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Performance in scientific and engineering applications such as computational physics, algebraic graph prob- 
lems or Convolutional Neural Networks (CNN), is dominated by the manipulation of large sparse matrices—
matrices with a large number of zero elements. Specialized software using data formats for sparse matrices 
has been optimized for the main kernels of interest: SpMV and SpMSpM matrix multiplications, but due to 
the indirect memory accesses, the performance is still limited by the memory hierarchy of conventional com- 
puters. Recent work shows that specific hardware accelerators can reduce memory traffic and improve the 
execution time of sparse matrix multiplication, compared to the best software implementations. The per- 
formance of these sparse hardware accelerators depends on the choice of the sparse format, COO , CSR , etc, 
the algorithm, inner-product , outer-product , Gustavson , and many hardware design choices. In this article, we 
propose a systematic survey which identifies the design choices of state-of-the-art accelerators for sparse 
matrix multiplication kernels. We introduce the necessary concepts and then present, compare, and classify 
the main sparse accelerators in the literature, using consistent notations. Finally, we propose a taxonomy for 
these accelerators to help future designers make the best choices depending on their objectives. 
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 INTRODUCTION 

he execution time of modern scientific and engineering applications is dominated by the manip-
lation of large sparse matrices, i.e., matrices whose number of non-zero entries N N Z is much
maller than their dimensions M × N . Matrices derived from computational physics problems are
ften sparse and regular because they derive from a relatively small number of differential terms.
lgebraic graph problems produce matrices which are still sparse but usually less regular [ 16 ].
imilarly, the weight and activation matrices used by Convolutional Neural Networks ( CNN )
ay hold millions of terms, but most of them are explicitly set to zero (e.g., rectified ) without

oss of information [ 30 ]. It was recognized early in the 1960s [ 69 ] that working on these sparse
atasets using dense array representations was inefficient. The seminal work of OSKI [ 83 ] in
003 formalized the sparse representation alternatives and identified many optimizations. This
pened the path for specialized software libraries for sparse algebra [ 84 ]. However, the single-
ore performance of software implementations can be deceiving, often only reaching 10% of peak
erformance [ 30 ]. 
The main matrix multiplication kernels that are of interest are matrix-vector ( MV ) and
atrix-matrix ( MM ), which include SpMV and SpMSpV ( A × b = c), SpGEMV ( A × b + d = c),

pMM and SpMSpM ( A × B = C), and SpGEMM ( A × B + D = C), with Sp for sparse and GE for
eneral . SpMV, as well as its variant SpGEMV, are by far the dominant operations of modern al-
ebraic kernels (linear solvers, eigensolvers) which have been explicitly based on them [ 25 , 34 ,
9 , 44 , 49 , 66 , 87 ]. Since these kernels are ubiquitous, their efficient implementation is primordial.
n contrast, the SpMSpM multiplication is less frequent in standard algebraic kernels, but it is ex-
ensively used in algebraic graph manipulation [ 5 , 14 , 17 , 23 , 33 , 46 , 67 ], as well as in multigrid
olvers [ 4 , 13 , 53 , 68 ]. The growing importance of large graphs has motivated new research on
ptimizing SpMSpM applications. 
The two matrix operations, SpMV and SpMSpM, pose orthogonal computational challenges: (1)

ccess to sparse input data, (2) reduction operations on the intermediate result, and (3) formatting
nd writing back the result to memory. The different algorithms, which are detailed in Section 2 ,
re built on different articulations of these three aspects. The sparse data storage scheme used
n memory dictates the first aspect and is briefly explored in Section 2.1 . The third aspect, i.e.,
esult storage, is sometimes overlooked when the output is dense and not too large. For example,
hen running on a conventional CPU which is memory-bound, it becomes crucial to streamline

he write accesses in order to optimize cache usage when writing a large dense vector output. The
econd aspect, i.e., the reduction operations, deserves different solutions according to the execution
latform. On a conventional CPU, the bottleneck is memory throughput. Thus, most software
mplementations of SpMV deal with a priori reorganization of the input matrices, by row ordering,
locking, and loop optimization, for improving the data locality of operations. The perspective for
pMV is different when dealing with GPU platforms. The challenge shifts to finding a balanced
ssignment of the numerous threads and warps, and to the use of local memory resources [ 57 ].
pMSpM is far more complex: the intermediate reductions introduce new N N Z values at random
ocations, which trigger costly memory allocations and list management operations [ 31 ]. As a
onsequence, this phase dominates the execution time and becomes the main memory bottleneck
n a regular CPU. The issue is similar on GPUs because of the limited size of the scratchpad
emory for processing large matrices, which requires complex memory management and load

alancing [ 22 , 62 , 88 ]. 
The main motivation to use custom hardware accelerators is to make better use of the interme-

iate memory hierarchy, ensuring the input data is available near the cores and also off-loading
he accumulation and reduction operations from the processors. The focus of this article is to re-
iew these architectures, to compare them, and to analyze their performance. Our main focus is
CM Trans. Arch. Code Optim., Vol. 21, No. 2, Article 27. Publication date: February 2024. 
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Fig. 1. Example of a sparse matrix in COO and CSR formats. Fig. 2. Example of the Fib- 

erTree representation with 

CSR format. 
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n accelerators that eventually target custom or ASIC implementations, although we do touch on
he contributions from accelerators that were prototyped on FPGAs. The reader is referred to [ 58 ]
or a survey of acceleration techniques for CP Us, GP Us, and FPGAs. Section 2 reviews the storage
chemes and the three basic algorithms with a focus on the data access patterns and their impact
n the memory hierarchy. In Section 3 , we study how the different algorithms stress the memory
ystems and propose an analytical model based on these insights. In Section 4 , we present the op-
ration of several state-of-the-art hardware accelerators, in the light of these hardware challenges.
n Section 5 , we systematically compare these accelerators. Throughout this study, we try to be
onsistent, and we hope that our nomenclature will be useful for architects and designers who
ntend to implement dedicated hardware for problems with sparse datasets. 

 SPARSE MATRIX FORMATS AND ALGORITHMS 

.1 Sparse Formats 

n the absence of a compressed format, matrices are stored in fixed size two-dimensional arrays.
ith this dense format, elements can be randomly accessed ( O(1 )), and sequential accesses are

ighly efficient. The two dimensions are called ranks which correspond to the rows and columns.
or matrices, there are thus two variants of the dense format, depending on which rank is stored
equentially in memory. In a row-wise (or row-major ) storage, the elements within the rows are
equential, and conversely for column-wise (or column-major ). 

Sparse matrices contain a very large number of zeros, and to avoid storing these repeated zeros,
here exist many compressed formats [ 1 , 12 , 18 , 47 , 69 , 82 ], where certain formats are best-suited
or matrices with a specific structure. The main principle of these sparse formats is to avoid storing
he zero elements, compensating with additional metadata which gives the position of the non-
ero elements. We can cite some of the most used sparse formats like COO ( COOrdinate ) that uses
hree tables of size N N Z with only the non-zero elements ( Payload table in Figure 1 (b)) and their
ow and column indices ( Row and Col IDX tables), or CSR ( Compressed Sparse Row ) (and its column-

ajor counterpart CSC ) that stores pointers to row (or column) positions in the third table instead
f indices ( Row PTR table in Figure 1 (c)). 
A visual representation of compressed matrices, called FiberTree [ 81 ], is helpful to understand

hese sparse formats . Each rank of a matrix represents a level of a tree where the nodes are filled
ith either the metadata of the child nodes or the matrix data which can only appear in the leaves

see Figure 2 ). With this representation, we clearly identify the number of ranks , which define the
bers . A fiber is the generic term to describe a one-dimensional stream of data or metadata , which
orresponds to a row or column in the case of a two-dimensional matrix. A stream of indices is
 fiber of metadata . Figure 2 presents, as an example, a FiberTree representation of the matrix of
igure 1 (a), matching the CSR format: each rank in the tree corresponds to a fiber stored in the
able Row PTR or Col IDX of Figure 1 (c). 
ACM Trans. Arch. Code Optim., Vol. 21, No. 2, Article 27. Publication date: February 2024. 
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In a recent work [ 85 ], a systematic nomenclature for sparse matrix (and tensor) formats was
roposed, based on FiberTree representation. In fact, in the example of Figure 2 , the fibers are
ompressed with different methods. Thus each rank can be characterized by a label indicating
ow it is compressed: Uncompressed ( U ), Coordinate Payload ( CP ), Uncompressed Offset Pairs

 UOP ). U defines ranks where all data values are stored contiguously in memory. CP defines ranks

hat store the indices of each payload, a payload being either a non-zero element or a sub-matrix. 1

OP defines ranks that store pointers (offsets) to delimit sub-matrices of the next rank. 2 These are
he three main ones as they are used in the most common sparse formats but many others exist or
an be created. 

With this nomenclature, the sparse formats can be classified according to their rank compression
ethods. For example, the CSR format is denoted as (UOP, CP) row-major since its Row PTR table

tores pointers (offsets) to rows. The CSR and CSC formats are both of type (UOP, CP) , one being
ow-major , the other column-major . The COO format is denoted as CP 2 because there are two
oordinates (row and column) for each non-zero element, as it is a CP fiber having two indices
er data element instead of one. User defined formats can also be easily described and named. For
xample, a user could define a storage format with a nested CSR . That is, each non-zero element
n the outer CSR , corresponds to a sub-matrix, itself stored in CSR format. Such a representation
ould be labeled (UOP, CP, UOP, CP) . A similar nomenclature is proposed by TACO [ 18 ]. It is more

dapted to code generation applications, where the FiberTree -based nomenclature better describes
he memory storage of the sparse format . For example, U corresponds to Dense , CP to Singleton ,
he pair (UOP, CP) is translated as Compressed while UOP alone corresponds to Offset . We chose
o adopt the FiberTree -based nomenclature in this article since it is more suited to a hardware
ontext. 

.2 Algorithms 

he accelerators described in this article address sparse MV and MM. For MV we use the notation
(M, K) × b(K) = c(M) and for MM the notation A(M, K) × B(K , N ) = C(M, N ). The rank K is the
ommon rank between the two inputs. 

The existence of different ranks allows several algorithmic possibilities to compute matrix mul-
iplication: the inner-product algorithm ( IP ), the outer-product algorithm ( OP ), and Gustavson ’s al-
orithm ( Gust ) [ 28 , 37 ]. In all cases, the matrix A is traversed sequentially. The three algorithms;
owever, impose different access patterns for B (or b) and C (or c). Indeed, in many cases, they
ave to be accessed multiple times, as discussed in the following sections. 

2.2.1 Inner-Product Algorithm. The inner-product algorithm [ 28 ] is an intuitive way to calculate
 matrix multiplication because it follows the loop order of the mathematical formulas ( 1 ) and ( 2 )
or MV and MM, respectively. 

∀ m ∈ [0 , M [ , c m 

= 

K−1 ∑

k= 0 

A m,k × b k (1) ∀ (m, n) ∈ [0 , M [ × [0 , N [ , C m,n = 

K−1 ∑

k= 0 

A m,k × B k,n (2)

The common rank K is the inner-most loop of the algorithm (see Algorithm 1 ). The output C
or c) is updated sequentially, but the B-matrix (or b-vector) will be entirely read M times. In the
ontext of sparse matrices, the reads of B (or b) are conditioned by the non-zero elements of A,
hich requires indirect accesses. If B (or b) is also sparse, the algorithm needs to perform inter-

ections between the non-zero elements in the rows of A and the columns of B (or in the b-vector)
 In this section, we use the term sub-matrix but this is extended to the notion of tiling in Section 2.3 . 
 If some sub-matrices are empty, pointers will be repeated, hence “uncompressed”. 

CM Trans. Arch. Code Optim., Vol. 21, No. 2, Article 27. Publication date: February 2024. 
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O  
see Section 3 ). In Algorithm 1 , exchanging M and N simply causes the output to be updated
olumn-wise . 

2.2.2 Outer-Product Algorithm. The outer-product algorithm [ 28 ] has the opposite rank loop
rder than the inner-product . It changes nothing mathematically except that the computation is
eparated into two phases. First, during the multiply phase, we compute several partial outputs

 POs ) consisting of the partial sums A m,k × b k , then during the merge phase, we accumulate all
he POs to form the final C-matrix (or c-vector). Algorithm 2 show that the common rank K is the
uter-most loop. For MM, exchanging M and N affects whether the output C is updated by rows
r by columns, but has no influence on the indirect accesses to the inputs. With outer-product ,
he B-matrix (or b-vector) is read sequentially. This algorithm necessitates the generation of K
Os . Moreover, in the context of sparse input matrices, the PO element updates are conditioned
y the non-zeros elements of both inputs. Thus, a partial sum could potentially be zero, reduc-
ng the number of PO element updates, and making them non-sequential. If the output C (or
) is stored in a sparse format , then it is necessary to repeatedly access and update each partial

um . 

LGORITHM 1 : 
M Inner-Product Algorithm 

or m ∈ [0 , M [ do 

for n ∈ [0 , N [ do 

for k ∈ [0 , K [ do 

C m,n + = A m,k × B k,n ; 

end 

end 

nd 

ALGORITHM 2 : 
MM Outer-Product Algorithm 

for k ∈ [0 , K [ do 

for m ∈ [0 , M [ do 

for n ∈ [0 , N [ do 

C m,n + = A m,k × B k,n ; 

end 

end 

end 

ALGORITHM 3 : 
MM Gustavson’s Algorithm 

for m ∈ [0 , M [ do 

for k ∈ [0 , K [ do 

for n ∈ [0 , N [ do 

C m,n + = A m,k × B k,n ; 

end 

end 

end 

2.2.3 Gustavson’s Algorithm. As the MM algorithm has three ranks instead of two for MV, there
s a third ordering, known as Gustavson’s algorithm [ 37 ] where the common rank K is the middle
oop (see Algorithm 3 ). With this approach, the output is computed row-by-row with PO -rows
enerated and accumulated for each output C-row. 
With this algorithm, updates of the C-rows are sequential, but, in the dense case, the B-matrix

s entirely read M times and K PO -rows of size N are generated. In the context of sparse matrices,
he selection of the rows in B is indirect; however, within a row the accesses are sequential. The
ntersection operations are only needed for the B-rows and not each element. The PO -rows can be
ccumulated before computing the next C-row. For this algorithm, exchanging M and N causes
he three matrices to be accessed column-wise instead of row-wise . 

.3 Tiling 

he tiling process [ 35 ] consists in matrix partitioning: a matrix may be divided into tiles , non-
verlapping sub-matrices. In other words, this method consists of adding ranks to delimit the tiles ,
nd thus adding loop iterations in the kernel algorithm. 

Tiling methods allow to locally reduce the dimensions of data and thus to adapt the working
et to the size of the local memory [ 51 ], particularly when the matrix has a structure with denser
egions. Tiling can also increase parallelism opportunities. Software optimizations for sparse ma-
rix computation, such as OSKI [ 83 ], are based on tiling . In previous sections, the study of the IP ,
P , and Gust algorithms highlighted the influence of rank ordering on the sequentiality and data
ACM Trans. Arch. Code Optim., Vol. 21, No. 2, Article 27. Publication date: February 2024. 
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Fig. 3. An example of tiling on SpMV. 
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ovement, and thus, adding intermediate ranks with tiling breaks the regularity of pure IP or OP
lgorithms, requiring additional hardware support (see Section 3 ). 

For example, let us consider the A-matrix in Figure 3 which is divided into four tiles (one level
f tiling ). For a SpMV, two new ranks appear for a total of four ranks : M 1 and K 1 allow tile selection
nd M 2 and K 2 allow data access within a tile . Thus, we could decide to apply an OP on tiles and
onversely an IP within tiles , mixing-up the pros and cons of these two algorithms at different rank

evels. In the case of the example in Figure 3 , the upper-left A- tile (red) is evaluated first, sequen-
ially updating the upper tile of the c-vector in an IP manner. The lower-left A- tile (yellow) is then
omputed the same way. At this point, intersections have been done with only the upper b- tile , and
has been updated sequentially. The two next A- tiles (green, then blue) will compute intersections

ith the lower b- tile and update the entire c-vector sequentially, showing the OP characteristic of
aving POs to merge , two in this case. 
Note that in case of tiling , the A-matrix is no longer read sequentially, which can be problematic

f it is stored in a classical sparse format like CSR that is specifically made for row-wise accesses. Cus-
om sparse formats adapted for tiling can be used [ 42 ], but this requires a preprocessing conversion.

 HARDWARE CHALLENGES FOR SPARSE MATRICES AND VECTORS 

n the previous section, we presented a brief background on matrix multiplication without consid-
ring the underlying hardware. Although the various sparse formats reduce the memory footprint,
hey have the disadvantage that indirect accesses are required, which creates data-dependencies
nd reduces the effectiveness of caches. As we have seen, with all three algorithms, at least some
f the accesses are non-sequential. The lack of spatial locality for these accesses reduces the ben-
fit of having caches. In other words, a full cache line is loaded, but only a few entries are read or
odified. Moreover, the matrices of interest are extremely large and even the non-zero elements,

nd associated metadata , can not generally fit in the cache. Depending on the algorithm, succes-
ive accesses to the same element may be too far apart to benefit from temporal locality in the
ache. 

In an IP algorithm, the A- metadata needs to be read to indirectly access the B-matrix (or b-
ector), which may itself be stored in a sparse format . In this case, the algorithm needs to check if
he non-zero A-indices are present in B (or b). If an index appears in neither list, there is no need
o perform the multiplication ( ineffectual operation ). More generally, this problem applies to fibers

nd is called the intersection search. As a minimum, this requires reading all the metadata for A
nd B (or b), and identifying those present in both. 

In an OP algorithm, the inputs are accessed sequentially, but the updates of the output require
ndirect accesses. The pattern of the accesses, while the output is generated, is non-sequential and
etermined by the structure of the input. Furthermore, if these random 

3 updates provoke cache
 We use the term random to mean accesses are irregular and difficult to predict. 

CM Trans. Arch. Code Optim., Vol. 21, No. 2, Article 27. Publication date: February 2024. 
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Table 1. Comparison of Advantages and Challenges with Matrix Multiplication Algorithms 

Inner-product (IP) Outer-product (OP) Gustavson (Gust) 

Access 
Count 

MV A : once ; b : N N Z (A) ; c : 
once 

A : once ; b : once ; c : N N Z r (A) N/A 

MM A : N ; B : N N Z r (A).M ; C : 
once 

A : once ; B : N N Z c (A)
C : ∼ N N Z r (A).N N Z c (B)/K

A : once ; B : N N Z c (A)
C : ∼ N N Z r (A).N N Z c (B)/K

Sequential 
Accesses 

Accesses to A and C Accesses to A and B Accesses to A and C
Accesses to B-rows 

Input Format Accesses to A and B benefit from alternate formats ( CSR and CSC ) Allows consistent format for A and B

Parellism 

Opportunity 
Possible with tiling Generation of POs over common rank 

of A and B
Reading A-rows and updating 
C-rows 

Reuse 
Opportunity 

Potentially B , but limited by 
its size 

An A-column or B-row while 
computing POs 

A set of B-rows, based on non-zero 
elements of A-rows 

Challenges Intersection search between 
non-zero elements in A and 
B

Storage for POs or in-place merge and 
reduce 

Merge and reduce of PO rows 
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isses where only one word within a cache-line is modified, the bandwidth to external memory
s poorly utilized. The OP algorithm generates several POs that must be accumulated to obtain the
nal output. We can identify two strategies: immediate update and deferred update . In the former,
he final output is immediately updated as each partial sum is generated. If the output is stored
sing a sparse format , either the index being updated does not yet exist, and the new partial sum

ust be inserted. Or, if it exists, a lookup must be done to locate it, the update performed and the
esult written back. The problem associated with combining the POs is called reduction . 

To avoid the complexities of the indirect accesses with immediate updates , the partial sums can
e stored and the accumulation can be deferred. One such technique is called output batching [ 48 ].
ith this technique, tuples containing the index and the partial sum are streamed sequentially to
emory. Then, during a second pass, they are read back and the accumulations are performed, an

pproach which results in sequential memory accesses during the first pass, with the downside that
he volume of data transferred to memory is increased. In Table 1 , we summarize the previously
iscussed advantages and hardware challenges for each algorithm, including Gust which presents
 tradeoff between IP and OP . 

The issues presented with IP and OP can be generalized to two concepts: gather and scatter . The
ather problem exists when the inputs are indirectly accessed, and need to be read from memory
sing metadata to present the processor with the correct terms for computing the partial sums .
ypically, with IP , the gather problem is more difficult. The scatter problem exists when the order

n which the output matrix/vector is generated is not sequential and is typically associated with
he OP algorithm. In the case of tiling , a hardware accelerator must handle both gather and scatter ,
reating a need for hardware support for both intersection searches and reductions . 

.1 SpMSpM Algorithm Analysis 

o better understand how the algorithms impact the number and types of memory accesses, we
eveloped, and presented in Figure 4 , a model based on memory accesses counts. We identify five
emory access patterns: (1) those where a matrix is read only once, thus there is no opportunity

or reuse, (2) where the accesses are sequential, but a line is read multiple times, (3) where lines
re read consecutively, but the accesses within a line are random , (4) where the lines are accessed
andomly , but within a line the accesses are sequential, and (5) where the matrix elements are
ccessed multiple times, and with a random access pattern. 
ACM Trans. Arch. Code Optim., Vol. 21, No. 2, Article 27. Publication date: February 2024. 
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Fig. 4. Model of memory access counts depending on algorithm and local memory size. 
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For each of the three algorithms, we counted the number of read and write accesses, based
n the density of the input matrices. We plotted the number of memory accesses in logarithmic
cale for SpMSpM, based on a square matrix with M = 10 , 000 . Indeed, the number of non-zero
lements in C depends on the structure of the input matrices and in this model, we have assumed
he non-zero entries in the input matrices are uniformly, randomly distributed. This corresponds
o a worst case for sparse matrices (no spatial and temporal locality). Banded input matrices would,
or example, have fewer non-zero elements in C . In each graph, we have separated the accesses
nto A (bottom), B (middle), and C (top). The color code shows the access pattern, based on the five
ategories described above. 

In the top-row of Figure 4 (graphs ➀, ➁, and ➂), we start by considering a naïve accelerator
hich has no local storage, thus all data comes from main memory. From these figures, we clearly

ee that IP requires more accesses, as the A-matrix must be read N times (graph ➀). Whereas for
P and Gust , the A-matrix is read only once (thus the grey color). For OP and Gust the total number
f accesses is the same; however, with OP (graph ➁), the accesses to C are random (red). With Gust
graph ➂), the accesses to B are sequential within the rows (orange) and the C-rows are generated
equentially (yellow), thus Gust avoids having any fully random accesses (red). 
CM Trans. Arch. Code Optim., Vol. 21, No. 2, Article 27. Publication date: February 2024. 
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Since main memory accesses are the principal bottleneck, accelerators integrate local storage
such as buffers or caches). Thus, we consider the case of an accelerator with sufficient local mem-
ry to store one full row, per matrix. We assume this local storage is perfect (no misses) and re-
alculate the number of remaining main memory accesses, as shown in the middle-row of Figure 4
graphs ➃, ➄, and ➅). The matrices are assumed to be initially stored in main memory, thus they

ust be accessed at least once. As can be seen, for IP (graph ➃), the number of A-accesses is
educed, because rows are reused, thus the total number of A-accesses becomes equal to that in
P and Gust . For OP (graph ➄), the single row buffer greatly reduces the number of B-accesses,
owever, it does nothing for C (despite the appearance, due to the logarithmic scale). For Gust

graph ➅), the single row buffer is sufficient to cache the reduction operations in C , and thus, it
ow has fewer overall accesses than OP . It is also interesting to note that OP and Gust scale better
han IP with lower densities, as seen by the shallower slope. 

Finally, we have considered the extreme case where an accelerator has a buffer of sufficient
ize to store two matrices, which is shown in the bottom-row of Figure 4 (graphs ➆, ➇, and ➈).
lthough this case is not practical for large matrices, through the proper use of tiling to locally

educe the dimensions of a sub-matrix, this case can be achieved at the level of a tile . In this case,
he total number of external accesses is equal for the three algorithms, as each matrix is accessed
nly once from main memory. For IP (graph ➆), it is interesting to note that such a large buffer is
eeded to locally address the intersection search in B. Similarly for OP (graph ➇), a large storage

s required to address the reductions in C . For Gust , in fact, it is not necessary to buffer the entire
-matrix. Indeed, buffering a few rows (corresponding to N N Z r (A)) is sufficient to achieve the
umber of accesses shown in graph ➈. This corresponds to an intermediate design point (multiple
ow buffers for B) not explicitly shown in the figure (between graphs ➅ and ➈). 

When viewed overall, Figure 4 highlights the benefits of Gust . We clearly see that Gust does
ot require any fully random accesses (red). With a single row buffer, it is possible to address
he reductions in C . And, with a limited number of row buffers, the number of external memory
ccesses for B can be reduced. Based on this analysis, it is clear that Gust is the best algorithm for
ardware implementation of SpMSpM. 

 HARDWARE ACCELERATORS FOR SPARSE MATRICES AND VECTORS 

n this section, we describe the recent (2018–2023) hardware accelerators for sparse MM and
V, targeting ASIC-type implementation. We try to be consistent on notations and architecture

chemes to simplify the comparison. Before going into the detailed overviews of the accelerators,
n Table 2 we present a criteria-based classification of the designs. 

A first criterion to classify the accelerators is between standalone accelerators that address the
ull kernel without the assist of a processor (e.g., OuterSPACE [ 64 ]—Section 4.1 ) and ones that
ddress only a part of the kernel and need a processor to manage the computation (e.g., PHI [ 60 ]—
ection 4.9 ). Standalone accelerators are directly connected to the main memory and internally
anage their own custom memories. The other accelerators actually intervene at different levels

f the memory hierarchy, giving a second classification criterion. Certain accelerators intervene
ear the processors (e.g., ASA [ 89 ]—Section 4.8 ), near the cache (e.g., PHI and SortCache [ 77 ]—
ections 4.9 and 4.7 ), or near the main memory (e.g., SPiDRE [ 10 ] and SpaceA [ 86 ]—Section 4.9 ). 

Each accelerator is optimized for a specific algorithm ( IP , OP , or Gust ), our third criterion. For ex-
mple, some accelerators (e.g., PHI and SortCache) address the reduction problem and are adapted
o OP algorithms but reductions are also required with Gust and highly- tiled algorithms. ExTen-
or [ 40 ] (Section 4.2 ) is a general purpose accelerator that is demonstrated for a highly- tiled OP but
lso makes major contributions for IP . 
ACM Trans. Arch. Code Optim., Vol. 21, No. 2, Article 27. Publication date: February 2024. 
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Table 2. Algorithmic and Architectural Classification of Existing Accelerators 
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OuterSPACE [ 64 ] 2018 N/A MV, MM 

ExTensor [ 40 ] 2019 N/A 

a a MV b , MM 

PHI [ 60 ] 2019 b MV, MM 

b 

SPiDRE [ 10 ] 2019 MV, MM 

b 

MatRaptor [ 79 ] 2020 N/A MM 

SpArch [ 93 ] 2020 N/A MM 

SpaceA [ 86 ] 2021 MV 

Gamma [ 90 ] 2021 N/A 

a MM 

InnerSP [ 7 ] 2021 N/A MM 

SortCache [ 77 ] 2021 b MV b , MM 

ASA [ 89 ] 2022 b MV b , MM 

Flexagon [ 59 ] 2023 N/A MM 

GSCSp [ 55 ] 2023 N/A MM 

Gray cell: the accelerator meets the criterion. 
a Not main contribution but addressed in the article. 
b Could be adapted but not discussed in the article. 
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From a memory perspective, the two main problems are gather and scatter , our fourth criterion.
ertain accelerators offer solutions for one, the other, or both. For example, some accelerators (e.g.,
pArch [ 93 ]—Section 4.3 ) are specialized for an OP algorithm but optimize both gather and scatter .
inally, accelerators preferably focus on sparse MM, MV or both—our final criterion. 

After this first comparison, in Sections 4.1 to 4.6 , we present the standalone accelerators, followed
y the processor assist accelerators in Sections 4.7 to 4.8 . In Section 4.9 , we briefly touch on other
ccelerators. 

.1 OuterSPACE 

uterSPACE [ 64 ] is an OP accelerator with a focus on SpMSpM kernels, although it can also handle
pMV. It is a highly parallelized architecture which employs Single-Program Multiple-Data

 SPMD )-style processing elements ( PEs ) that fetch data from main memory through a two-level
ighly-banked cache hierarchy as shown in Figure 5 . The input A- and B-matrices are stored in
UOP, CP) column- and row-major formats, respectively, to match the read access patterns of the
P algorithm. The partial and final outputs are stored in (UOP, CP) format. 

The computation is temporally divided into the multiply and merge phases (Figure 6 ). During the
rst phase, inputs are divided into tiles of several rows ( A) and columns ( B) and distributed through
he processing tiles ( PTs ) by a control unit . Within each PT , each PE processes multiplications of
ne element of the k th A-column with all elements of the k th B-row and an L0 cache in the PT

acilitates the reuse of the B-rows between PEs . This phase generates a PO per PT , corresponding
o the tile of rows ( A) and columns ( B) that it was assigned. 

Then, during the merge phase, the POs are combined to generate the final C-matrix. Each PT

ocally sorts the POs , and then the PTs work together to merge them. This algorithm was chosen to
aximize data locality and parallelism, although it is less efficient. This merge phase only uses half
CM Trans. Arch. Code Optim., Vol. 21, No. 2, Article 27. Publication date: February 2024. 
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Fig. 5. Architecture of OuterSPACE. Fig. 6. OuterSPACE data flow. 

Fig. 7. Architecture of ExTensor. 
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f the PEs so the others are disabled (clock-gated) and the caches are reconfigured in a scratchpad
ode to save energy. 
Note, if N N Z elements in the POs exceed the L0 cache capacity, it overflows to the last level

ache, which results in reduced performance. OuterSPACE performs best when the N N Z c (A) and
 N Z r (B) are both uniform which ensures a uniform distribution of work across the large number
f PTs and PEs . 

.2 ExTensor 

he authors created ExTensor [ 40 ] as a general purpose sparse tensor algebra accelerator (includ-
ng SpMSpM). It is an OP accelerator but due to its support for three levels of fixed tiling of the
nputs, it optimizes the intersection search between non-zero elements or tiles. 4 By doing the in-

ersections ahead of time, at different levels of the memory hierarchy (which correspond to the tile
evels), ExTensor is able to efficiently eliminate ineffectual operations , thus addressing the main
ssue in IP or complex tiling algorithms. Indeed, the input matrices would typically be stored in a
UOP, UOP, UOP, CP ) format, corresponding to three levels of tiling . ExTensor is designed with a
exible architecture composed of different bricks (see Figure 7 ). To simply aid in the understanding,
he interactions between the bricks are described using function calls: 
 Tensauraus [ 80 ] is another accelerator designed for tensors, but their focus is on SpMM. 
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—The Scanner is a storage unit that delivers a stream of coordinates in increasing order,
fetching them from memory. The coordinates are delivered through the Iterate() operation
call. 

—The Intersect is a hardware block that co-iterates over several Scanners in parallel and com-
pares the coordinate streams. This unit performs the intersection search required by IP type
algorithms, delivering a single stream with the matching coordinates, which are the coor-
dinates of non-zero partial sums . To optimize the intersection step, it is possible to skip a
range of coordinates in a stream depending on the current coordinate of another stream.
Thus, the Intersect sends skip messages with SkipTo() operations to the other Scanners . 

—The Coordinator is a hardware unit that includes Scanners and Intersect units, and manages
the input and output data depending on the current processed tile , as shown in Figure 7 .
Data and metadata are, respectively, stored in storage units and Scanners , while a Sequencer

manages the Iterate() calls so that the Intersect brick delivers the stream of effective coor-
dinates. In addition, in the Tile Coord brick, the offsets of the tile are added back, so the
output of the Coordinator is in absolute coordinates. 

These bricks can be placed at different positions in a memory hierarchy, depending on the tiling

nd selected hardware. Thus, the Coordinator is able to intersect at coarse-granularity with output
ata being metadata of the next tile , skipping an entire tile when appropriate, with low computation
ost, and also at fine-granularity when output data are the non-zero elements that need to be
ultiplied. 
ExTensor is designed with three levels of tiling that each have either input or output sequen-

iality. First, a Sequencer plus Scanners block ➀ is placed close to the main memory to determine
hich tiles to send to the next storage, the Last Level Buffer ( LLB ). Then, for each tile , a Coordi-

ator ➁ in the LLB intersects the next level tiles , which are sent to several PEs that will process in
arallel. Finally, in each PE , a Coordinator ➂ intersects the non-zero elements of the computed tile

nd sends them to the arithmetic unit of the PE for multiplication. 
In addition to these bricks which are the main contributions, ExTensor still needs to perform

he merge phase, including the reduction of the POs which are stored in CP 

2 format. The Partial

utput Buffer ( POB ), is managed by tiles , and the content of the tile is stored on-chip using a
ontent Addressable Memory ( CAM ) for quick access, enabling reductions to be performed.
n overflow, the tiles are flushed to main memory. To benefit from ExTensor’s support for tiling ,

he input matrices need preprocessing, making it difficult to directly compare performance with
ther accelerators. 

.3 SpArch 

pArch [ 93 ] uses an OP algorithm for SpGEMM in order to benefit from the simplified access
attern for the inputs. To address the management of the large volume of POs , SpArch pipelines
he multiply and merge phases and uses condensing methods to reduce the number of POs and
cheduling methods to reduce memory traffic. Unlike other OP accelerators [ 64 ], with SpArch, both
and B are stored in (UOP, CP) row-major format. As a consequence of this CSR format, the A-rows

an easily be condensed to the left (see Figure 8 ). Thus, when a condensed A-column is read, it will
equire reading all the B-rows corresponding to the different A-columns that have been combined.
he MatA Column Fetcher reads the combined A-columns and the MatB Row Prefetcher reads the
ecessary B-rows (see Figure 9 ), thus masking the memory latency. The MatB Row Prefetcher , stores
ultiple B-rows in a cache, and it uses information about the upcoming A-columns (provided by

he Distance List Builder ) to ensure the needed B-rows are kept in the cache. 
A key contribution of SpArch is the merge unit that is able to merge 64 POs in parallel, through

 binary tree type architecture. The core of the merger is a brick which compares and merges
CM Trans. Arch. Code Optim., Vol. 21, No. 2, Article 27. Publication date: February 2024. 
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Fig. 8. Outer-product with a condense A-Matrix. Fig. 9. Architecture of SpArch. 
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 × 4 (inde x , value ) pairs in one cycle. These are combined to build a hierarchical merger array
hose output is then written to main memory, and read back for further merging by the Partial

atrix Fetcher . The authors note that the order in which the reductions are performed is important,
pecifically sparser POs should be merged first and they propose a Huffman tree scheduler to
etermine the best order to minimize memory accesses. Overall, SpArch is able to compute an OP
pGEMM 

5 kernel with reduced main memory traffic for the POs mainly by addressing the scatter

roblem with a highly parallelized merger. 

.4 MatRaptor 

atRaptor [ 79 ] is an accelerator designed to compute SpMSpM kernels. It is based on Gust algo-
ithm, 6 which makes it possible to process multiple A-rows (2 to 8 for MatRaptor) in parallel. In
atRaptor (see Figure 10 ) a SpAL ( Sparse Matrix A Loader ) fetches non-zero elements of a A-row

nd sends them to a SpBL ( Sparse Matrix B Loader ). With the metadata of this element, the SpBL

etches non-zero elements of the corresponding B-rows and sends pairs of A- and B-elements to
 PE . This PE computes the partial sums and sends the results into queues for the merge process.
nstead of separating multiply and merge phases, several queues are used to store partial sums

nd partially merged partial sums , allowing the two phases to be pipelined. The PE merges all the
artial sums resulting from an entire A-row, before sending the final output (the corresponding
-row) to main memory. 
In MatRaptor, multiple A-rows are processed independently and in parallel in different PEs and

ach PE is assigned to a channel in an HBM memory [ 45 ]. It is important that each PE can read its
-rows without interfering with the other PEs . With the classic (UOP, CP) row-major format, the

ows are consecutive in memory and are not aligned to channel boundaries. To solve this problem,
he authors propose a new format called C 

2 SR ( (FL, UOP, CP) channel-major ) that is based on a
UOP, CP) row-major . For example, with two PEs , all the elements of the even rows are stored in
ne channel, and the elements of the odd rows are in another channel, thus isolating the data. With
his approach, the row pointers ( UOP ) are no longer monotonic, which means that the length of
 row can not be deduced by subtracting adjacent row pointers. This requires the addition of a
ew table (which we call fiber length FL ), which stores the length of the non-zero elements in each
ow (see Figure 11 ). This modified storage format enables multiple PEs to make effective use of the
BM. 
 Since the merger can read POs from memory, the D-matrix can be treated like an initial PO . 
 Called row-wise product in [ 79 ]. 
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Fig. 10. Architecture of Ma- 
tRaptor. 

Fig. 11. (FL, UOP, CP) channel-major format ( C 

2 SR). 
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MatRaptor is one of the first accelerators to use Gust algorithm; however, it has some limitations
egarding effective reuse of B-rows, both between parallel SpBLs and temporally, as A is traversed.
 key contribution is the proposed C 

2 SR input format, which makes it possible to separate rows
nto memory channels, to improve performance. 

.5 InnerSP 

nnerSP [ 7 ] is a SpMSpM accelerator based on the Gust algorithm. 7 The authors of InnerSP justify
heir choice by showing quantitatively that with the OP the POs represent a large volume of data,
nd that for many matrices the reductions can not be done fully on-chip and thus must be buffered
n main memory. Normally, with Gust algorithm, B must be read repeatedly, but InnerSP proposes
 special cache for B which exploits the spatial locality. 

The architecture of InnerSP is shown in Figure 12 . The A reader reads the A-rows. Two separate
aches are used for B, one that stores the row pointers and the other which stores column indices
nd values. The B reader reads the required B-rows, hopefully getting the data from the caches.
arallel multipliers perform the multiplications and then a hash-unit generates a hash based on
he indices in C . A reduction unit based on hash tables contains parallel comparators which search
or matching hash values and performs the reductions . When all the operations for a A-row are
ompleted, the C writer writes the C-row back to main memory. 

The architecture is efficient, as long as the Hash Reduction Unit does not overflow. When over-
ows occur, the extra entries are temporarily stored in main memory, but there is a significant
erformance hit. To minimize the chance of overflows, InnerSP uses a pre-scanner to estimate the
umber of non-zero entries in the upcoming C-rows. The estimate primarily considers the N N Z

n the A-rows. If the estimated number of non-zero entries in C exceeds the capacity of the Hash

eduction Unit , then the row is split and processed in two passes. Conversely, if the number of
on-zero entries in C is small, two A-rows can be processed simultaneously. 
To improve the performance of the B-cache, the authors exploit a technique from [ 8 ]. The non-

ero elements in the A-rows provide direct information about which B-rows are required. The
olumn index table of A is already pre-fetched by the A reader , and when a row must be evicted
rom the B-cache, it chooses the ones which will not be required based on the upcoming entries
n the column index table of A. This technique (also used by SpArch [ 93 ]) maximizes the reuse of
-rows. 
InnerSP is an accelerator based on Gust algorithm which achieves high reuse of the B-rows,

hrough a look-ahead in the A- metadata . 
 The authors call this row-wise inner-product , or confusingly sometimes inner-product . 
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Fig. 12. Architecture of InnerSP. Fig. 13. Architecture of Gamma. 
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.6 Gamma 

amma [ 90 ] is a dedicated accelerator for SpMSpM kernels, which uses Gust algorithm. The two
nput matrices are both stored in (UOP, CP) row-major format and the output is generated in the
ame format, providing consistency. 

The Gamma architecture, presented in Figure 13 , is composed of a fetcher for the A-rows that
ontains a Distributor to distribute them to 32 PEs . Each PE processes an entire A-row and computes
he corresponding C-row. The PE fetches the required B-rows and merges and sorts them in a
4-wide merge block, before multiplying with the A-elements. As a result, the output C-row is
enerated in order. The reduction step is, thus, highly simplified, because any duplicate indices
re adjacent. Normally, the C-row can be written back to main memory. However, if the A-row
ontains more than 64 non-zero elements, then it must be processed with multiple passes. After
ach pass, the partial C-row is stored temporarily. Finally, the temporary C-rows are read-back and
erged by the PEs . Of course, the B-rows must be accessed repeatedly by the different PEs , and
amma proposes FiberCache which is a highly banked cache which fetches the B-rows in advance,
ased on the column index table of A. It keeps track of which rows of B are most needed by the
Es , and when an eviction is necessary, the victim, is the row which is least needed. 

Gamma encounters some difficulties when the A-matrix has rows that are too dense, requiring
ultiple iterations through the PEs , which creates a high-load on the cache. The authors propose
 software preprocessing technique which splits dense A-rows and rearranges them to make best
se of the FiberCache . 

.7 SortCache 

he authors of SortCache [ 77 ] note that modern processors are able to load an entire cache line
n parallel but in many sparse applications less than 50% of the data within a line is used, even
ith hand-tuned code. They propose a light SpGEMM accelerator which offloads the reduction

tep, based on the Vectorized Binary Search Tree ( VBST ), a data-structure from their earlier
ork [ 76 , 78 ]. The VBST is a standard binary search tree where the size of node is a multiple of the

ache block size and contains a sorted vector of K (key , valu e) pairs. Associated with each node is
 pivot ; the pivots, with left and right child pointers, form a binary tree, as illustraded in Figure 14 .

Using the VBST, SortCache focuses on accelerating the scatter updates to the output matrix,
hich are performed directly in the cache. The authors augment the processor with a single new
ACM Trans. Arch. Code Optim., Vol. 21, No. 2, Article 27. Publication date: February 2024. 
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Fig. 14. VBST data structure used by SortCache. Fig. 15. Architecture of ASA. 
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nstruction, RED Key, Value . After K updates have been issued, the hardware launches a reduc-

ion in the SortCache, where the K (key, val ue) pairs are inserted into the VBST. This is done by
raversing the tree from the root to the leaves. When duplicate keys are found, the reduction oper-
tion is performed in the cache. When new keys are found, they are inserted, which can result in
 temporary, new node with up to 2 K (key , valu e) pairs. This temporary node is partitioned, with
ne half having exactly K entries. The insertion procedure may require visiting each level of the
ree at least once ( O(loд(n)) and it does not ensure the uniqueness of the keys, so at the end, an
dditional full traversal of the tree is required to remove duplicates. 

The nodes closest to the root of the tree are accessed most frequently and are thus mapped to the
aches closest to the processor. The authors propose to re-purpose cache tracking hardware (e.g.,
AG values, LRU counters) to store the additional metadata (pivots, pointers). One of the difficulties
ith SortCache is that, in some cases, a large fraction of the VBST nodes are underutilized. 

.8 ASA 

n the scope of graph analytic problems, the authors of ASA [ 89 ] observed that Gust algorithm
chieves high performance for SpGEMM kernels but note that it still requires acceleration for the
eduction step. 8 The software state-of-the-art for reduction uses hash tables [ 15 ]. Some hardware
ccelerators, such as HTA [ 92 ], enhance performance for hash operations, but those solutions are
ot optimized for SpGEMM kernels. ASA is a low area, near-core extension for a general purpose
rocessor that specifically accelerates the reduction step for Gust algorithm. 
ASA accelerates reduction operations received from software via custom instructions. As pre-

ented in Figure 15 , the partial sums from these instructions are stored in a waiting buffer as
inde x , value ) pairs with a key that is a hash of the index, computed in software to maintain flex-
bility. The cache line, accessed with the key, is filled with the indices and the partial sums . If a
orresponding partial sum is already stored, ASA accumulates it and writes back the result. If not,
he partial sum is simply stored into the cache. 

To minimize die area, the cache is not dimensioned for an entire C-row 

9 but ASA handles cache
verflows in hardware. When a partial sum needs to be stored in a fully filled cache line, a victim
s selected and evicted, based on a LRU policy. The evicted entry is written into a pre-allocated
IFO queue in the memory hierarchy. ASA uses an address generator to manage evicted data and
 The authors refer to the reduction step as SPA (Sparse Accumulation). 
 The authors present a column-wise Gust implementation. This choice is arbitrary and, for consistency, we stick with a 
ow-wise presentation. 
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pdates head and tail registers for the list. Software then traverses the list to merge duplicate
eys to build the final output C-row. To avoid overflows, the authors advocate tiling methods to
fficiently distribute work through one or several ASA cores. 

ASA is an accelerator which optimizes the scatter aspect of SpGEMM kernel with low area over-
ead, while leaving high software flexibility. Unlike other Gust accelerators, there is no hardware
ather support for reusing or caching the B-rows. 

.9 Other Accelerators 

n the above sections, we have described a selection of the main sparse accelerators that have
ppeared in the literature, covering different matrix multiplication algorithms and architectures.
his list is not exhaustive, and in the following paragraphs, we present several other accelerators
hich we will cover in less detail, due to space constraints. 

4.9.1 SPiDRE. The authors of SPiDRE (Sparse Data Rearrange Engine) [ 10 ] propose a solution
or the poor utilization of the memory hierarchy in sparse applications. They propose a near-
emory data rearrangement engine. This engine can preprocess data, near memory, to create
ew data-structures that are dense and benefit from the memory hierarchy. For example, with a
pMV kernel, the input vector could be rearranged through a user defined function to a dense
ormat where all non-zero elements are in the right order of computation. 

4.9.2 PHI. The authors of PHI [ 60 ] note that many large graph algorithms favor pull (each node
eads inputs from its neighbors) compared to push implementations (each node propagates results
o its neighbors), as push implementations require read-modify-writes which require accessing
omplete cache lines, even though a small unit of data is modified. The authors include OP SpMV
a push algorithm) in their evaluation. 

PHI is a modified cache optimized to efficiently process commutative scatter updates. When an
pdate is received but the line is not in the cache, the line is not fetched but rather marked as
eing in update mode , where it simply stores the update. If subsequent updates hit the line, they
re stored, or combined via the commutative operator. When a cache line is evicted, if it contains
ultiple updates, PHI assumes that the coalescing has been effective, and it processes the opera-

ions via a read-modify-write from main memory. If a cache contains few updates when evicted,
HI batches these updates as (ad d re s s , value ) tuples, allocating a new cache line to assemble the
atch. Groups of updates are organized by bins corresponding to a small memory region. The
atches are streamed to the main memory. Later, the reading of the batches is also efficient, as
hey are contiguous. 

In multi-core systems, private caches act as local buffers, thus coalescing the updates reduces
oherency protocol traffic. This combination of in-cache coalescing and update buffering enables
HI to take advantage of locality when possible (like Coup [ 91 ]), but with the addition of update

atching , PHI improves memory utilization, even when the data being updated is too large to fit
n the cache. 

4.9.3 GSCSp. GSCSp [ 55 ] is an FPGA-based accelerator based on Gust algorithm. In other Gust
ccelerators, a PE processes a full A-row but the authors note that when there is variability in
he number of elements in the A-rows, PEs may be blocked, waiting for another PE to complete.
hus the authors propose to distribute the elements in an A-row to different PEs ( element-wise

arallelism). Initially, each PE buffers its output C-row, and when a PE advances to the next row,
t pushes its partial C-row to a final merger. The authors also propose to use separate caches
or the metadata for the B-rows and the values, and report that combined with the element-wise

arallelism, the approach is effective for reducing the memory traffic for accessing B-rows. 
ACM Trans. Arch. Code Optim., Vol. 21, No. 2, Article 27. Publication date: February 2024. 
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4.9.4 F lexagon. F lexagon [ 59 ] is a SpMSpM accelerator for DNN applications. The authors
laim that the optimal algorithm ( IP , OP , and Gust ) depends on the matrix structure, potentially
arying between DNN models and layers within a DNN, although in the majority of the cases, their
ata shows that Gust is the most efficient. Flexagon is configurable: it can implement all three al-
orithms. To achieve that, the authors designed a Merger-Reduction Network ( MRN ) that is able
o perform multiplications (for partial sum generation), accumulations (for reductions operations)
nd comparisons (for intersection searches and merge phases) via a binary tree structure. Flexagon
ddresses the memory access issues of each algorithm via three custom memories: a FIFO for the A-
atrix that is always read sequentially, a cache for the B-matrix that is subject to high temporal and

patial reuse in each of the three algorithms, and a PSRAM to store POs for OP and Gust algorithms.

4.9.5 Other Accelerators. In GraphR [ 75 ], the authors propose to use ReRAM technology and
 cross-bar to perform graph operations directly in hardware, but this approach is not currently
calable to large problems. The ITS accelerator [ 70 ] focuses on an OP implementation of SpMV
nd they apply data-compression to the metadata . The authors of SPU [ 20 ] propose a more gen-
ral hardware solution to input data dependencies and focus on graph applications. The focus of
lrescha [ 3 ] is an innovative and adaptive preprocessing of the matrix in hardware to simplify the
ccesses to the b-vector. The authors of CoSparse [ 29 ] focus on a software layer that selects the
ardware acceleration that is best adapted to the given problem. 
The SSSR accelerator [ 73 ] for RISC-V processors goes further by addressing intersection and

nion while streaming data to and from memory and it can be used for multiple kernels; however,
he RISC-V performance can not easily be compared with the other accelerators presented in this
rticle. In passing we note three other accelerators EIE [ 38 ], SCNN [ 65 ], and CANDLES [ 36 ] which
ave hardware support for sparsity but which are highly focused on CNNs, besides SDMA [ 32 ]
hat focuses on GNNs. 

The SpaceA [ 86 ] accelerator exploits near-memory computing inside a 3D DRAM memory to
mplement SpMV using an IP algorithm. With preprocessing, the rows of the matrix are assigned
o banks within specific DRAM dies, while optimizing spatial locality. A separate die is used for
toring the input and output vectors. Associated with each DRAM bank which stores the matrix,
here is a PE which reads the non-zero values of the matrix, fetches the required vector entries
nd performs the computations. Bringing the compute near the DRAM and exploiting emerging
D technology, is an orthogonal approach to reduce memory access overheads. 

4.9.6 Other FPGA-based Accelerators. Many sparse accelerators have been prototyped on FP-
As [ 58 ]. Indeed, AMD/Xilinx provides a turnkey library for SpMV [ 19 , 56 ]. In [ 24 ], the authors
ropose a higher-performance SpMV using a modified CSR format where the data is packed for
fficient, streaming access in HBM. 10 They also propose a highly-banked on-chip memory for the
ector updates, and a hazard resolution strategy that allows efficient pipelining. 

 COMPARISON OF EXISTING ACCELERATORS 

n this section, we analyze and further compare the accelerators that were described in Section 4 .
e start with Table 3 where we summarize the accelerators, chronologically, showing the research

roup where they were developed. We see that MIT is very active in the field, as they were involved
n developing four different accelerators (e.g., ExTensor, PHI, SpArch, and Gamma). 

.1 Benchmarks, Evaluation, and Performance 

p to this point, we have discussed the architecture of the various accelerators, without report-
ng the performance they achieve. Most of the matrices used for benchmarking come from the
0 GraphLily [ 41 ] is a precursor of HiSparse, also from Cornell University. 
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Table 3. Chronological Summary of Sparse Accelerators 

Name Date Institute/University Summary 

OuterSPACE [ 64 ] 2018 Univ. of Michigan/Arizona State Univ. Highly parallelized SPMD, two levels cache – OP SpMSpM 

ExTensor [ 40 ] 2019 Univ. of Illinois/NVIDIA / MIT General purpose tensor algebra – With tiled SpMSpM 

PHI [ 60 ] 2019 MIT (CSAIL)/Carnegie Mellon Univ. In cache, hash-based accelerator for reductions 

SPiDRE [ 10 ] 2019 UPC, BSC (Spain)/Arm Research Near main memory data reorganization for intersections 

MatRaptor [ 79 ] 2020 Cornell Row-parallel with HBM-aware custom format – Gust SpMSpM 

SpArch [ 93 ] 2020 MIT/Stanford/NVIDIA Compression method to reduce POs , multiply / merge pipe – OP SpGEMM 

SpaceA [ 86 ] 2021 UC Santa Barbara In memory accelerator for 3D DRAM – IP SpMV 

Gamma [ 90 ] 2021 MIT (CSAIL) Parallelized architecture with FiberCache for B – Gust SpMSpM 

InnerSP [ 7 ] 2021 KAIST/DGIST (S. Korea) A-look-ahead, caches for B , Hash Reduction Unit for C – Gust SpMSpM 

SortCache [ 77 ] 2021 Georgia Tech/Zettaflops/Sandia Labs In cache accelerator for reductions , based on the VBST 

ASA [ 89 ] 2022 Lehigh Univ./Lawrence Berkeley Custom cache accelerator for reductions – Gust SpGEMM 

Flexagon [ 59 ] 2023 Univ. of Murcia/Georgia Tech/NVIDIA Configurable accelerator supporting all three algorithms – SpMSpM 

GSCSp [ 55 ] 2023 Nanyang Technological Univ. Element-wise, FPGA-based accelerator – Gust SpMSpM 
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uiteSparse Matrix Collection [ 50 ] that contains a large number of matrices from diverse, real ap-
lications. Domain specific matrix libraries are also used [ 6 , 27 , 52 , 74 ], as well as some synthetic
atrix generators [ 2 , 11 ]. The densities are in general less than 1% and can be as low as 10 −5 %. Ex-

ensor, SortCache, and Flexagon also benchmark with denser matrices. In all cases, large matrices
ith several million N N Z , exceeding the size of a normal cache, have been evaluated. 
In Table 4 , we note any required preprocessing, assuming, arbitrarily, that matrices are initially

tored in CSC format. 11 We see that a few accelerators require a conversion to their specific format
e.g., ExTensor and MatRaptor). PHI, SortCache, and ASA are not concerned by preprocessing
ince they only address scatter . In any case, fair benchmarking must take into account the cost of
pecialized preprocessing. 

Not all accelerators have reached the same level of design maturity, and in Table 4 , we have
hown how each design was analyzed or simulated. All designs report that they have been sim-
lated at a cycle-accurate level. Most of the accelerators use custom simulators or tools like
em5 [ 26 ], ZSim [ 71 ], and STONNE [ 61 ], but unfortunately, there is no common approach, making
t difficult to fairly compare the reported performance. RTL descriptions are often only generated
or key parts of the design. To estimate power and area, authors used tools such as CACTI [ 9 ]
nd McPAT [ 54 ]. 12 In the last column of the table, we show the size of the local memory storage
sed in simulation by each accelerator. Except for SPiDRE and SpaceA which work directly in
ain memory, the local memories are in the range of 0.3 MiB to 38 MiB, corresponding to 27 k to

.8 M entries. Thus, in the model presented in Section 3.1 , most of the accelerators are situated in
he middle-row of Figure 4 , with a local memory corresponding to a few matrix rows. 

The accelerators’ performances are reported as a speedup versus a baseline, which may differ
ccording to their hardware and software platforms: typically the Intel MKL library [ 43 ] and the
rmadillo library [ 72 ] for CPUs, or cuSPARSE [ 63 ] and CUSP [ 21 ] for GPUs. Since different base-

ines with different numbers of threads and cores are used, these speedups need to be interpreted
ith care. The speedups are in general higher for the standalone accelerators as they provide op-

imized hardware for the entire kernel, while processor assist accelerators have less impressive
peedups but aim to be general purpose and have lower area overhead. 
1 This choice is based on the SuiteSparse Matrix Collection where matrices are stored column-major . 
2 We have not attempted to compare power/energy as the data in the literature is heterogeneous and can not be fairly 
ompared. 
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Table 4. Qualitative Analysis and Evaluation of Sparse Accelerators 

Name Preprocessing 1 
Functional Evaluation (Tool/Evaluation 

Specifics/Host 2 ) Local Memory Size 

OuterSPACE [ 64 ] A → row-major gem5 /Model only key elements; Skip memory 
allocation; Ignore start-up time/ ∅ 

528 KiB (33.8 k entries) 

ExTensor [ 40 ] A, B → highly tiled 
custom format 

Custom Python simulator/Only the 
Coordinator is evaluated; Remainder modeled 

analytically/ ∅ 

∼38 MiB (2.5 M entries) 

PHI [ 60 ] N/A ZSim /Entirely evaluated/16-cores system 

with 3 level cache 
32.3 MiB (2.8 M entries) 

SPiDRE [ 10 ] Not needed gem5 / Unknown /Single ARM core ∅ (main memory size) 

MatRaptor [ 79 ] A, B → C 

2 SR gem5 /Entirely evaluated/ ∅ 320 KiB (27.3 k entries) 

SpArch [ 93 ] A, B → row-major Custom C++ simulator/Entirely evaluated/ ∅ 940 KiB (62.5 k entries) 

SpaceA [ 86 ] A → row-aligned to 
DRAM banks 

Custom simulator/Simulation tracking values 
stored in 3D-DRAM/ ∅ 

4 GiB (268.4 M entries) 

Gamma [ 90 ] A, B → row-major Custom simulator/Entirely evaluated/ ∅ 3 MiB (262.1 k entries) 

InnerSP [ 7 ] Not needed Custom simulator/Entirely evaluated/ ∅ ≤976.5 KiB (119.9 k entries) 

SortCache [ 77 ] N/A Custom simulator/Entirely evaluated/Single 
threaded, in-order core with 3 level cache 

16.3 MiB (1.4 M entries) 

ASA [ 89 ] N/A Modified ZSim /Entirely evaluated, one ASA 

per core/8-cores with 3 level cache 
8 ×8 KiB (8 ×1 k entries) 

Flexagon [ 59 ] Not needed Custom simulator based on STONNE/Entirely 
evaluated/ ∅ 

1.3 MiB (327.7 k entries) 

GSCSp [ 55 ] A, B → row-major HLS/FPGA Prototype/ ∅ 2.1 MiB (178.2 k entries) 

1 We assume matrices are initially stored in (UOP, CP) column-major format ( CSC ). 
2 Only for processor assist accelerators. 
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The only accelerators that have a comparable baseline are the standalone ones addressing SpM-
pM. They all compare themselves to OuterSPACE with the same benchmark matrices, so we can
ort them by their speedup: Gamma ( 6 . 6 ×), 13 InnerSP ( 4 . 57 ×), SpArch ( 4 ×), MatRaptor ( 1 . 8 ×), and
uterSPACE ( 1 ×). Three of the five standalone accelerators use the Gust algorithm (Gamma, In-
erSP, and MatRaptor). SpArch, an OP accelerator employing a complex architecture, outperforms
atRaptor, but does not achieve the same performance as InnerSP or Gamma, which suggests that
ust is most adapted to high-performance hardware accelerators. 

These measurements are consistent with our model presented in Section 3.1 (Figure 4 ). Out-
rSPACE, the baseline, corresponds to graph ➄. MatRaptor, the first Gust accelerator, was able
o achieve higher performance by reducing the number of random accesses, and creating better
egularity (red to yellow), as seen in graph ➅. 

SpArch, is an OP accelerator with a much larger local memory, which is used to address the red
egion in graph ➄. Their A-matrix condensing method, allows them to reduce the number of POs ,
nd approach the performance achievable in graph ➇, although, in fine , it is impossible to store all
he POs in local memory. InnerSP and Gamma correspond to optimizations of the Gust approach
n graph ➅, to approach the performance in graph ➈. This is achieved by custom caches for the B-

atrix to address the orange region. With the Gust algorithm, it is only necessary to store a limited
umber of B-rows, which is achievable with the large local memories in these accelerators. The
odel presented in Section 3.1 is helpful in understanding the local memory requirements for

pMSpM accelerators. 
3 This speedup increases to 7 .7 × with their proposed preprocessing. 
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Fig. 16. Flow diagram for architecture selection. 
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.2 Analysis for Designers 

here is no single “best overall” accelerator. A designer must consider the required performance,
he available area, and the class of problems to be addressed. In Figure 16 , we present a flow diagram
hich can guide a designer towards an architecture based on their requirements. Starting from

he top-right of the figure, the designer must first decide between a specialized accelerator for a
pecific kernel or a general purpose accelerator . The former is preferable if performance must be
aximized, requiring a standalone accelerator addressing both gather and scatter (e.g., MatRaptor,

pArch, Gamma, and InnerSP). 
A general purpose accelerator can either take the form of a highly configurable standalone block

e.g., OuterSPACE and ExTensor) or a processor assist that boosts performance for a specific task.
ith a processor assist (rightmost branch in the figure), the processor still performs important

arts of the kernel, typically the multiplications, but off-loads the scatter or gather tasks to the
ccelerator, as these are the tasks which are the bottleneck with a traditional cache hierarchy. For
xample, for an IP algorithm, the difficult part of the gather task is performing the intersection

e.g., the ExTensor bricks and SPiDRE). Conversely, with OP or Gust , the challenge with the scat-

er is to efficiently perform reductions (e.g., PHI, SortCache, and ASA). Finally, the designer must
ecide whether the storage is done by reusing existing memory resources (e.g., PHI, SPiDRE, and
ortCache) or through custom caches/memories. 

Going back to the case of a standalone accelerator, the algorithms differ according to the sup-
orted kernels. For sparse MV, the accelerators studied here have opted for an OP algorithm. For
parse MM, the designers of three of the five highest performing accelerators have chosen Gust
ACM Trans. Arch. Code Optim., Vol. 21, No. 2, Article 27. Publication date: February 2024. 
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lgorithm, as this algorithm provides a good tradeoff, simplifying the gather by reusing input B-
ows and the row-by-row generation of the output, simplifying the scatter aspect. The fact that
he outputs are generated row-by-row, facilitates parallel implementations. Gust works well with
UOP, CP) , providing consistent input and output formats. Beyond the basic algorithm, tiling ap-
roaches, as proposed by ExTensor, can be explored. 
Orthogonal to previous choices, other design considerations are important. First, the starting

oint needs to be defined: some accelerators require software to perform tiling (e.g., ExTensor) or
o rearrange the rows to improve performance (e.g., Gamma). The cost of such preprocessing can
e high and is usually only justified if the same matrix is reused multiple times. 

 CONCLUSION 

he size of the datasets considered in computational physics, machine learning, and graph ana-
ytics is continuing to grow and over the last six years, we note the emergence of many hardware
ccelerators designed to improve upon the performance of CPUs and GPUs. In this article, we
ave presented the most important designs and established a comparison, while highlighting the
nderlying hardware challenges associated with sparse multiplication kernels. 
As we have seen, with this class of problem, the challenge is to efficiently use the memory

ystem despite the dereferencing required to access the metadata associated with the sparse data

ormats . Depending on the selected MM algorithm, the major challenge is either with the gather

nd intersection or with the scatter updates. We have identified that accelerators based on Gus-

avson’s algorithm achieve a tradeoff, where, on the gather side, a limited number of B-rows need
o be accessed, and on the output side, the result is generated row-by-row, simplifying the scatter

pdates. The best Gustavson accelerators have implemented further optimizations such as smart
ache eviction strategies where the victim is selected by looking ahead at the A-indices. Several of
he smaller processor assist accelerators reuse existing cache memories and simply modify the be-
avior of the control logic (directories, tags, eviction policies) to optimize the operation for sparse
atrices. On the other hand, the highest performance accelerators propose dedicated, massively

arallel reduction / mergers , to maximize parallelism. 
Given the number and diversity of existing designs, it is clear that further hardware optimiza-

ions and improvements are possible. As stated earlier, there may never be a single “best” sparse
ccelerator but rather designs that are best suited to specific classes of problems. We believe that
he structure of the matrices is critical in terms of the sizing of caches and other resources and
hat in the coming years, new accelerators will be increasingly tailored based on the structure of
he matrices for specific classes of problems. 
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