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Abstract. Fully homomorphic encryption (FHE) is a powerful cryp-
tographic technique allowing to perform computation directly over en-
crypted data. Motivated by the overhead induced by the homomorphic
ciphertexts during encryption and transmission, the transciphering tech-
nique, consisting in switching from a symmetric encryption to FHE en-
crypted data was investigated in several papers. Different stream and
block ciphers were evaluated in terms of their ”FHE-friendliness”, mean-
ing practical implementations costs while maintaining sufficient secu-
rity levels. In this work, we present a first evaluation of hash func-
tions in the homomorphic domain, based on well-chosen block ciphers.
More precisely, we investigate the cost of transforming PRINCE and
SIMON, two lightweight block-ciphers into secure hash functions us-
ing well-established block-cipher-based hash functions constructions, and
provide evaluation under bootstrappable FHE schemes. We also motivate
the necessity of practical homomorphic evaluation of hash functions by
providing several use cases in which the integrity of private data is also
required. In particular, our hash constructions can be of significant use
in a threshold-homomorphic based protocol for the single secret leader
election problem occuring in blockchains with Proof-of-stake consensus.
Our experiments showed that using a TFHE implementation of a hash
function, we are able to achieve practical runtime, and appropriate se-
curity levels.

Keywords: FHE · Hash functions.

1 Introduction

Fully homomorphic encryption (FHE) allows in theory to compute any func-
tion over an encrypted input. A plethora of works [5, 16, 20, 24] investigated

⋆ This author contribution to this work was done while at CEA LIST.
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the evaluation of symmetric cryptographic primitives over FHE encrypted keys.
The interest in this topic is mainly due to the advent of proxy-re-encryption
or transciphering [12], which is a technique that partially solves transmission of
massive FHE ciphertexts through limited bandwidth networks, by having the
receiver computing an homomorphic decryption of a symmetric cryptosystem.
Therefore, many stream and block-ciphers were designed to be efficiently evalu-
ated using an FHE encryption of their key. All the above methods were designed
mainly to protect data confidentiality, either through symmetric encryption (for
the encryption step and the transmission) or through homomorphic encryption
for their processing by an honest-but-curious entity. We argue that there are
applications of FHE in which it is useful not only to have confidentiality guar-
antees but also an integrity check over homomorphically encrypted data. More
precisely, in this work we discuss the evaluation of hash functions over a FHE
encrypted message and provide several scenarios in which this application can
be of a solution to achieve integrity check along with data privacy. Let us now
present the major contributions of our paper.

1.1 Contribution and motivation

In this paper, we present a set of FHE-friendly hash functions built on lightweight
block-ciphers using provably-secure constructions, and with reasonable homo-
morphic execution times. Our choice for a block-cipher-based construction is well
motivated and it is the result of investigating several other options, including the
homomorphic execution of lightweight hash functions as well as the building of
hash functions from FHE-friendly stream-ciphers. As discussed more in details in
Section (Sec 1.2), the preliminary analysis of several lightweight hash functions
candidate to the NIST competition on lightweight cryptography showed that
they are not well suited for homomorphic execution. As for the second option,
to the best of our knowledge, there is no known practical method to design a
secure hash function from a stream-cipher. As such, we present here the possi-
ble hash constructions from ”FHE-friendly” block-ciphers such as PRINCE [11],
LowMC [1] and SIMON [3]. These block-ciphers are interesting candidates for
our hash functions from the homomorphic evaluation point of view, since they
have an appropriate design, and have already been implemented with second-
generation homomorphic scheme in the context of the transciphering technique.

Here, we present different constructions of hash functions from PRINCE with
a focus on the double block length hash construction, which enables a 128-bits
hash size taking into account the original block size in the PRINCE design of 64
bits. We look into more details and evaluate the performances of a TFHE [15]
gate-boostrapping implementation of a hash function based on PRINCE. Then,
we further leverage on SIMON and LowMC (in their 128-bits block size flavors)
to obtain hash sizes of 256 bits via the same construction.

Finally, we describe several use-cases of our hash functions including integrity
checking of homomorphically encrypted data, Oblivious authentication, homo-
morphic database querying, and a FHE-based protocol for single secret leader
election.
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1.2 Why block-based constructions?

Beside the security considerations when constructing our hash function, another
criteria we looked at was to have a relatively fast evaluation in the homomorphic
domain (e.g. less than one minute for a 256-size digest). A first idea for the
construction of secure hashes suitable for the homomorphic evaluation was to
analyse three of the NIST lightweigt finalist [17] hash functions: SPARKLE [4],
XOODYAK [18] and Photon-Beetle [36]. We analysed them in function of the
type of homomorphic bitwise operations one should execute: ”free” operations
such as permutations and concatenations, relatively easy operations such as the
XOR and the AND, and difficult operations such as the modulo. We found
out that their underlying primitives (e.g. S-boxes, modulo) and the number of
rounds they require makes their homomorphic evaluation too expensive even
with a boostrapping-based homomorphic scheme, like TFHE. We also analyzed
SPONGENT [8], another lightweight hash function, imposing to execute≈ 30000
S-box in homomorphic domain (which corresponds to 68 S-boxes per round, 140
required rounds and 32 absorbing and squeezing steps) for 256-bits of output.
Taking into account that the execution of the S-box used takes ≈ 0.6sec under
TFHE, it seems that a homomorphic implementation of the SPONGENT hash
function would be too slow to be of practical interest. We refer the interested
reader to [34] for further details.

Another appealing path was to explore hash-based constructions inspired
from ”FHE-friendly” stream ciphers.This option was tempting since nowadays
there are several practical solutions implementing stream-ciphers into homomor-
phic domain (e.g. Kreyvium [12], Grain128 [5], PASTA [20]). However, even if it
is possible to obtain homomorphic hash functions with very interesting perfor-
mances, their security seems difficult to assess and remains an interesting open
question.

As such, we decided to look up to the block-ciphers schemes which have been
already considered for homomorphic evaluations and transform them into secure
hash functions using generic methods such the ones described in Section 2.3.

2 Background

2.1 Transciphering

Transciphering is a technique that allows offloading massive data from client to
server with the aim to perform server-side homomorphic computations. Indeed,
when a message m is encrypted under an FHE cryptosystem, the resulting size of
the ciphertext FHE.EncFHE.pk(m) is λ larger than the size of the original message
m. In all modern FHE schemes λ is large, and reaches some megabytes with
respect to the chosen cryptosystem and its security level. Instead of encrypting
m directly using an FHE scheme and sending FHE.EncFHE.pk(m), a client will
rather encrypt m using a symmetric cryptosystem and sends the encryption
SYM.EncSYM.sk(m) to the server along with FHE.EncFHE.pk(SYM.sk), the FHE
encryption of the symmetric key SYM.sk. The server then homomorphically runs
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SYM.DecFHE.Enc(SYM.sk)(SYM.Enc(m)) and recovers the message encrypted under
the homomorphic public key FHE.EncFHE.pk(m).

SYM.EncSYM.sk(m) is roughly of the same size as m while SYM.sk, which is
the only FHE encrypted and transmitted element, is of fixed size and often small
enough to be homomorphically encrypted and sent through the network, whilst
m can be arbitrarily large. Switching from a symmetric scheme to an FHE one
allows secure compression of the message. It requires however, the evaluation of
SYM.Enc homomorphically, which introduces an non-negligible overhead on the
server-side. In [5] authors argue that the use of a stream-cipher is more suitable
in transciphering. In [20] authors discuss the semantic security of transcipher-
ing seen as Key encapsulation / Data encapsulation mechansim (KEM-DEM)
depending on the semantic security of both the symmetric and homomorphic
schemes involved, and provide also an FHE-freindly stream-cipher dubbed Pasta,
suited for levelled FHE schemes.

2.2 Hash functions and security properties

A general definition of a hash function is a mapping of messages of arbitrary
length to a fixed size digest. However, a cryptographic hash function requires the
following security properties.

Inversion resistance. Given h ∈ {0, 1}n the output of the hash function H :
{0, 1}∗ → {0, 1}n, it must be computationally hard to find an m such that
H(m) = h.

Collision resistance. It must be computationally hard to find two distinct mes-
sages m1 and m2 such that H(m1) = H(m2).

Second pre-image resistance. Given m and h such that H(m) = h, it must be
computationally hard to find m′ such that m′ ̸= m and H(m) = H(m′).

Since we only consider cryptographic hash functions, for simplicity sake, in
the remaining of the paper we will refer to a ”cryptographic hash function” as
”a hash function”.

Black-Box model. To prove the security of a block-cipher-based hash function in-
dependently of the underlying cipher’s structure, The Black-box model in which
a block-cipher is modeled as an invertible random permutation defined by the key
is used. An adversary is given access to encryption and decryption oracles, such
that given m (resp. c) the encryption Ek(m) (resp. the decryption E−1

k (c)) is
returned. The complexity of an attack is measured by the number of encryption
and decryption queries that an optimal adversary performs. Since most attacks
on block-cipher-based hash function do not take advantage of the block-cipher’s
potential structural weaknesses or flaws, it is relevant to use a black-box model
for security analysis.
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2.3 Block-cipher-based hash functions

Among the most widely used constructions of hash functions are the iterated
hash functions, in which a round function, also referred to as compression func-
tion F : {0, 1}n · {0, 1}l → {0, 1}n is iterated over every message block, taking
as input the current message block of size n and the previous hash value1. The
output of the final iteration’s compression function call is the hash of the input
message as shown in Alg. 1. Due to its simplicity, this construction has been
intensively studied in the state of the art [6, 28], giving birth to many hash-
ing standards such as SHA-0, SHA-1, and SHA-2. It is fairly admitted that the
security of these hash functions is largely guaranteed by the security of the un-
derlying compression function2. In [19,31] it was demonstrated that the collision
resistance of F implies collision resistance of the hash function built from F
using Merkle-Damgaard construction.

These results raised interests in building secure compression functions from
which it will be easy to build secure hash functions. A block-cipher is a primitive
that already provides security properties by construction. Although the security
requirements of an encryption algorithm are different by nature from those of
a hash function, the question of how to build a secure compression function
from a block-cipher quickly appeared and was intensively investigated, laying
foundation for instance for the MDC family of hash functions [32] based on
the block-cipher DES. The main motivation of this approach is to minimize
design efforts, and use existing primitives. The task is to transform the security
properties of a block-cipher into those of a cryptographic hash function, by
carefully executing it over well-chosen linear combinations of the current message
block, the chaining variable, or other conventional constants, taken as encryption
keys or message blocks. This gave birth to a plethora of constructions, some of
them were proven secure in the black-box model, others exhibited weaknesses
regardless of the underlying block-cipher’s potential weaknesses.

One important security element is the size of the digest. Due to the birthday
paradox, collision security level of a hash function is upper-bounded by O(2n/2),
where n is the size of the hash. Thus, having a size for the hash equal to the size of
the block for the cipher used to construct the compression function raised some
issues. The size of some block-cipher’s blocks can be too small to be considered
as a secure hash size and using a block-cipher with a large block length often
results in higher execution times. Providing a secure construction which produces
a hash with a size double of the length of the block of the cipher was subject to
several research efforts.

Single Block Length (SBL) hash functions. One the very first construc-
tions of single block lengths hash functions is the Davies-Meyer construction
where Hi+1 = EMi(Hi)⊕Mi and the Muguiyachi Prennel’s scheme with Hi+1 =

1 A chaining value to provide dependency between successive hash values
2 The security under all aspects : Pre-image, second pre-image, and collision resistance.
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Algorithm 1 Merkle Damgaard iterated hash function

input : m = (m0,m1, · · · ,ml)
h0 is set to an initialization vector
for i = 0 to l do

hi = F (hi−1,mi)
end for

return hl

EMi(Hi) ⊕ Mi ⊕ Hi, where Hi the previous hash value and each block of the
message (Mi) is the key to a block cipher E.

Later, in [33], Prennel, Govaerts and Vandewalle (PGV) provided an exhaus-
tive analysis of iterated hash functions defined over {0, 1}∗ → {0, 1}n and based
on a block-cipher. The compression function is in the form F (a, b) = Ea(b) ⊕ c
where a, b and c are in {mi, hi−1, IV,mi ⊕ hi−1} and the block-cipher E is
{0, 1}n · {0, 1}n → {0, 1}n. There are 43 = 64 such compression functions with
only 12 between them presented as secure. Afterwards, Black, Rogaway and
Shrimpton [7] provided formal security proofs in the black-box model of the 12
constructions analysed in [33]. They also demonstrated that among the remain-
ing 52 constructions, 8 of them were actually secure. In this work we chose to
evaluate Davies-Meyer’s hash function under several block-ciphers, as it provides
optimal security in the black-box model and is equivalent in terms of computa-
tion complexity to other secure constructions from [7].

The security analysis and explicit constructions are provided in [7].

Double Block Length (DBL) hash functions. As mentioned before, con-
structions by PGV provide a hash of size n-bits when using a {0, 1}n · {0, 1}n →
{0, 1}n underlying block-cipher in the compression function. Due to the birthday
paradox, these hash functions require block-ciphers with a large enough block
length in order to provide security against collision attacks.

A measure of the efficiency of a hash function is its rate, that is, the inverse
of the number of calls to the compression function per iteration.

In [] Merkle presents three optimally collision resistant double block length
hash functions, based on the block-cipher DES. However, their rates are low
compared to the next generation of DBL constructions.

Lai. and Massey proposed TANDEM-DM [26] for a rate 1/2 hash construc-
tion, using a (n, 2n) block-cipher. It was proven optimally collision and pre-image
secure in [21]. It makes however two non-independent calls3 per iteration making
it non-parallel. Abreast-DM [27] is another construction with a rate of 1/2 mak-
ing two parallel calls to the block-cipher and it was proven in [] to have optimal
collision and pre-image security.

Lucks in [5] provides a first DBL construction of rate 1. Making a single
block cipher call per iteration comes at the cost of computing a heavy linear

3 The output of the first block-cipher call is used to build the key of the second block-
cipher call.
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combination of the message block and the previous hash resulting in a significant
overhead. Hirose in [23] provides a rate 1/2 construction with two distinct (n, 2n)
block-ciphers then uses a tweak in order to use only a single block-cipher. This
construction provides optimal security in the black-box model and moreover it
is parallel. Indeed, the two calls to the compression function (and thus, to the
block-cipher) are independent, making its performance comparable to rate 1
constructions.

Other works from [25,30] studied the possibility to build DBL hash functions
from an (n, n)-block-cipher. MDC-2 fail to provide optimal security, while MDC-
4 [30] is near optimal, but has a rate smaller than 1/2.

In this work, we homomorphically evaluate the construction of Hirose and
Tandem-DM. The goal is to provide an idea of the runtime of two optimally
secure hash functions of rate 1/2 from both the parallel and non-parallel types
on top of an FHE encryption layer.

3 Applications of homomorphic hash functions

3.1 Homomorphic data integrity check

As described in Section 2.1, transciphering allows to transfer symmetrically en-
crypted data instead of homomorphically encrypted and thus reduces the re-
quired bandwidth. However, transciphering while preserving data privacy does
not ensure data integrity during transmission. In [5] authors describe how to in-
clude data integrity check within transciphering, but their approach required an
AEAD encryption scheme (Authenticated Encryption with Associated Data).

More precisely, all stream-ciphers suffer from malleability, i.e., the possibility
for an adversary to create an encryption of m + k where k is some constant,
from an encryption of m4. A malleable encryption scheme can be subject to
man-in-the-middle attacks. Some modern stream-ciphers (e.g. []) come with the
possibility to compute a MAC (Message authentication code) along with the
encryption in an attempt to circumvent this issue. Another simple way to per-
form integrity check within transciphering when the chosen stream-cipher does
not embed a MAC computation is to include a hash function. A client encrypts
m using a symmetric encryption scheme and also computes h = H(m). She
then transmits these elements to the server along with FHE.Enc(SYM.sk). Once
the server has finished decompressing the message and recovers FHE.Enc(m), he
computes [h′] = H(FHE.Enc(m′)). If m = m′ then h = h′. The server computes
the homomorphically encrypted bit [r]FHE.pk =

∏n
i=0(1⊕ hi ⊕ h′

i) where n is the
size of the hash. [r]FHE.pk is the output of the integrity check, such that :

[r] =

[{
An encryption of 1 if m = m′

An encryption of 0 otherwise

]
, (1)

This FHE encrypted bit could then be used in many ways. The server can
simply transmit it to the client, in order to give him the ability to verify if his data

4 m⊕ keystream⊕ k = SYM.Enc(m⊕ k)
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was altered or corrupted during the transmission. Or the server could choose to
reply with [f(m)] or a NIL value outside of the range of f , according to the value
of the bit r. In TFHE [15] for example, this can be realized using a homomorphic
CMUX gate at roughly the cost of an extra homomorphic multiplication5.

3.2 Single Secret Leader Election

The problem of securely electing a single leader in a distributed system was
formally defined by Boneh et al. in [?]. For a committee of peers which collabo-
ratively elect a node to complete a task, the problem consists in electing a node
in a way that only this elected peer is able to know that he was elected and
the others learn only that they were not elected. Also, the elected peer must be
able to provide a proof of his election when he decides to reveal himself once
his task is done. In [22] a solution to the SSLE problem is proposed based on
Threshold Fully Homomorphic encryption [10]. A very high level description is
the following. Every peer Pi wishing to register to the election at a given height
and cycle, provides an FHE encryption of pi = H(h||ti||c) called the proof, where
h is the height of the blockchain, c the current cycle of elections, and ti a locally
generated number belonging to process Pi. Every participating peer performs a
sampling circuit following a weighted distribution over the FHE encrypted list
of proofs and ids of all registered peers, using collaboratively generated ran-
domness from [35]. Then, each pear homomorphically selects a proof and the
associated id from the set of all proofs. He then homomorphically hashes (pi||i)
where i is the id of the elected peer, and pi the corresponding proof. The next
step is to broadcast a partial decryption of the voucher vh,c,r = H(pi||i). Every
honest peer samples the same pi and i, and broadcasts his partial decryptions
of vh,c,r using his secret key share. Assuming we have at least t honest peers
in the system, where t is the decryption threshold, every peer must eventually
receive enough partial decryptions and be able to perform a full decryption of
vh,c,r. The elected peer recognizes his voucher, whereas other peers gain no in-
formation from plain vh,c,r, nor can fake the election, since H is secure against
pre-image and second pre-image attacks. Afterward, the leader is able to prove
his election by submitting his plaintext proof pi = H(h||ti||c). The verification
is simply performed by running the test H(pi||i) == vh,c,r.

The homomorphically evaluated hash function plays a significant role in this
protocol. It hides the sensitive elements from Byzantine peers providing the
secrecy of the election and a simple proof mechanism, making the election easily
verifiable, yet computationally hard to forge fake proofs.6

3.3 Homomorphic Database querying

Suppose a server maintaining a database of elements DB such that query m
has the answer Am stored at index H(m), where H is a hash function. In this

5 CMUX([r], [f(m)], NIL] = [r] = [r] · [f(m)] + (1− [r]) ∗NIL
6 Secrecy is granted by the inversion resistance of the hash function. Having a single
verifiable leader is due to the second pre-image resistance of the hash function.
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case H is not necessarily cryptographic. For instance pre-image resistance is not
necessary since the query is already private under an FHE encryption layer.
Nevertheless, we require from H to have balanced collisions7 and, for this sake,
one can use Luby-Rackoff’s universal hash functions from [29]. In this setting,
the server is able to homomorphically answer FHE encrypted queries.

A client homomorphically encrypts a query x and sends [x]FHE.pk to the server.
The server computes [i]FHE.pk = H([x]FHE.pk), which is an FHE encryption of the
index of Ax inside his database. The server then computes a vector V which
contains FHE encryptions of 0 everywhere except at index i in which an en-
cryption of 1 is stored. V is computed as follows : V [k] = ([i]FHE.pk == k) with
k ∈ J0, n− 1K. Lastly, to extract an FHE encryption of Ax, the server performs
a homomorphic dot product between the vector V and his database of elements∑n

i=0 DB[i]·V [i], and sends back to the client the result of this final dot product,
which will be [Ax]FHE.pk.

One remaining problem of this use-case is to homomorphically solve collisions
of H. A first approach is to have the server creating lists of answers to different
queries which hash to the same index at the position H(x) in DB, and provide a
second hash function H ′, whose output is smaller than the one of H, and which
will compute the index of Ax inside the corresponding list. Thus, when an FHE
encrypted query [x]FHE.pk is received, the position (H([x]FHE.pk), H

′([x]FHE.pk))
provides an answer.

3.4 Oblivious authenticated (homomorphic) calculations

It is well known that (keyed) hash functions are used in many authentication pro-
tocols whereby an entity (the user) can prove its knowledge of a secret (the key
of the hash function) to another entity (the server). To do so, the server sends a
random challenge to the user which replies with the hash of the challenge. Since
the server can also perform the same calculation, it can check the correctness
of the client replies which proves the latter knowledge of the secret. With the
ability of running hash functions in the homomorphic domain, we can now pro-
vide the server with an FHE encryption of the secret key and have the server
performing the authentication in the encrypted domain i.e., the server generates
a challenge in the clear domain, sends it to the user and get its (non encrypted)
reply. The server can then run the (keyed) hash function homomorphically on its
challenge, and homomorphically compare the obtained (encrypted) result with
the reply received from the user. As the end of this process, the server possesses
an encrypted boolean, say β, indicating whether or not the client has success-
fully authenticated (but has by construction no knowledge of whether or not
that authentication was successful).

One way of using this consists in providing a valid calculation only to suc-
cessfully authenticated users. In essence, rather than computing f(x) in the
homomorphic domain, the server can now compute βf(x) + (1 − β)⊥ (where

7 H : {0, 1}∗ → {0, 1}n has balanced collisions if all elements in {0, 1}n have the same
number of pre-images under H.
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⊥ denotes a constant value meaning, by convention, “not an answer”). As a
consequence, (encrypted) valid calculation results are duly returned only to au-
thenticated users, while other users receive only useless encryptions of ⊥. This
is then (nicely) done obliviously to the server, which cannot distinguish between
ciphertexts of valid results and ciphertexts of ⊥, and without revealing it the
secret hash function key (since it is only provided with an FHE-encryption of
that secret key).

4 Adaptations of block ciphers for FHE-friendly hashes

4.1 Targeted block-ciphers

Low-MC block-cipher [1] is part of another family of symmetric schemes designed
for practical instantiations in homomorphic domain with the objectives of mini-
mizing both the multiplicative complexity and the multiplicative depth making
it highly efficient for levelled homomorphic schemes. This design principle, had
to be compensated with a large number of xor gates in order to ensure algebraic
properties that will provide an appropriate level of security. The latter makes it
rather inefficient when ran under TFHE, since the cost of all Boolean homomor-
phic gates is the same within this FHE scheme (A bootstrapping operation is
performed after every Boolean gate). It remains however a serious candidate for
a hash construction targeting efficient homomorphic evaluation in a levelled FHE
setting. Even if the first construction were attacked, the subsequent proposed
design is more secure and highly parametrizable. More precisely, it specifies a
formula to determine the minimal number of rounds to reach security depending
on the block size (128 or 256 bits), the key size, the number of S-boxes and the
allowed data complexity.

PRINCE [11], SPECK and SIMON [3] are lightweight block-ciphers, with a
relatively small block length. They were initially designed for low resources exe-
cution environments. Their design approach results in a small gate count8 which
results in high performances when ran under TFHE. Due to its small block
length, PRINCE is better suited with double block length constructions, result-
ing in a hash function which provides O(264) collision resistance, and O(2128)
for pre-image resistance. SPECK and SIMON can be instantiated in both the
DBL and SBL settings since they both provide a double-key-size variants.

4.2 Targeted FHE scheme

We chose to run our experiments under the TFHE cryptosystem since it pro-
vides the possibility to evaluate unbounded homomorphic circuits thanks to its
fast bootstrapping operation. This scheme is more suited for protocols where
scalability is a requisite. The secret single leader election protocol [9] described

8 A round of encryption of a block-cipher often includes a multiplication of the internal
state with an F 2 matrix, this makes the number of operations quadratic with respect
to its block size.



Homomorphic evaluation of hash functions 11

in section 3.2 requires a large flexibility regarding the number of peers being
able to disconnect or join the committee at different times. This variation of
the number of peers linearly increases the multiplicative depth of the sampling
circuit, which would be difficult to manage if a levelled homomorphic scheme
were to be used 9.

4.3 Tool: Cingulata Homomorphic Compiler

Cingulata, formerly known as Armadillo [14], is a toolchain and run-time en-
vironment (RTE) for implementing applications running over homomorphic en-
cryption. Cingulata provides high-level abstractions and tools to facilitate the
implementation and the execution of privacy-preserving applications.

Cingulata relies on instrumented C++ types to denote private variables,
e.g., CiInt for integers and CiBit for Booleans. Integer variables are dynami-
cally sized and are internally represented as arrays of CiBit objects. The Cin-
gulata environment monitors/tracks each bit independently. Integer operations
are performed using Boolean circuits, which are automatically generated by the
toolchain. For example a full-adder circuit is employed to perform an integer
addition. The Boolean circuit generation is configurable and two generators are
available: focused on minimal circuit size or on small multiplicative-depth. More
generally, it is possible to implement additional circuit generators or to combine
them.

A CiBit object can be in either plain or encrypted state. Plain-plain and
plain-encrypted bit operations are optimized out, in this way constant folding
and propagation is automatically performed at the bit-level. Bit operations be-
tween encrypted values are performed by a “bit execution” object implementing
the IBitExec interface. This object can either be a HE library wrapper, simply
a bit-tracker object or even a plaint bit execution used for algorithm debug-
ging purposes. When a HE library wrapper is used the Cingulata environment
directly executes the application using the underlying HE library.

Another option is to use the bit-tracker in order to build a circuit represen-
tation of the application. The later allows to use circuit optimization modules
in order to further optimize the Boolean circuit representation. The hardware
synthesis toolchain ABC10 is used to minimize circuit size. It is an open-source
environment providing implementations of state-of-the-art circuit optimization
algorithms. These algorithms are mainly designed for minimizing circuit area or
latency but, currently, none of them is designed for multiplicative depth mini-
mization. In order to fill this gap, several heuristics for minimizing the multi-
plicative depth are available in Cingulata, refer to [2, 13] for more details.

The optimized Boolean circuit is then executed using Cingulata’s parallel
run-time environment. The RTE is generic, meaning that it uses a HE library

9 In this category of homomorphic schemes, the multiplicative depth of the homo-
morphic circuit to be evaluated has to be known in advance in order to generate a
parameter set which allows homomorphic computations up to this depth.

10 http://people.eecs.berkeley.edu/alanmi/abc/
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wrapper, i.e. a “bit execution” object as defined earlier, in order to execute the
gates of the circuit. The scheduler of the run-time allows to fully take advantage
of many-core processors. Besides, a set of utility applications are provided for
parameter generation (given a target security level), key generation, encryption
and decryption. These applications are also generic, in the same vein as the
parallel RTE.

4.4 Experimental results and performances

We ran multi core performance tests on an Intel(R) Xeon(R) CPU E3-1240 v5 @
3.50GHz and 8GB RAM using Cingulata in TFHE mode. We provide parallelism
when possible using the OpenMP library.

For single block length construction, we implement Davies-Meyer’s compres-
sion function which requires a (n, n)-block-cipher. Therefore, we instantiate this
construction with SPECK, SIMON 11, and the (128, 128) variant of LowMC.
In the double block length setting, since these constructions require an (n,
2n)-block-cipher, we instantiate Hirose’s and Tandem-DM constructions with
PRINCE, and the (128, 256) variants of LowMC, and SIMON. The results are
shown in table 4.4 with the execution times in minutes when the hash functions
are instantiated, and an ”-” symbol when the construction is not compatible
with the sizes of the key and the block of the cipher.

The obtained performances are as expected : lightweight ciphers provide bet-
ter runtimes compared to LowMC. PRINCE is the most efficient cipher for DBL
constructions as it has the lowest gate-count, and is also the most parallelizable
cipher. The number of rounds performed in every construction to produce the
hash of a 128-bits message is ⌈ 128

blocklength⌉. Thus, in the first row, DBL-PRINCE
performs two iterations and produces a 128-bits hash. All the remaining con-
structions perform a single iteration.

Table 1. Evaluation of hash functions over a 128-bits TFHE encrypted message in
minutes

Davies-Meyer
(SBL)

Hirose
(DBL)

Tandem-DM
(DBL)

(64, 128)-PRINCE - 1.28 2.98

(128, 128)-SPECK 3.78 - -

(128, 256)-SPECK - 4.91 8.16

(128, 128)-SIMON 2.14 - -

(128, 256)-SIMON - 3.64 7.05

(128, 128)-LowMC 6.12 - -

(128, 256)-LowMC - 8.58 17.32

11 For SIMON, these are estimations based on the gate count from [3] and the gate-
bootstrapping time of TFHE
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5 Conclusion and perspectives

In this work, we have investigated scenarios in which the (efficient) evaluation
of hash functions in the homomorphic domain is a promising building block. To
the best of our knowledge, this work is one of the first to address this issue,
at least for the TFHE cryptosystem. We also explored various provably-secure
constructions of “(T)FHE friendly” hash functions based on respected block-
ciphers in order to achieve several hash sizes. Fully homomorphic encryption on
its own opens perspectives towards a new set of applications. Then, combining
it with the execution of hash functions in the homomorphic domain provides it
with additional versatility which can serve in various scenarios and protocols.
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