidence that there are not enough tools to create numerous cate-
gories. That is certainly a tough issue which should be carefully dealt with. One workaround
could be to split the online tracks into two or three big families of properties (e.g., for C pro-
grams, temporal and timed properties on one hand, and undefined behaviors in another hand).
The properties which do not belong to any track could not be addressed but they could possibly
be grouped together in a free unrated categories to make known that some tools are able to
deal with them.

2.4 Input Languages

Online runtime verification tools analyze at runtime a program written in a programming lan-
guage (either C or Java in the first CRV editions) in order to check the validity of properties
written in a specification language. Sometimes these properties are even left implicit, for in-
stance when checking the absence of C undefined behaviors.

Specifying the programming language is necessary but usually easy: it is enough to indicate
the exact supported version(s) and add a pointer to a reference document (e.g the norm ISO
C99 [14] for C or the Java Language Specification for Java SE 7 [11]).

Specifying the specification language is more complicated because there is nowadays no de
facto standard for most classes of properties, apart from JML [17] for Java and ACSL [4] for C
when interested in functional properties. For instance, there are many temporal logic languages
and, even for one particular language like LTL [18], there are several input languages expressing
properties as logic formulæ or Büchi automata. Currently most tools support their own input
specification language and there are only a few translators from one language to the other.
Given that situation, I think that the present CRV choice is fine. It consists in providing both
an informal specification and a formal one expressed in any specification language as long as
the expected property is clear enough.

2.5 Benchmarks

There is no competition without benchmarks. Though there is currently no widespread bench-
marks for runtime verification tools. One of the underlying goal of CRV was actually to cre-
ate them. Consequently, taking inspiration from the software verification competition (SV-
COMP) [5], CRV was split in three different phases:

1. collecting benchmarks;

2. training tools and submitting monitors;

3. evaluating results.

The two first steps were performed by the contestants while the latter was performed by the
organizers. In particular, the contestants should provide the benchmarks of their choice (either
3, or 5 benchmarks, depending on the competition edition). Each benchmark must contain a
program package including the source code and the way to compile and run it, as well as a
specification package including an English description of the property to be verified, one logical
representation in any specification language, instrumentation information based on a notion of
events and traces and the expected verdict [3]. Depending on the edition, the submitted results
consist in an instrumented code (CRV 2014) or a way to generate it (CRV 2015 and 2016).
Even if it is globally fine, I see some issues with this approach.
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Too Strong Assumptions

First, it makes some implicit assumptions about runtime verification tool design which are not
always true. Indeed it assumes

1. explicit notions of events and traces; and

2. a clear separation between the monitor and the instrumented system.

While events and traces are at the heart of runtime verification tools [8, 20], they are not
necessarily made explicit. In particular, runtime assertion checkers and memory debuggers
usually consider program states as events and the successive states of the program at runtime
as traces, but they almost never exhibit them. Also, automatic pruning of states in order to
observe only a few memory locations and make the verification efficient may be seen as part of
the tool’s necessary features [15, Section 5]. Consequently, the events of interest (that is, the
set of memory locations to be observed) should not be part of the inputs to be provided and
property 1 should not be assumed.

Also assumption 2 does usually not hold for inline verification tools which weave the monitor
directly in the input program. Indeed, in that case, the instrumented system contains both the
input program and the inline monitor. Consequently the input program should not be pre-
instrumented. It is also much better to produce as result the ways to generate the output
programs, otherwise it may eventually lead to some manual modifications of the monitor or the
instrumented system before submission.

Benchmark Origins

A second issue of this competition is that the contestants must provide all the benchmarks.
That is indeed very time consuming and Section 2.1 already explained what are the probable
consequences in term of team participation. It may also lower benchmark quality since con-
testants have possibly not enough time to prepare them accurately. They could also contain
bias in order to match the tool capabilities of the benchmark author. Still a competition needs
benchmarks and, when there is none, they must be created at some point. It would certainly
be too much effort to let the organization committee deal with their creation alone. A potential
trade-off could be to have a few benchmarks proposed by the organizers, some proposed by the
contestants and some others coming from past editions. In addition to solving the time issue,
the benchmarks of lower quality would disappear from edition to edition. It would also make
visible the progress of each tool by illustrating which benchmarks are successfully/efficiently
tackled on year y which were only imperfectly/slowly handled in year y − 1.

2.6 Organization

As already pointed out, one of the major issue of such competitions is the lack of time of
both organizers and tool developers. It causes unexpected delays, a low number of submitted
benchmarks of various degrees of quality, and an even lower number of final submissions. That
eventually leads to demotivating both organizers and contestants. A few solutions have been
proposed in the previous sections. However, if implemented, some work previously done by
contestants would now be done by organizers. For instance, from Section 2.5, the organizers
must provide new benchmarks and also select additional ones from past editions. It would
require extra work for the organization committee. To solve this drawback, a few contestants
could be partly involved in the competition organization. Also one could consider to split the
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organization in different parts. This way, an organizer could be only partially involved and
so (s)he would have more free time to do something else, including becoming a competition
contestant. Below is one organization proposal.

• The steering committee defines the competition policy, frequency and goals, follows the
competition from year to year and provides advice. It also chooses the organization
committee of the next edition.

• The organization committee leads one particular edition. In particular, it sets the exact
rules and evaluates the submissions.

• The track committee for every track (or a single competition committee shared by all
tracks) is composed by one contestant of each registered team and a subset of the orga-
nization committee. It chooses benchmarks (in addition to the contestant benchmarks),
either from past editions or newly created. It also validates contestant benchmarks, asks
for clarification and fixes contentions.

3 Related Work

Tool competitions have been organized in several computational domains for a long time. We
limit our related work to competitions related to program analysis and provers. CRV is directly
inspired by SV-COMP [6] organized since 2012. SV-COMP aims at a comparative evaluation of
fully-automated software verifiers, mainly model checkers. SV-COMP 2017 targeted C programs
only and was split into several categories and sub-categories. Categories tackled different prop-
erties (e.g. termination or overflow), while sub-categories reflect different types of programs.
Having many categories and sub-categories is certainly possible because of the large number
of contestants (32 in 2017). The 2017 edition also required contestants to provide witness
automata as proof of validity or invalidity.

Similarly to SV-COMP, termCOMP [10] has also different categories depending on the type
of properties to be verified (worst case execution time, certified properties or termination) and
sub-categories depending on the target systems (reactive systems, Java or C programs). In
2017, 17 tools entered into the competition which contained 4 categories and 20 sub-categories
(with between 2 and 5 contestants in each of them).

VerifyThis [13] is a 2-day event organized during international conferences or workshops
that focuses on semi-automatic mathematical proof guided by tools (instead of fully-automatic
verification). The competition is more about comparing teams’ skills than evaluating tools.
Accordingly, the criteria of evaluation are correctness, completeness and elegance of solutions,
which are fully different from the current CRV criteria.

The RERS grey-box challenge [12] focuses on verifying specific properties (reachability and
LTL properties) on specific program patterns. Consequently they only address a few programs
(for instance, C programs whose all variables are of type int). It is worth noting that this
competition has two different rankings, one numerical ranking and one conceptual ranking. The
latter emphasizes the challenge character of the employed methods and is manually computed
by the organizers.

The SAT [1], SMT-COMP [2] and CASC [21] competitions respectively focus on comparing
SAT solvers, SMT solvers and automated theorem provers (ATPs). Each of them takes benefit
of uniform common formats supported by every contestant tool (e.g. TPTP for ATPs). This
way, comparison of tool expressiveness is made easier.
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Cuoq et al. [7] explain how static analyzers should be benchmarked while highlighting issues
that competition benchmarks should avoid. Some of their conclusions are similar to ours.

4 Conclusion

CRV, the runtime verification competition, was created in 2014. It suffers from a lack of active
contestants and has not been organized this year. This paper explains a few of its issues
regarding the online runtime verification tracks. It also proposes possible solutions. While I
do not pretend that it would instantaneously solve all of them, I hope that this discussion
paper provides a point of view from an active contestant that could be useful for competition
organizers.
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