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Abstract

Pre-training on an upstream task is widely used in deep
learning to boost performance of downstream tasks. Re-
cent studies analyzed pre-training with large datasets and
large deep neural network architectures. However, pre-
training is very useful in practice when downstream tasks
have scarce data and are trained under computational con-
straints. To assess pre-training performance in this setting,
we train different deep architectures with 1M parameters.
We create different subsets of ImageNet to study the influ-
ence of upstream dataset in detail by varying the total size,
but also the ratio between number of classes and samples
per class for a constant total size. Then, we use the result-
ing models in transfer toward six diversified downstream
tasks using linear probing and full fine tuning for down-
stream training. Experimental results confirm previous ones
regarding performance saturation in downstream tasks, but
we find that saturation occurs faster for compact deep ar-
chitectures. The use of different ImageNet subsets leads
to globally similar performance when enough data is in-
cluded, regardless of the dataset structure. The comparison
of downstream training strategies shows that linear probing
can be competitive, particularly for few-shot settings. This
is at odds with previous reports, which assert the superiority
of full fine tuning. Finally, we observe that the type of deep
architecture has a significant effect on results, but that their
relative performance varies depending on the downstream
training strategy.

1. Introduction
Deep neural networks are known to be data hungry [22],

particularly when they include a large number of param-
eters. Transfer learning alleviates this problem by pre-

training an upstream dataset to improve performance in
downstream task, or accelerate the training process [29, 7].
Pre-training is also useful when the target domain data are
not sufficient to learn an effective model from scratch, and
the gain obtained from the upstream model is larger than
the loss of representativeness due to domain shift [25]. The
importance of pre-training grew with the advent of deep
neural networks, whose learned representations are transfer-
able [29]. Recent studies of transfer learning [4, 5, 8, 15, 39]
focused on pre-training models with increasingly large
number of parameters and amounts of data. They conclude
that increasing the size of models and of data improves
the performance in target tasks, at least until saturation is
reached [1].

While interesting, these studies disregard the fact that
transfer learning is often useful when training and inference
capacity are limited [13]. In this work, we investigate trans-
ferability under constraints by analyzing the effects of core
factors which drive this process. During pre-training, we
notably test the influence of: (1) pre-training for compact
deep architectures, which are likely to be used in trans-
fer learning for constrained environments [35]; (2) deep
neural network architectures since they are known to influ-
ence both the upstream and downstream performance [14];
(3) the amount of available training data, as well the ra-
tio between number of classes and samples per class for
a fixed-size upstream dataset, since downstream accuracy
saturation was already analyzed for large deep architec-
tures [1, 6, 16], but not for compact ones. During infer-
ence, we analyze the influence of: (1) the type of down-
stream training strategy, with the deployment of linear prob-
ing and full fine tuning, since the depth of the fine tuning
process leads determines the degree to which features are
adapted to the downstream task or preserved from the up-
stream model [39]; (2) the number of images per class in



the target datasets to assess transferability in four few-shot
settings [5] and full dataset availability scenario since they
are all important in practice.

We run experiments using different subsets of Ima-
geNet [3] as upstream dataset, four deep architectures, and
with six downstream datasets designed for diverse visual
tasks. The empirical study reported here concludes that:

• Downstream performance saturation is reached much
faster with the compact deep architectures compared
to the large architectures analyzed in previous stud-
ies [1, 16]. This finding indicates that very large pre-
training datasets are not needed to obtain good down-
stream performance with compact deep architectures.

• The structure of the upstream dataset (number of
classes, samples per class) has a small influence on
downstream accuracy once there are enough data in it.

• The type of architecture makes a difference, partic-
ularly when linear probing is used for downstream
training. In this setting, architectures with higher-
dimensional output features are clearly a better choice.

• The performance of the full fine tuning and of lin-
ear probing depends on the downstream configuration.
The latter strategy is competitive when the domain
shift between upstream and downstream tasks is small
and/or in case of low-shot settings. Since linear prob-
ing training is much simpler, it should be considered
for deployment in these cases.

As a whole, the reported results give a comprehensive view
of transfer learning under constraints. They provide a sound
baseline for future work performed by both researchers and
engineers.

2. Related Work
Transfer learning is important for practical applications

of deep learning, and is the subject of a large number of
existing studies. We discuss the most relevant studies for
transfer learning under constraints, which is in focus here.
Prior works are further put into perspective when analyzing
the results of the different experiments.

Past examination of pre-training tend to show that in-
creasing the size of the upstream dataset has a positive ef-
fect on downstream accuracy [20, 32, 38]. However, re-
cent studies, such as [1, 6], find that the improvement tends
to saturate, and this phenomenon occurs faster for self-
supervised pre-training. The works cited above focus on the
total size of the dataset in terms of samples, and they give
less importance to the structure of the dataset in terms of
the number of classes and of samples per class. The impor-
tance of the dataset structure was highlighted for domain

adaptive transfer learning [24]. The authors of this study
conclude that adding more data, including more classes, can
have a deleterious effect on downstream performance. In
this study, the pre-training has the prior knowledge about
the target task. In contrast, we pre-train models without any
assumption regarding the content of downstream tasks in
order to avoid meta-overfitting [39].

The strategy used for downstream training has a strong
influence on performance. Past studies [16, 39] tested pre-
training for full downstream datasets, but also in few-shot
learning settings. They showed that full fine tuning of
downstream models is better than linear probing, which
consists in retraining only the final fully-connected layer
of the model. This finding seems intuitive since fine tuning
adapts the features of downstream models to the characteris-
tics of the downstream tasks. A nuance was brought by [18],
a study which shows that linear probing is actually better
than fine tuning when testing with out-of-distribution data
for downstream tasks. However, past results were reported
for the pre-training with large deep models. It is interesting
to study whether they hold for smaller models, which are
in focus here. Importantly, we run a more systematic study
of few-shot settings compared to [16, 39] in order to have
a fine-grained analysis of the merits and limitations of the
two strategies. We note that there exist more refined trans-
fer strategies. Image-level adaptation of the strategy is pro-
posed in [10], adaptive fine tuning is explored in [9], while a
combination of features from different layers is used in [7].
While interesting, they are out of the immediate scope of
this work, which focuses on two opposite strategies.

Previous works focused on transfer learning for
computationally-constrained devices showed the benefits of
freezing part of the networks [33, 34]. However, they fo-
cused on hardware optimization [33] in order to reduce the
overall energetic footprint of the implemented deep models,
or architecture quantization [34] to reduce their parametric
footprint. Here, we take a complementary approach and
pay more attention to the upstream and downstream data,
and use network scaling to preserve the precision of down-
stream representations.

3. Study Setup

3.1. Datasets

Pre-training datasets. Following the common prac-
tice [7, 16, 39], we transfer data from a single upstream
dataset to all downstream tasks in order to assess the
generalization capacity of the upstream model. The au-
thors of [39] underline the importance of mitigating meta-
overfitting when transferring knowledge. They advise to
create the upstream model independently of any knowl-
edge about downstream data. Therefore, we generate dif-
ferent versions of pre-training datasets by sampling Ima-



geNet21k [3]. The classes included in these datasets are
selected randomly from the set of leaves classes that have
enough samples per classes. A first series of tests use a
variable number of classes from 100 to 6000 and fixes the
number of 500 samples per class. These subsets are used to
assess if downstream performance continues to increase or
saturates when adding new classes. A second series of tests
simultaneously vary the number of classes and samples to
keep the total number of samples in the dataset constant.
The size of the dataset is 1M images and the number of
classes varies from 1000 to 6000. This experiment could not
be carried out with fewer classes since ImageNet does not
contain enough richly-represented leaf classes to reach the
target dataset size. This setting corresponds to an upstream
training on a fixed budget. These subsets are used to assess
whether class diversity or individual class representations
are more important. Note that there is no assumption made
regarding the similarity between the upstream dataset and
the downstream ones. This is important in order to simulate
a situation in which pre-training is done without knowledge
of the downstream tasks, and thus ensure the generalization
of the proposed transfer scheme.

Downstream datasets. A thorough evaluation of the
usefulness of pre-training requires the use of multiple and
diversified downstream datasets [1]. We follow this ob-
servation and transfer upstream models toward six down-
stream tasks: Oxford-IIIT Pet [26] is designed for pet race
recognition, Describable Textures Dataset (DTD) [2] pro-
vides different types of textures as perceived by humans,
GTSRB [31], Street View House Numbers (SVHN) [23] in-
cludes house number images, FGVC-Aircraft (FGVC) [21]
is designed for aircraft model recognition and Cifar100 [17]
includes commonsense-level classes [27]. These datasets
cover a wide range of visual tasks, and the conclusions
drawn from a study of pre-training involving all of them
are robust. Their main statistics are presented in Table 1.
Images are resized to match the input size used during
pre-training which is 224x224. Standard data augmenta-
tion [17, 11] which includes random cropping and random
horizontal flipping is applied for four datasets out of six.
Horizontal flipping is deactivated for GTSRB and SVHN
because they mainly represent classes that depends on the
orientation.

3.2. Downstream data availability

It is important to study the influence of the amount of
data available for downstream tasks since pre-training is
most needed when downstream data are scarce. We first
run experiments with the full datasets, and then test with
four few-shot learning regimes. For this we limit the num-
ber of samples per class in the downstream task to 1, 5, 10
and 25. This is a finer-grained investigation of the influence
of data availability compared to [39], where a single few-

shot learning setting were used. To mitigate data selection
bias, we follow a standard procedure in few-shot learning
and sample training images five times for each regime.

3.3. Downstream training strategies.

Following [39, 18], we run experiments with fine tun-
ing and linear probing, two opposite strategies. Fine tuning
retrains all the layers of downstream models, while linear
probing only retrains the final layer. Fine tuning is usually
preferred [16, 18, 39] since the full retraining of the down-
stream model adapts it to the domain of the downstream
task. Linear probing [29] is less adaptive since it exploits
pre-trained features as such. The latter can be interesting
if the computational capacity of the device is limited [33]
and/or when the amount of available training data is in-
sufficient to learn a full model in an efficient manner. We
note the existence of the other downstream training strate-
gies [9, 10, 7], but their usage is out of the immediate scope
here.

3.4. Training details

Training parametrization is done using a procedure
which is inspired by the lightweight sweep mode proposed
in [39]. Fixed values are used for most hyperparameters
across network architectures and tasks. While not fully op-
timized for each task, this mode allows a fair comparison in
a constrained environment.

The resolution of the input images used for training was
classically set to 224x224 [11].

Upstream training. To make the results comparable we
used the same hyper-parameters for each training. All of
them were trained during 110 epochs using the ”1cycle”
learning rate scheduler [30]. We chose this scheduler be-
cause it allows fast training [30], which was important in
order to reduce the time needed to pre-train all the networks
on all the different subsets of ImageNet21K. The batch-size
is set to 128, and the maximum learning rate for the OneCy-
cleLR is set to 0.005. Also even if recent works demonstrate
that increasing the weight-decay on the head of the network
lead to better downstream performances [38], we use a con-
stant weight-decay of 5e-4 for all the layers to avoid any
side effects.

Downstream training for full dataset. Two common
training strategies for transfer are considered here. Lin-
ear probing is deployed because it is well adapted for con-
strained environments [33]. We use a fully-connected layer
for classification, which receives the features provided by
the upstream model. This final layer is trained for 100
epochs, with a ReduceLrOnPlateau1 learning rate scheduler
based on the loss metrics with a patience of 5. This allow
us to stop the training if the learning rate reaches 10−8. The

1 https://pytorch.org/docs/stable/generated/
torch.optim.lr_scheduler.ReduceLROnPlateau.html

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html


Dataset Oxford-IIIT Pet [26] DTD [2] GTSRB [31] SVHN [23] FGVC [21] Cifar100 [17]
# classes 37 47 43 10 100 100

# training/class 99.432 39.979 619.512 7325.7 33.34 500
stdev training/class 1.534 0.144 457.377 2800.661 0.474 0

# test/class 99.135 39.979 293.721 2603.2 33.33 100

Table 1: Downstream datasets statistics.

initial learning rate is set to 0.01. The weight decay is set to
a constant 5e-4 over the whole network for the same reason
as the upstream training.

Full fine tuning adapts all the layers of the architecture
during downstream training, and past studies indicate that it
outperforms linear probing, even in few-shot learning sce-
narios [16, 39]. While it requires more computational power
than linear probing, it can be implemented on edge devices
after optimization [33]. During this training we used the
same parameters as for linear probing except for the initial
learning rate which is set to 0.001 to avoid damaging the
pre-trained features in the first steps.

Downstream training in a few-shot setting. A recent
work pointed out that training for a large number of epochs
can be beneficial if downstream datasets are small [6].
However, overfitting sometimes occurs if this process is
run until its end. To accommodate these two observations,
we fine-tune for a large number of epochs (2500 for single
shot), but stop the process if the learning rate value is too
low (10−7). Following [6], when increasing the number of
samples per class we divide the number of epochs by the
number of samples per class to keep the same number of
updates during the different training. The learning rate is
again reduced on plateau.

3.5. Deep Network Architectures

We choose MobileNetv2 [28], ShuffleNetv2 [19],
Resnet18 [11] architectures for our experiments. To make
the results obtained with these architectures comparable
they are all downscaled to reach a size of 1M parame-
ters. When scaling strategies are presented in the original
papers, as it is the case for MobileNetv2 [28] and Shuf-
fleNetv2 [19], we follow them here. We use a similar strat-
egy for ResNet18, and also create a second version of Mo-
bileNetv2 to study the effect of embedding sizes.

MobileNetv2. We selected MobileNetv2 [28] because
it was designed for computationally constrained environ-
ments. We test two version of the model scaling. The first
version, MobileNet868, is scaled using the scaling method
from the original paper [28, 12] with a width multiplier of
0.678. The number of channels in the output of the inverted
residual blocks are 11, 16, 22, 43, 65, 108 and 217 and the
size of the vector in output of the feature extractor is 868.
The second version, MobileNet151, is downscaled by fixing
the embedding size of the extractor to 151 and before us-
ing the strategy from [28] to adapt the rest of the network.
We created MobileNet151 to match the embedding size of

ResNet151, and also test the influence of the embedding size
against MobileNet868.

ShuffleNetv2. We used the scaling method proposed in
the original paper [19], to downsize this architecture to 1M
parameters. The output channels of each stage are multi-
plied by a subunit factor (0.866), while leaving the first and
the last convolution unchanged. Since the output of the ex-
tractor is 1024, we will refer to the downsized architecture
as ShuffleNet1024.

ResNet18. ResNet18 [11] is a generic architecture
which is often used in literature. It has over 11M param-
eters in its full version and we downscale it to reach 1M pa-
rameters. The number of channels in each residual block is
reduced uniformly, using a 0.295 width multiplication fac-
tor.

4. Experiments
4.1. Effect of a larger pre-training dataset

Past studies of pre-training [1, 8, 20] showed that larger
upstream datasets translated into higher downstream perfor-
mance. However, it was noted that saturation occurs beyond
a certain point, and adding supplementary data is not use-
ful anymore [1]. Given that past studies were focused on
large deep neural networks, it is interesting to analyze the
behavior of smaller models with respect to the number of
upstream classes. We keep the number of images per class
constant at 500, regardless of the total number of classes
included in the pre-training dataset.

We present the results obtained with different architec-
tures in Figures 1a and 1b with a linear probing and full
fine tuning of downstream tasks, respectively. Performance
increases a lot when the total number of classes used for
pre-training is small. An important gain is observed be-
tween 100 and 500 classes, particularly for linear probing.
The relative gain starts to decline between 500 and 1000
classes, and even more between 1000 and 2000 classes.
Then, performance starts to saturate beyond 2000 classes.
Some performance variability is observed in the 1000 to
6000 classes range for all tested architectures and both train-
ing strategies when increasing the number of classes, but
they do not exceed 3 accuracy points between the lowest
and highest points. This finding is important insofar it indi-
cates that increasing the number of classes is not useful for
deep architectures designed for constrained environments.
Performance saturation occurs for much smaller volumes
of data compared to previous studies [1, 8, 20], which fo-



Figure 1: Mean accuracy on the downstream tasks as a function of the number of classes, and using 500 images per class for
all tested deep architectures.

Figure 2: Detailed accuracy for each downstream task with MobileNet868.

cused on larger deep architectures and tested much larger
upstream datasets. The conclusion is that pre-training of
compact deep architectures is effective with an upstream
dataset which includes approximately 1M diversified im-
ages.

An interesting observation is that fine-tuning-based
training is clearly better than a direct use of features learned
upstream via linear probing. The accuracy gain when us-
ing the first strategy is over 15 points for all tested num-
bers of classes of the upstream dataset, and all backbone
architectures. A similar finding was already reported in lit-
erature [16, 18] for larger deep architectures, and is con-
firmed here for compact architectures, which are adapted
for computationally-constrained environments. We also
note that the gain offered by fine tuning over linear probing
is larger when upstream training is done with a low number
of classes (up to 1000). This is explained by the stronger
sensitivity of linear probing to the quality of the upstream
features, due to the direct use of features versus an adapta-
tion of them for downstream tasks during fine tuning.

The performance obtained with the four tested architec-
tures varies for both downstream training strategies (linear
probing in Figure 1a, fine tuning in Figure 1b). Globally,
MobileNetv2 and ShuffleNetv2 behave better than ResNet
after scaling to 1M parameters. This is somewhat expected
since the first two types of architectures were designed
purposely for computationally-constrained environments.
Interestingly, the difference between MobileNet868 and
MobileNet151 is much smaller when the upstream models
are fine tuned (Figure 1b) compared to linear probing (Fig-
ure 1a). This indicates that models which have a wider out-
put are more adequate for linear probing if the overall num-
ber of parameters is equivalent. An explanation resides in
the higher dimensionality of the frozen features produced
by MobileNet868, which favors the separability of classes
downstream. This finding is in line with the well-known
result reported for wide residual networks [37].

We propose a per-dataset view of results obtained with
linear probing and with fine tuning in Figure 2. These re-
sults are reported with a MobileNet868, which provides the



Figure 3: Mean accuracy on the downstream tasks when the total size of the dataset is constant (1M images) and the number
of images per class decreases when the number of classes increases. The minimum number of classes is 1000 because
ImageNet does not contain enough leaf classes with enough images to run experiments with 100 and 500 classes.

best overall results in Figures 1a and 1b. Fine tuning is
better than linear probing for five datasets out of six and
number of classes included in the upstream datasets. The
differences are much stronger for downstream tasks whose
domain shift compared to the upstream task is larger. This
is the case of FGVC, SVHN and GTSRB, three datasets
focused on aircrafts, house number plates and street signs.
The domains are not well represented in ImageNet and the
retraining of all weights during fine tuning is clearly needed.
Linear probing is better than fine tuning only for DTD .
This result might be explained by the low total size of this
dataset, which includes only 1600 training images, com-
bined with the large domain shift between ImageNet and
this texture-focused dataset.

We also report performance with downstream tasks with-
out pre-training on average and per dataset to assess the
overall effect of pre-training. The difference between the
best and worst of the four tested architectures is 4 points
in Figure 1c, but there are strong differences between indi-
vidual datasets (Figure 2c). The global comparison shows
that the use of pre-training for fine tuning brings a sig-
nificant improvement compared to training from scratch.
The dataset-level analysis (Figure 2) gives more insight
into the merits and limitations of pre-training with the two
downstream training strategies. Linear probing is effec-
tive for small domain shifts between upstream and down-
stream tasks (Oxford-IIIT Pet) or when the dataset size is
small (DTD), but provides lower performance in the other
cases. This is expected since the features are not adapted
to each task. Fine tuning provides similar performance to
that of training from scratch for easy tasks, such as GT-
SRB and SVHN, and brings important improvements for
FGVC, Oxford-IIIT Pet and DTD.

4.2. Effect of pre-training with a constant-size
dataset

We complement the analysis from Subsection 4.1 with
experiments run with a dataset which total size is kept fixed
at 1M images. Here, the number of images per class de-
creases when the number of selected classes increases. The
dataset is balanced, meaning the samples are distributed
evenly between classes. This corresponds to an upstream
training with a fixed sample budget.

The figures 3a and 3b show the mean accuracy on the six
downstream task with linear probing and full fine-tuning.
The global trends are similar to those observed in Figure 1,
as is the accuracy obtained with linear probing and fine tun-
ing in different configurations.

We observe a performance gain of up to two points when
the number of classes in the dataset changes from 1000 to
2000. Beyond 2000 classes, performance seems to oscil-
late, and is even slightly decreasing for linear probing (Fig-
ure 3a). For this strategy, the obtained accuracy decreases
in all tested configurations except one when the number of
classes increases from 4000 to 6000. This result can be ex-
plained by 2 opposite phenomena. While a more diversified
pre-training dataset is likely to lead to a better representa-
tion, a larger number of classes also makes the upstream
task more difficult. Our finding is consistent with the satu-
ration of downstream performance beyond a certain point,
even when upstream performance is improved [1]. Here, the
improvement of the representation brought by the addition
of new classes is degraded by the growth of the complexity
of the task, and by the scarcer representation of each class
when the total number of classes increases.

The comparison of the results for 4000 and 6000 classes
from Figures 1 and 3 is interesting because the total size of
the upstream dataset is smaller in the latter configuration.



Figure 4: Mean accuracy on the downstream tasks in low-shots four settings. The number of image per class is constant (500)
in the upstream dataset. It includes 1000, 2000, 4000, 6000 classes, from left to right.

Figure 5: Mean accuracy on the downstream tasks in low-shots four settings. The total size of the upstream dataset stays
constant (1M images). It includes 1000, 2000, 4000, 6000 classes, from left to right.

There are 2M and 3M images for 4000 and 6000 classes in
Figure 1, but only 1M in Figure 3. This finding shows that a
representation of upstream classes with fewer images does
not have a significant impact on downstream performance.

4.3. Effect of pre-training in few-shot scenarios

Pre-training is particularly useful when only few samples
are available per class since deep neural networks are data
hungry [5]. Performance is reported for pre-training with
MobileNet868 for 1M parameters, the configuration which
works best for downstream training with all data. We plot
accuracy for pre-training with 1000 and 6000 classes for
each model to also assess the influence of this parameter.
We investigate the performance on downstream tasks for
different few-shot learning regimes. We again report results
with two upstream pre-training strategies: the number of
images per class is constant in Figure 4 and the total size
of the dataset is constant 5. The observation that perfor-
mance is very similar in the two upstream dataset config-
urations remains valid for all tested few-shot settings. In-
terestingly, the obtained results indicate that linear probing
is significantly better than full fine tuning up to 10 sam-
ples per class. The full training of the downstream models
is difficult with very few samples due to the occurrence of
overfitting [36]. The gap between the two training strate-
gies narrows when the number of samples increases. Fine
tuning becomes better than linear probing when 25 samples
are available. Naturally, this tendency is even clearer when
all samples are available for downstream tasks, as we dis-
cussed in Subsection 4.1. Our results are at odds with those
reported previously [39], regarding the superiority of fine

tuning over linear probing even in a few-shot setting. The
main difference comes from the scale of the networks, with
much larger architectures being tested in [39]. The observa-
tions made here show that the downstream training strategy
should be adapted depending on the quantity of data avail-
able for target datasets. In practice, the pre-trained model
should be used as a frozen feature extractor if the number
of samples in the downstream task is smaller.

Performance of few-shot learning is similar for upstream
dataset variants with a constant number of images per class
(Figure 4) and with a constant size dataset (Figure 5). This
echoes the results obtained when using the full downstream
datasets. The difference between pre-training with 1000 and
6000 datasets is larger for linear probing compared to fine
tuning. The accuracy gain between these two variants of
the upstream dataset reaches approximately 2, 2 and 1.5
accuracy points for 1-shot, 5-shots and 25-shots settings,
respectively. This is expected since linear probing makes
direct usage of upstream features, and thus benefits more
from strong pre-trained representations.

The global comparison of linear probing and fine tun-
ing in few shot scenarios, presented in Figures 4 and 5, is
refined with a presentation of the accuracy per dataset. Fig-
ures 6 and 7 illustrate results for MobileNet868 pre-trained
with 6000 and 1000 classes, respectively. Linear probing
is clearly better than fine tuning for datasets which are se-
mantically related to the content on the pre-trained models,
such as Oxford-IIIT Pet and CIFAR-100. ImageNet [3],
the dataset used for pre-training, includes a large number
of classes which describe the natural world, which are also
well represented in the three downstream datasets for which



Figure 6: Downstream accuracy for each downstream task with 6000 classes and 500 images per classes for the pre-training.

Figure 7: Downstream accuracy for each downstream task with 1000 classes and 500 images per classes for the pre-training.

probing has good results in few-shot scenarios. Linear prob-
ing accuracy is also better for DTD, a texture dataset which
does not benefit from fine tuning even when all its images
are available (Figure 2). Fine tuning is the better option for
FGVC, SVHN, and GTSRB, the three datasets with a larger
domain shift compared to ImageNet.

5. Conclusion
We investigate transfer learning in image recognition un-

der constraints through a comprehensive empirical study,
which analyzes the roles of the dataset used for upstream
training, the performance of different deep architectures, the
results obtained with two opposite training strategies. Our
experiments confirm findings reported in previous studies
regarding performance saturation for large deep architec-
tures [1, 8, 20]. It shows that the phenomenon appears faster
in terms of scale of the upstream dataset, due to the com-

pactness of tested architectures. As a result, the conclusion
to use increasingly larger pre-training datasets to improve
performance [1, 8, 20] does not seem justified for compact
deep architectures. In contrast to past studies [16, 39] which
assert that full fine tuning is preferable to linear probing, our
result shows which strategy is better depending on number
of images available. Linear probing is a good strategy when
the domain shift is small and/or when the available number
of samples per class in the downstream task is low. It is
also interesting due to its lower computational complexity,
which is important in constrained environments [33].

We used variants of a fully-supervised dataset for pre-
training. It would be useful to extend it by testing weakly-
supervised and unsupervised pre-training. It would be
equally interesting to explore ways to predict an adapted
downstream training strategy based on an analysis of the
domain shift between the upstream and downstream tasks.
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