
HAL Id: cea-04461731
https://cea.hal.science/cea-04461731v1

Submitted on 16 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A probabilistic design for practical homomorphic
majority voting with intrinsic differential privacy

Arnaud Grivet Sebert, Martin Zuber, Oana Stan, Renaud Sirdey, Cedric
Gouy-Pailler

To cite this version:
Arnaud Grivet Sebert, Martin Zuber, Oana Stan, Renaud Sirdey, Cedric Gouy-Pailler. A probabilistic
design for practical homomorphic majority voting with intrinsic differential privacy. WAHC 2023 - 11th
Workshop on Encrypted Computing & Applied Homomorphic Cryptography, Nov 2023, Copenhague,
Denmark. pp.47-58, �10.1145/3605759.3625258�. �cea-04461731�

https://cea.hal.science/cea-04461731v1
https://hal.archives-ouvertes.fr

A Probabilistic Design for Practical Homomorphic Majority
Voting with Intrinsic Differential Privacy

Arnaud Grivet Sébert

arnaud.grivetsebert@gmail.com

Université Paris-Saclay, CEA, List

Palaiseau, FR

Martin Zuber

martin.zuber@cea.fr

Université Paris-Saclay, CEA, List

Palaiseau, FR

Oana Stan

oana.stan@cea.fr

Université Paris-Saclay, CEA, List

Palaiseau, FR

Renaud Sirdey

renaud.sirdey@cea.fr

Université Paris-Saclay, CEA, List

Palaiseau, FR

Cédric Gouy-Pailler

cedric.gouy-pailler@cea.fr

Université Paris-Saclay, CEA, List

Palaiseau, FR

ABSTRACT
As machine learning (ML) has become pervasive throughout vari-

ous fields (industry, healthcare, social networks), privacy concerns

regarding the data used for its training have gained a critical impor-

tance. In settings where several parties wish to collaboratively train

a commonmodel without jeopardizing their sensitive data, the need

for a private training protocol is particularly stringent and implies

to protect the data against both the model’s end-users and the other

actors of the training phase. In this context of secure collaborative

learning, Differential Privacy (DP) and Fully Homomorphic Encryp-

tion (FHE) are two complementary countermeasures of growing

interest to thwart privacy attacks in ML systems. Central to many

collaborative training protocols, in the line of PATE, is majority

voting aggregation. Thus, in this paper, we design SHIELD, a proba-

bilistic approximate majority voting operator which is faster when

homomorphically executed than existing approaches based on exact

argmax computation over an histogram of votes. As an additional

benefit, the inaccuracy of SHIELD is used as a feature to provably

enable DP guarantees. Although SHIELD may have other applica-

tions, we focus here on one setting and seamlessly integrate it in

the SPEED collaborative training framework from [20] to improve

its computational efficiency. After thoroughly describing the FHE

implementation of our algorithm and its DP analysis, we present ex-

perimental results. To the best of our knowledge, it is the first work

in which relaxing the accuracy of an algorithm is constructively

usable as a degree of freedom to achieve better FHE performances.

CCS CONCEPTS
• Security and privacy→ Information-theoretic techniques;
Privacy-preserving protocols.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WAHC ’23, November 26, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0255-6/23/11. . . $15.00

https://doi.org/10.1145/3605759.3625258

KEYWORDS
collaborative machine learning; differential privacy; homomorphic

encryption

ACM Reference Format:
Arnaud Grivet Sébert, Martin Zuber, Oana Stan, Renaud Sirdey, and Cé-

dric Gouy-Pailler. 2023. A Probabilistic Design for Practical Homomorphic

Majority Voting with Intrinsic Differential Privacy. In Proceedings of Pro-
ceedings of the 11th Workshop on Encrypted Computing & Applied Homo-
morphic Cryptography (WAHC ’23). ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3605759.3625258

1 INTRODUCTION
Most works combining Differential Privacy (DP) and Fully Ho-

momorphic Encryption (FHE) falls into two categories, either an

exact FHE is used and, independently, the plaintexts are adequatly

noised to achieve DP [21, 24, 37] or the post-decryption noise of

an approximate FHE such as CKKS is tuned to provide such guar-

antees [32, 36]. The latter approach is presently limited to simple

aggregation rules as no efficient techniques for e.g. argmin/max

computations are presently known for CKKS (to the best of our

knowledge). In the present paper, we focus on the first of these two

approaches and aim at avoiding explicit DP noise addition over the

plaintexts by designing an homomorphic majority voting
1
operator

(that may be viewed as a stochastic argmax), called SHIELD (Se-

cure and Homomorphic Imperfect Election via Lightweight Design),

whose structural stochasticity leads to both lighter FHE computa-

tional cost and DP protection. In fact, we prove that the inaccuracies

due to the approximate behavior of our algorithm translate into

consistent DP guarantees, and therefore that explicit noise addition

becomes unnecessary for DP. In doing so, and by means of a care-

fully crafted FHE implementation of the algorithm, we are able to

achieve a reduction of more than 25% in the homomorphic com-

putation time compared to the state of the art on majority voting

based on exact argmax computations over an histogram [9, 23]. To

the best of our knowledge, it is the first work in which relaxing the

accuracy of an homomorphic calculation at the algorithmic level2 is
constructively usable as a degree of freedom to achieve better FHE

performances.

1
By majority voting, which is sometimes called plurality voting, we mean the selection

of the candidate with the most votes.

2
By opposition to the CKKS-based approaches which relax the precision of the homo-

morphic operations.

47

https://doi.org/10.1145/3605759.3625258
https://doi.org/10.1145/3605759.3625258
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3605759.3625258&domain=pdf&date_stamp=2023-11-26

WAHC ’23, November 26, 2023, Copenhagen, Denmark Arnaud Grivet Sébert, Martin Zuber, Oana Stan, Renaud Sirdey, & Cédric Gouy-Pailler

A well-suited use-case to SHIELD is the PATE protocol [33]

and especially its extension SPEED [20]. In a nutshell, the PATE

protocol labels a subset of a public dataset and uses this partially

labeled dataset to train a student model in a semi-supervised way.

The labelization is achieved by aggregating (usually by means of

a majority voting) the labels - considered as votes - provided by a

set of teacher models trained on private datasets. Since the teach-

ers’ labels would leak information on their training data, the PATE

protocol makes use of differential privacy (DP). To get a reason-

able privacy-utility trade-off, the aggregation of votes is performed

on a trusted independent server. The SPEED approach [20] builds

upon the work from [33] and uses Fully Homomorphic Encryption

(FHE) to blind the server by having it perform the aggregation

directly over encrypted votes, therefore protecting the data against

an honest-but-curious server. Still, FHE being computationally in-

tensive, this comes at significant communication and computation

costs on the server (6.5 minutes to compute the homomorphic

argmax for 100 queries). We here propose that the server performs

the vote aggregation using SHIELD, which is then seamlessly in-

tegrated in SPEED. Our experiments show that SHIELD reduces

the server’s computational burden while providing DP guarantees

comparable to the ones in [20] with respect to the teachers (albeit

to the exception of the server which should not be revealed the final

model). Overall, in our experiments, the correct majority vote is

output with a probability of more than 90% and, more importantly,

SHIELD only incurs a model accuracy loss of 0.7% compared to an

exact argmax-based aggregation with no DP.

The paper is organized as follows. First of all, we explore the

related work in Section 2 and give some preliminaries about HE

and DP in Section 3. Then, we introduce and describe our operator

SHIELD in Section 4 and more specifically its FHE implementation

in Section 5, before presenting the SPEED application case in Sec-

tion 6. Section 7 develops an analysis of SHIELD from the points of

view of DP and HE. Finally, our experimental results are presented

in Section 8.

2 RELATEDWORK
In [41], the authors survey recent works in which DP and crypto-

graphic primitives take advantage of each other, either

• cryptography for DP: cryptographic primitives allow to get

the privacy-utility trade-off of a standard DP mechanism but

without the need of a trusted server [2, 10, 16, 19]. This is

an improvement compared to local DP which, by making

the data owners noise their data before outsourcing them,

does not need a trusted server either but gives a poorer

privacy-utility trade-off [26, 38],

• or DP for cryptography: design “leaky” cryptographic primi-

tives that ensure DP and are more efficient than traditional

primitives [5, 39, 40].

The approaches from [5, 39, 40] are tailored to specific applications,

respectively SQL queries, anonymous communication systems and

oblivious RAM. Our work uses exact FHE but with an approximate

algorithm, in the context of election.

In [42], the authors propose an algorithm with a close goal,

namely heavy-hitters (most frequent items) detection, which is

inherently differentially private thanks to random sampling. Nev-

ertheless, the goal of this inherent probabilistic behavior is not

computational efficiency since the method is not articulated with

cryptographic primitives. Moreover, this algorithm works on se-

quential data. Even if it does not restrict its generality since any data

can be seen as sequential, the utility does depend on the sequential

representation of the data, which may not be optimal if there is

no semantic value to this representation. Finally, the algorithm is

iterative and thus requires a lot of communication with the users.

Some recent works propose emerging approaches to combine

DP and approximate FHE like CKKS. Among them, [29] uses a post-

processing noise ensuring DP to turn an IND-CPA approximate

cryptosystem into an IND-CPA
𝐷
one. Indeed, whereas IND-CPA

𝐷

is equivalent to IND-CPA for exact cryptosystems, it is not the case

for approximate ones. In [32], the author analyzes the noise native

to CKKS encryption and proves that it can provide DP without ad-

ditional noise, yet their analysis holds at most quadratic polynomial

evaluations. The work from [36] also leverages the error induced

by encryption to derive DP guarantees, but in a federated learning

context. The aggregation protocol is based on the security of LWE

problem and on the Multi-Party Computation protocol of Packed

Shamir secret sharing scheme [18]. Nevertheless, LWE is not used

to directly encrypt the values of interest but rather to generate

one-time pads of the same dimension of these values while only

needing to communicate much smaller vectors to the server. These

one-time pads allow a secure aggregation and DP guarantees are

ensured by the error induced by LWE encryption.

In contrast with these latter works, we use an exact HE cryp-

tosystem, namely BFV, and craft a majority voting algorithm which

is approximate by design. It is this approximate behavior of the

algorithm that we leverage to achieve DP, and not the noise native

to encryption like in the aforementioned CKKS-based approaches.

Some works in the literature try to increase the speed of an

argmax operation by making it stochastic but without this stochas-
ticity leading to provable DP guarantees. Fair comparison with such

works is tricky. Among the very few works in this line, [22] have

a very efficient CKKS-based approximate argmax operator, but it

is difficult to use outside of the biometric identification protocol

for which it is intended and does not provide DP guarantees. For

this reason we only compare our work with state-of-the-art on

majority voting based on exact homomorphic argmax operators

over an histogram [9, 23].

3 PRELIMINARIES
3.1 Homomorphic encryption
Fully homomorphic encryption (FHE) schemes allow to perform

arbitrary computations directly over encrypted data. That is, with

a fully homomorphic encryption scheme Enc, we can compute an

addition Enc(m1 +m2) and a multiplication Enc(m1 ×m2) from
encrypted messages Enc(m1) and Enc(m2).

In this section we recall the general principles of the BFV ho-

momorphic cryptosystem [17]. Since we know in advance the

function to be evaluated homomorphically, we can stick to the

somewhat homomorphic encryption (SHE) version described be-

low. Let 𝑅 = Z [𝑥] /Φ𝑚 (𝑥) denote the polynomial ring modulo the

𝑚-cyclotomic polynomial with 𝑛 = 𝜑 (𝑚). The ciphertexts in the

48

Probabilistic Homomorphic Majority Voting with DP WAHC ’23, November 26, 2023, Copenhagen, Denmark

scheme are elements of the polynomial ring 𝑅𝑞 , where 𝑅𝑞 is the

set of polynomials in 𝑅 with coefficients in Z𝑞 . The plaintexts are
polynomials belonging to the ring 𝑅𝑡 = 𝑅/𝑡𝑅 for 𝑡 << 𝑞. For 𝑎 ∈ 𝑅,
we denote by [𝑎]𝑞 the element in R obtained by applying modulo q

to all its coefficients.

As with all SHE schemes, BFV allows us to evaluate additions and

multiplications and comes with a relinearization function that helps

to manage the size of the ciphertexts. As homomorphic multiplica-

tion increases the size of the ciphertexts, relinearization reduces the

size back to a smaller, more manageable form. This process is cru-

cial for maintaining the efficiency of computations over encrypted

data. Using Single Instruction, Multiple Data (SIMD) packing (or

batching), one can significantly increase the time performance

of BFV-based computation. SIMD is a technique used to perform

computations on multiple values simultaneously. It allows to pack

multiple plaintexts into a single ciphertext and perform operations

on them in parallel. This method was originally described in [7, 35].

For further details we refer the reader to the original paper [17].

3.2 Differential privacy
Differential privacy [14] is a gold standard concept in privacy-

preserving data analysis. It provides a guarantee that under a rea-

sonable privacy budget (𝜖, 𝛿), two adjacent databases produce sta-

tistically indistinguishable results. In the context of SPEED, we

consider, as in [20], that a database is the concatenation of the data

owners’ (teachers) datasets and that two databases are adjacent if

they differ by one teacher.

In the whole paper, P(𝐴) denotes the probability of event 𝐴.

Definition 3.1. A randomized mechanismM with output range

R satisfies (𝜖, 𝛿)-DP if for any two adjacent databases 𝑑 and 𝑑′ and
for any subset of outputs 𝑆 ⊂ R one has

P [M(𝑑) ∈ 𝑆] ≤ 𝑒𝜖P
[
M(𝑑′) ∈ 𝑆

]
+ 𝛿.

(𝜖, 𝛿) constitutes the privacy cost of the mechanism - the lower 𝜖

and 𝛿 , the more private the mechanism. Definition 3.1 implies that

a differentially private mechanism is necessarily probabilistic. Most

often, a deterministic mechanism is turned differentially private by

adding random noise at a certain moment in the computation.

Since the privacy cost increases with the number of queries

to the mechanism, we determine the privacy cost of our protocol

via a two-fold approach. First of all, we determine the privacy

cost per query and then we compose the privacy costs of each

query to get the overall cost. The classical composition theorem

(see e.g. [15]) states that the guarantees 𝜖 of sequential queries

add up. Nevertheless, training a deep neural network, even with a

collaborative framework as presented in this paper, requires a large

amount of calls to the databases, precluding the use of this classical

composition. Therefore, to obtain reasonable DP guarantees, we

need to keep track of the privacy cost with a more refined tool called

the moments accountant, introduced in [1] and closely related to

Rényi DP [31]. This technique allows for far better composition of

the privacy costs along the queries.

Finally, an important property of DP, widely used in DP analysis,

is that it is immune to post-processing. This means that, quite intu-

itively, applying a function to the output of a differentially private

mechanism does not disclose more information to the adversary.

Proposition 3.2 ([15]). Let M be a probabilistic mechanism,
with output range R, that is (𝜖, 𝛿)-differentially private, with (𝜖, 𝛿) ∈
(R+)2. Let 𝜙 : R → R′ be an arbitrary probabilistic mapping. Then
𝜙 ◦M is (𝜖, 𝛿)-differentially private.

4 SHIELD: SECURE AND HOMOMORPHIC
IMPERFECT ELECTION VIA LIGHTWEIGHT
DESIGN

4.1 Principle of SHIELD
We propose a novel operator that can be viewed as a stochastic

majority voting rule, or (more or less) as a probabilistic argmax.

Previous works address this matter by homomorphically building

an histogram of the votes and then applying an homomorphic

argmax operator. In contrast, SHIELD (Secure and Homomorphic

Imperfect Election via Lightweight Design) directly selects one

of the votes stochastically, therefore bypassing the complex and

heavy argmax operation. What we lose in accuracy, we gain in DP

guarantees and computational time.

SHIELD is an iterative algorithm that takes as input a list of votes

for candidates. Informally, at each iteration, also called a try, some

of the votes are randomly drawn and the algorithm checks if they

are all equal. If yes, it outputs the common vote
3
, otherwise, the

algorithm performs another try. The output of SHIELD can be any

of the candidates for whom there is at least one vote but the more

votes a candidate got, the more likely this candidate will be the

output. By tuning the parameters (especially the number of tries

and the number of selected votes at each try), we can increase the

probability of getting the candidate with the most votes.

Let us now formally describe SHIELD. First of all, SHIELD is

meant to be computed in the homomorphic domain. Here are some

notations we will use to describe its homomorphic behavior. Enc
and Dec respectively denote the encryption and decryption func-

tions of some homomorphic encryption system defined on Z2. ⊕
and ⊗ respectively represent the homomorphic addition and multi-

plication. When these operators are applied on vectors, they denote

the element-wise corresponding operations. Note that the negation

of 𝑥 ∈ Z2 is homomorphically performed via Enc(1) ⊕ Enc(𝑥) and
the homomorphic or operator, denoted ∨⃝, between 𝑥 ∈ Z2 and

𝑦 ∈ Z2 is performed via [Enc(𝑥) ⊕ Enc(𝑦)] ⊕ [Enc(𝑥) ⊗ Enc(𝑦)]
and will be written Enc(𝑥) ∨⃝ Enc(𝑦) in the following.

In this paper, for any𝑚 ∈ N, [𝑚] denotes the set {1, ...,𝑚} (which
is, by convention, the empty set if𝑚 = 0). Let 𝐾 be the number of

classes of the classification problem. Let 𝑛 be the number of voters

(or teachers for SPEED) and, given 𝑘 ∈ [𝐾], let 𝑛𝑘 be the number

of voters who voted for class 𝑘 .

Definition 4.1. Let 𝐾 ∈ N∗. A vector 𝑧 ∈ (Z2)𝐾 is said to be a

one-hot encoding (vector) if there exists 𝑘0 ∈ [𝐾] such that 𝑧𝑘0 = 1

and, for all 𝑘 ∈ [𝐾] \ {𝑘0}, 𝑧𝑘 = 0. In this case, we say that 𝑧 codes
for the class 𝑘0 or that 𝑧 is the one-hot encoding of the class 𝑘0.

Let (𝑝, 𝑎) ∈ (N∗)2. Let S𝑝,𝑎 denote SHIELD operator with pa-

rameters 𝑝 and 𝑎, that we define in the following.

Let (𝑛, 𝐾) ∈ (N∗)2 that we consider fixed in the remainder of this

section. Let 𝑍 = (Enc(𝑧 (𝑖)))𝑖∈[𝑛] be a list of 𝑛 encrypted one-hot

3
The algorithm should then terminate but, in the secret domain, it has to perform a

fixed number of tries so the output is saved until the end.

49

WAHC ’23, November 26, 2023, Copenhagen, Denmark Arnaud Grivet Sébert, Martin Zuber, Oana Stan, Renaud Sirdey, & Cédric Gouy-Pailler

encoding 𝐾-dimensional vectors, some of these vectors being pos-

sibly equal (it is necessarily the case for some vectors when 𝐾 < 𝑛).

𝑍 models the list of the votes, each vote being represented as a

one-hot encoding. Then S𝑝,𝑎 (𝑍) is an encryption of one of the 𝑧 (𝑖) ,
and with high probability (see Section 8 for quantitative results)

S𝑝,𝑎 (𝑍) is an encryption of the most frequent of the one-hot en-

coding vectors of 𝑍 . S𝑝,𝑎 is formally defined in Algorithm 1 where,

for the sake of clarity, we do not explicitly write the encryption

function (e.g. 𝑟𝑒𝑠 = 𝑧 (𝑖0) instead of 𝑟𝑒𝑠 = Enc(𝑧 (𝑖0))). S𝑝,𝑎 performs

𝑎 iterations (or tries) and, at each iteration, it draws 𝑝 vectors of

𝑍 with replacement in a uniformly random manner and multiply

them. The resulting vector 𝜋 is an encryption of the one-hot en-

coding of the class 𝑘0, with 𝑘0 ∈ [𝐾], if all the 𝑝 drawn encrypted

vectors code for the same class 𝑘0. Otherwise, 𝜋 is the null vector

of (Z2)𝐾 . If a non-null vector was already found in a previous it-

eration, the current 𝜋 is ignored (since the bit 𝑓 𝑜𝑢𝑛𝑑_𝑛𝑜𝑡_𝑛𝑢𝑙𝑙 has

been set to 1). Of course, since the algorithm is computed in the

encrypted domain, it has to run until the end of the for loop (all

the 𝑎 iterations) but everything works as if the algorithm repeated

this operation until it gets a non-null vector and then ignored the

remaining product vectors. This first non-null vector is the output

of S𝑝,𝑎 . If no non-null vector was produced after 𝑎 iterations, a null
vector is output and we say that S𝑝,𝑎 failed.

Algorithm 1: SHIELD
Input :number of vectors 𝑛, number of classes 𝐾 , list of

encrypted votes 𝑍 , number of multiplications 𝑝 ,

number of terms 𝑎

Output :𝑟𝑒𝑠 = S𝑝,𝑎 (𝑍) = 𝑧 (𝑖0) where 𝑖0 ∈ [𝑛]
1 𝑟𝑒𝑠 ← (0, . . . , 0) ∈ (Z2)𝐾 ;
2 𝑓 𝑜𝑢𝑛𝑑_𝑛𝑜𝑡_𝑛𝑢𝑙𝑙 ← 0;

3 for 𝑗 in [𝑎] do
4 𝜋 ← (1, . . . , 1) ∈ (Z2)𝐾 ;
5 for 𝑙 in [𝑝] do
6 Draw a vector 𝑧 of 𝑍 uniformly at random;

7 𝜋 ← 𝜋 ⊗ 𝑧;
8 end
9 𝑟𝑒𝑠 ← 𝑟𝑒𝑠 ⊕ (1 ⊕ 𝑓 𝑜𝑢𝑛𝑑_𝑛𝑜𝑡_𝑛𝑢𝑙𝑙) ⊗ 𝜋 ;

10 𝑖𝑠_𝑛𝑜𝑡_𝑛𝑢𝑙𝑙 ←
⊕𝐾

𝑘=1 𝜋𝑘 ;

11 𝑓 𝑜𝑢𝑛𝑑_𝑛𝑜𝑡_𝑛𝑢𝑙𝑙 ← 𝑓 𝑜𝑢𝑛𝑑_𝑛𝑜𝑡_𝑛𝑢𝑙𝑙 ∨⃝ 𝑖𝑠_𝑛𝑜𝑡_𝑛𝑢𝑙𝑙 ;

12 end

The parameter 𝑎 being fixed, the choice of 𝑝 must consider the

trade-off between, on one hand, the accuracy of the operator, i.e.

the probability of getting the most frequent vector (see the consid-

ered accuracy metrics in Section 7.2), and, on the other hand, the

probability of avoiding a failure and the computational complexity.

Indeed, when 𝑝 increases, the probability of getting a null vector

(and then failing) increases, as well as the computational complex-

ity, but the probability of getting the most frequent vector, knowing

that the algorithm did not fail, increases too.

4.2 Multi-degree SHIELD
We can imagine a parameter 𝑝 that decreases as the iterations run,

as if it adapted to the vote distribution. Indeed, on one hand, a

high 𝑝 for the first iterations ensures (with high probability) that

we get the most frequent vector if getting a non-null vector is

easy (i.e. probable), which happens if a vast majority of the vec-

tors code for the same class (i.e. a vast majority of voters agree

on one candidate). On the other hand, if the first iterations failed,

which suggests that getting a non-null vector is not so probable,

the number 𝑝 of multiplications decreases, making the produc-

tion of a non-null vector easier. In this framework, our SHIELD

operator can be represented by a polynomial

∑𝐷
𝑝=1 𝑎𝑝𝑋

𝑝
with pos-

itive integer coefficients, where 𝐷 is the highest value taken by 𝑝 ,∑𝐷
𝑝=1 𝑎𝑝 = 𝑎 and some coefficients 𝑎𝑝 which may be null. We call∑𝐷
𝑝=1 𝑎𝑝𝑋

𝑝 ∈ N[𝑋] the polynomial parameterization of SHIELD.

There is indeed a bijection between the set of operators and N[𝑋]
since the order of the terms of different degrees is constrained to be

the one of decreasing degrees. Nevertheless, the analogy seems to

stop here since the algebraic structure ofN[𝑋] does not apply to the
set of operators (think about a factorization like 𝑋 2

∑𝐷
𝑝=0 𝑎𝑝𝑋

𝑝−2
,

that would draw for once two vectors and use them for all the

𝑎 terms/tries, whereas we here want to independently draw the

vectors for each try).

Note that we can easily ensure that multi-degree SHIELD does

not fail by imposing 𝑎1 = 1. Indeed, when we draw only one one-

hot encoding vector, without multiplying it with others, we cannot

get a null vector. Besides, 𝑎1 > 1 is useless since the first draw of a

single vector will succeed.

It is easily seen that multi-degree SHIELD is a generalization of

SHIELD and, as such, in the remainder of this article, multi-degree

SHIELD will simply be referred to as SHIELD.

4.3 Offset parameter
The SHIELD operator as defined above cannot always provide finite

DP guarantees. Let us consider two adjacent databases 𝑑 and 𝑑′

such that, in 𝑑 , a class 𝑐 was chosen by no voter and, in 𝑑′, 𝑐 was
chosen by one voter. Then, with input 𝑑 , SHIELD will never output

𝑐 because it cannot pick a one-hot encoding for 𝑐 , the probability

of outputting 𝑐 is then null. On the contrary, with input 𝑑′, there is
a non-null probability (even if it is small) of outputting 𝑐 . Hence,

the ratio of probabilities of outputting 𝑐 is not bounded and we get

an infinite privacy cost
4
.

To avoid this problem, we force all the classes to have at least

one vote by creating a dummy one-hot encoding for each class.

More generally, 𝜔 dummy one-hot encodings can be created for

each class, where 𝜔 is another parameter of SHIELD, called the

offset.
Algorithm 2 gives the pseudocode of the multi-degree version

of SHIELD with the offset parameter.

In our experiments, we fixed 𝜔 to 1, letting the optimization of

this parameter for further work. It is nevertheless intuitive that

the greater 𝜔 , the worse the accuracy because, when 𝜔 is large,

the distribution of the votes is flattened and the probability of

outputting the true argmax is lower.

4
At least, we get an infinite moments accountant, compelling us to use the classical

composition theorem and then precluding reasonable DP guarantees.

50

Probabilistic Homomorphic Majority Voting with DP WAHC ’23, November 26, 2023, Copenhagen, Denmark

Algorithm 2: Multi-degree SHIELD

Input :number of vectors 𝑛, number of classes 𝐾 , list of

encrypted votes 𝑍 , polynomial (𝑎𝑝)𝑝∈[𝐷] , offset 𝜔
Output :𝑟𝑒𝑠 = 𝑧 (𝑖0) where 𝑖0 ∈ [𝑛]

1 𝑍 ← 𝑍 augmented by 𝜔 encrypted one-hot encodings for

each class;

2 𝑟𝑒𝑠 ← (0, . . . , 0) ∈ (Z2)𝐾 ;
3 𝑓 𝑜𝑢𝑛𝑑_𝑛𝑜𝑡_𝑛𝑢𝑙𝑙 ← 0;

4 for 𝑝 from 𝐷 to 1 do
5 for 𝑗 in [𝑎𝑝] do
6 𝜋 ← (1, . . . , 1) ∈ (Z2)𝐾 ;
7 for 𝑙 in [𝑝] do
8 Draw a vector 𝑧 of 𝑍 uniformly at random;

9 𝜋 ← 𝜋 ⊗ 𝑧;
10 end
11 𝑟𝑒𝑠 ← 𝑟𝑒𝑠 ⊕ (1 ⊕ 𝑓 𝑜𝑢𝑛𝑑_𝑛𝑜𝑡_𝑛𝑢𝑙𝑙) ⊗ 𝜋 ;
12 𝑖𝑠_𝑛𝑜𝑡_𝑛𝑢𝑙𝑙 ←

⊕𝐾
𝑘=1 𝜋𝑘 ;

13 𝑓 𝑜𝑢𝑛𝑑_𝑛𝑜𝑡_𝑛𝑢𝑙𝑙 ← 𝑓 𝑜𝑢𝑛𝑑_𝑛𝑜𝑡_𝑛𝑢𝑙𝑙 ∨⃝ 𝑖𝑠_𝑛𝑜𝑡_𝑛𝑢𝑙𝑙 ;

14 end
15 end

4.4 Exponential argmax operator
As an inherently stochastic mechanism that does not resort to

noise addition but rather outputs a value with a probability that

is an increasing function of its utility (if we deem that the vote

frequency of a class constitutes its utility), SHIELD can be compared

to the exponential mechanism (introduced in [30]) which samples

its output following the softmax distribution of the utility. However,

the sampling in the encrypted domain constrains the shape of

the probability distribution and introduces a dependency of the

practically implementable distributions with the computational

efficiency of the operator.

Note that softmax has been approximately implemented in FHE

through polynomial approximation [28] but this requires a quite

high multiplicative depth (with a polynomial of degree 12 for ap-

proximating the exponential function and even more for approxi-

mating the inverse function) and results in a significant computa-

tional overhead. Moreover, using such an implementation would

still require additional homomorphic operations like comparisons

to actually sample the output according to this distribution.

Rather, a method of sampling that follows the exponential distri-

bution by construction, in the spirit of SHIELD as presented in this

paper, would be more seducing. Sampling each vote independently

with a fixed probability would actually yield an output distribution

that exponentially depends on the vote frequencies but it seems

that the probability of failing by not outputting any class would

be quite high for practical parameters. We let further work on this

question as a perspective.

5 FHE IMPLEMENTATION OF SHIELD
Algorithm 2 is a generic version of SHIELD that actually needs

to be adapted for an implementation using an HE cryptosystem.

We consider two kinds of encodings, depending on the encryption

scheme that we use:

• With the BFV cryptosystem, we use batching i.e., encode a

number of values together in a single polynomial which is

then encrypted. A single operation on a ciphertext thus leads

to the same operation applied to all values encoded (slots)

inside the ciphertext in a Single Instruction, Multiple Data

(SIMD) fashion. On the downside, BFV performances are very

sensitive to multiplicative depth and inter-slot operations

are costly.

• With the TFHE cryptosystem [12], we use a single ciphertext

to encrypt a single value i.e. proceed in a Single Instruction,

Single Data (SISD) fashion. This is a priori less efficient than

using SIMD but the performances are decoupled from the

multiplicative depth of Algorithm 2 and costly operations

such as slot rotations are avoided.

To sum up, we implement SHIELD with two separate methods:

one uses the BFV cryptosystem with SIMD operations (with results

provided in Section 5.1); the other uses the TFHE cryptosystem

with SISD operations (with results provided in Section 8.3).

5.1 Implementing SIMD-SHIELD
Although using BFV allows us to speed up SHIELD considerably by

batching different samples together in the same ciphertext, some

constraints require adapting parts of Algorithm 2 for them to work.

a. Multiplicative depth. As it is the case for other similar HE

schemes, we need to set the parameters of BFV according to the mul-

tiplicative depth of the computation. The higher the multiplicative

depth, the larger the parameters, and the less efficient the overall

computation. For this reason, some parts of the algorithm, like Line

9, need to be changed. We can store all of the values for Enc(𝑧) over
the loop and multiply them in a classic tree-based approach (instead

of multiplying them sequentially) which reduces the multiplicative

depth of the computation from 𝑝 to log
2
(𝑝).

The same change is applied everywhere it is needed, that is to

say at Lines 11 and 13 of Algorithm 2.

b. Selecting the teacher. Selecting the voter, also called teacher
because of SPEED application case (see Section 6), at lines 8 and 9 of

Algorithm 2 is easy enough when SHIELD algorithm is called for a

single sample at once. However, in order to speed the algorithm up

and fully make use of the SIMD property of the BFV cryptosystem,

we actually run SHIELD algorithm for a number of samples at a

time.

For instance, if 𝜋 (𝑖) is the 𝜋 vector of 𝐾 values for sample 𝑖 , then

the actual vector encoded in the ciphertext for the packed algorithm

would be

𝜋 =

(
𝜋
(1)
1
, . . . , 𝜋

(1)
𝐾
, 𝜋
(2)
1
, . . . , 𝜋

(2)
𝐾
, . . .

)
(1)

This allows us to use the full size of the polynomials we encrypt.

These polynomials have degrees in the order of ≈ 2
15

while 𝐾 is

usually less than 1000.

Therefore the teacher selection step has to be modified. The new

encoding of teacher 𝑡 ’s vote for sample 𝑖 is:

51

WAHC ’23, November 26, 2023, Copenhagen, Denmark Arnaud Grivet Sébert, Martin Zuber, Oana Stan, Renaud Sirdey, & Cédric Gouy-Pailler

(
0, . . . , 0|0, . . . , 0| . . . |𝑧 (𝑖)𝑡 | . . . |0, . . . , 0|

)
∈
(
B𝐾

)𝑁
which is a vector with 𝑁 slots of 𝐾 binary values where 𝑧

(𝑖)
𝑡 is

teacher 𝑡 ’s original one-hot encoded vote for sample 𝑖 . It is located

at the 𝑖th slot of the encoding. From now on we’ll call 𝑧
(𝑖)
𝑡 this new

encoding of the teacher’s vote. Algorithm 3 presents the process

for teacher selection and creation of the 𝜋 vector using this new

encoding. At step 9 a mask𝑚𝑡 is updated but no detail is given for

clarity.

Algorithm 3: Teacher selection. With 𝑛 the total number

of teachers, this algorithm describes the actual steps for

selecting the teachers that get to vote in the SIMD encoding

paradigm.

1 for 𝑗 in [𝑎𝑝] do
2 for 𝑙 in [𝑝] do
3 for 𝑡 in [𝑛] do
4 𝑧𝑡 ← (0, . . . , 0);
5 end
6 for 𝑖 in [𝑁] do
7 Draw a vector 𝑧

(𝑖)
𝑡 of 𝑍 uniformly at random;

8 𝑧𝑡 ← 𝑧𝑡 ⊕ 𝑧 (𝑖)𝑡 ;

9 update𝑚𝑡 ;

10 end
11 𝜋 ← (1, . . . , 1);
12 for 𝑡 in [𝑛] do
13 𝑧𝑡 ← 𝑧𝑡 ⊕𝑚𝑡 ;
14 𝜋 ← 𝜋 ⊗ 𝑧𝑡 ;
15 end
16 end
17 end

For every teacher 𝑡 , the mask𝑚𝑡 is a plaintext vector that con-

tains 0s in the place of samples for which the teacher votes and 1s

in the place of samples for which the teacher does not vote. As an

example, for 𝐾 = 2 and 𝑁 = 4, if teacher 𝑡 votes for samples 1 and

3, then𝑚𝑡 = (0, 0|1, 1|0, 0|1, 1).
This mask is then added to 𝑧𝑡 before the multiplication to the 𝜋

vector so that all the samples that are not voted on do not impact

the result: their slots are filled by ones. If the mask is not used, then

all non-selected slots will be filled with 0s and therefore would set

everything to 0 after the multiplication.

For this multiplication, as mentioned before, we opt to store

all of the 𝑧𝑡 vectors and create a multiplication tree to reduce the

multiplicative depth.

c. Rotations. One other constraint that schemes such as BFV

suffer from, is that it is very hard and costly to extract certain values

from the ciphertext to apply an operation only to them. Such is

the case when trying to implement Line 12 in Algorithm 2. The

individual 𝜋𝑘 values cannot be extracted and summed together

in a straight-forward manner. One thing we can do however, at a

relatively low cost (both in terms of performance and noise inside

the ciphertext), is to rotate the vector encoded in the ciphertext.

This leads to an implementation of Line 12 that we present using

the example 𝜋 (𝑖) = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0).

(0, 0, 0, 1, 0, 0, 0, 0, 0, 0)
+ (0, 0, 0, 0, 0, ?, ?, ?, ?, ?) ← rotate by 5

= (0, 0, 0, 1, 0, ?, ?, ?, ?, ?)
+ (0, 1, 0, ?, ?, ?, ?, ?, ?, ?) ← rotate by 2

= . . .

One can see how, using log
2
(𝐾) rotations and sums, we can ob-

tain

∑
𝑗 𝜋
(𝑖)
𝑗

in the first coordinate of the 𝜋 (𝑖) vector. The question
marks ? represent values that are rotated over from the next slot,

(recall the complete form of 𝜋 in Equation 1).

Therefore, we cannot control the values in the rest of the coordi-

nates. And this is not enough. For Line 13 to work, we need to have

a vector where all coordinates 𝜋 (𝑖)
𝑗

are filled with

∑
𝑗 𝜋
(𝑖)
𝑗

, not just

the first one. To obtain this, we have to multiply by a plaintext with

values (1, 0, 0, . . .) to select only for the first coordinate of 𝜋 and

then re-populate the rest of the coordinates using rotations and

sums exactly in the opposite way as used for the computation of

the sum of the 𝜋
(𝑖)
𝑗

values.

d. Packing the polynomial rounds together. Up until now,

for clarity, we presented a version of our algorithm that packed all

or some of the 𝑁 samples together in a single ciphertext. In practice,

to speed up the computation further, we also pack the polynomial

rounds together. What we mean by "polynomial rounds" is the two

for loops at Lines 1 and 2 in Algorithm 3. We can remove these for
loops and compute them in parallel in a single ciphertext.

6 AN APPLICATION CASE: SPEED
6.1 PATE workflow
Our SHIELD operator is very well adapted to a learning protocol

called SPEED, from [20], itself inspired from PATE [33]. SPEED

method is illustrated by Figure 1, inspired from [20]. Assuming

the existence of a public unlabeled database Δ (we will keep this

notation throughout the paper), PATE enables several data-owners,

called teachers, to collaboratively train a classification model with-

out outsourcing their data that are considered private. The idea is

to label Δ and use it to train the final classification model, called

the student model or simply the student. To do so, each teacher is

asked to train a model beforehand for the same task as the student’s

target task with its own data only. For each sample of Δ to label,

every teacher infers a label through its model and sends this label

to an aggregation server. The server then counts the number of

labels received for each class, also seen as votes, and outputs the

class with the most votes which is sent to the student for training.

As it was described, the baseline PATE protocol does not protect

the data from the actors of the process, namely the teachers, the

server, the student and the end-users. All of them are considered

honest-but-curious, which means that they execute their task cor-

rectly but may use the data they have access to to retrieve sensitive

information about the teachers’ data. The teachers do not actually

52

Probabilistic Homomorphic Majority Voting with DP WAHC ’23, November 26, 2023, Copenhagen, Denmark

n teacher
models

Server

Student

PRIVATE PUBLIC

Labeled
public

dataset

Unlabeled
public

dataset

ENCRYPTED

Labels

Queries

Training

Noised
predictions

Encryption

Decryption

Sum and argmax

(or SHIELD)

Figure 1: SPEED learning protocol (PATE uses the same protocol but in the plaintext domain)

get any information other than their own data unless they are also

end-users of the student model, which may be the case in many

real-life scenarios.

6.2 Data protection in SPEED
To prevent the student and a fortiori the end-users (by post-processing)
from discovering sensitive information by attacks such as e.g. model

inversion or membership inference, we apply DP. The teachers

noise their votes before sending them to the server.

One could argue that the noise added by the teachers would

also blur the sensitive information to the server. Nevertheless, the

added noise is precisely scaled so that it protects the output of the

aggregation, i.e. the class with the most votes, without harming the

student accuracy too much. If the individual votes sent to the server

were to be protected by DP before aggregation, thus achieving what
is called local DP ([13, 25, 26]), this would require much more noise,

too much noise to ensure a reasonable accuracy for the student

model. As a consequence, the votes need to be protected from the

server another way. This is where homomorphic encryption makes

its entrance. After noising their votes, the teachers encrypt them.

The server then receives the encrypted votes and perform their

aggregation (sum and argmax) in the homomorphic layer. Finally,

the output of the aggregation is sent to the student that owns the

decryption key and is therefore able to decrypt it.

A real-life scenario could involve hospitals that own patients’

medical data and aim at training a global model that would help

the early diagnosis of a specific disease. In this case, the end-users

would be the hospitals themselves.

6.3 Faster SPEED with SHIELD
Our SHIELD operator can be used to replace the sum and argmax

computations on the server side in SPEED (represented by the gear

wheel in Figure 1). After receiving all the votes from the teach-

ers without noise, the server randomly picks some vectors with

replacement as described in Section 4.1. Note that, being honest-

but-curious, the server is trusted to compute SHIELD without mis-

take. Interestingly, the rest of SPEED protocol remains unchanged,

except the sending of dummy one-hot encodings by some teachers,

according to the offset parameter (see Section 4.3).

7 ANALYSIS OF SHIELD
7.1 Computational complexity of SHIELD
Comparedwith previous argmaxHE computationmethods, SHIELD

is unique in that its complexity depends only linearly on the num-

ber of classes for the chosen machine learning problem. Indeed,

the main impact of an increase in the number of classes is that the

encoding space increases by the same amount (and therefore the

time overhead is linear). A secondary impact is the logarithmic

increase in the number of rotations needed for the computation

of

∑
𝑗 𝜋
(𝑖)
𝑗

as seen in Section 5.1. All previous works use one (or a

combination) of two methods to evaluate a homomorphic argmax

over a number of values: a tournament method or a league method.

We refer the reader to [9, 23] for specific implementation details.

Here we focus on their complexity with respect to the number of

classes.

• a league is a system of comparison where every value is

compared with every other value. The winner is the value

that was greater than every other one. Think of a football

league like French first division league (“Ligue 1”) for this

kind of system. The use of a league method yields a quadratic

complexity in the number of classes. This leads to very high

performance overheads as the number of classes increases.

However, contrary to the tournament method, increasing the

number of classes does not affect the multiplicative depth of

the circuit to be evaluated. This is what makes this method

useful in the homomorphic domain in spite of its complexity.

• a tournament is a system where values are compared two-by-

two and the losers are discarded at every round. Think of the

FIFA World Cup for this kind of system. Using a tournament

method has a - theoretical - linear complexity in the number

of classes. In practice, this is not the case. As the number of

classes increases, the comparison tree used for the evaluation

increases in depth logarithmically. For leveled homomorphic

schemes such as BFV or BGV (those we use in this article)

used in [23], this means an increase in parameter size to

match the multiplicative depth of the new tree. In turn, this

impacts the performance of the overall scheme on top of the

theoretical linear increase. After a given point, the increase in

parameter size becomes prohibitive and one needs to resort

53

WAHC ’23, November 26, 2023, Copenhagen, Denmark Arnaud Grivet Sébert, Martin Zuber, Oana Stan, Renaud Sirdey, & Cédric Gouy-Pailler

to finishing the computation using a league method as they

do in [23].

Compared to all other existing works therefore, ours scales much

better with the number of classes and therefore fits particularly

well with use-cases with high numbers of classes.

7.2 A priori accuracy metrics
The ultimate accuracy that we want to maximize in SPEED appli-

cation case is obviously the testing accuracy of the student model.

Nevertheless, it could be interesting to measure the accuracy of

the argmax operator itself, independently of the student training.

Also, even if this depends on the teachers’ votes and thus on the

used dataset, this enables us to evaluate polynomial parameteriza-

tions without performing the student training, which is much faster

and allows to test much more parameterizations. We call such an

accuracy an a priori accuracy.
The most straightforward way to define the argmax accuracy

is to consider the probability of getting the exact argmax. Never-

theless, this approach treats any mistake the same way. It could be

argued that outputting, say, the class that received the second great-

est number of votes is better than outputting the least preferred

class. Taking such a concern into account in our metric would also

give a better hint about the student accuracy. Indeed, while the most

preferred class (i.e. the class with the most votes, or equivalently

the exact argmax) is not always the actual class of the sample -

called the ground truth class -, a class with a lot of votes is more

likely to be the ground truth class.

We could then make the assumption that the frequency of votes

for a class is proportional to the probability of this class being the

ground truth class of the sample (which is not necessarily the most

preferred class). This would correspond to an assumption of well-

calibrated vote distributions. In this context, we introduce another

a priori accuracy metric which is the probability of outputting the
ground truth class of the sample. We call this metric the ground truth
accuracy, since it does not focus on outputting the exact argmax

but rather the ground truth class. For a given sample 𝑥 , 𝑝𝑘 being

the probability of SHIELD outputting class 𝑘 and 𝐺𝑇 (𝑥) denoting
the ground truth class of 𝑥 5

, the law of total probability gives the

following expression for the ground truth accuracy for 𝑥 , written

GTA(𝑥):

GTA(𝑥) =
𝐾∑︁
𝑘=1

P[𝐺𝑇 (𝑥) = 𝑘]𝑝𝑘 =

𝐾∑︁
𝑘=1

𝑛𝑘

𝑛
𝑝𝑘 .

Of course, both metrics must be averaged on all the samples sent

to the teachers.

7.3 Differential privacy analysis
Since the student model training requires many requests to the

teachers and, indirectly, to their private datasets, we use, as in [20],

the moments accountant technique [1] to get a better privacy cost

over composition.

We here consider that two databases 𝑑 and 𝑑′ are adjacent if

they are the concatenations of the datasets from the same number

5𝑝𝑘 and 𝑛𝑘 obviously also depend on 𝑥 but we omit to write this dependence for

simplicity. 𝑝𝑘 can be computed as showed in Section 7.4.

of teachers and only one teacher differs from one database to the

other. This implies that either all the 𝑛′
𝑘
, counts for database 𝑑′, for

𝑘 ∈ [𝑀], are equal to the 𝑛𝑘 , counts for database 𝑑 , in which case

the corresponding moments accountant is null, or the 𝑛′
𝑘
differ from

the𝑛𝑘 only for two values of 𝑘 , say 𝑘1 and 𝑘2, such that𝑛
′
𝑘1

= 𝑛𝑘1−1
and 𝑛′

𝑘2
= 𝑛𝑘2 + 1 (i.e. the differing teacher votes for 𝑘1 in 𝑑 and 𝑘2

in 𝑑′).
Unlike most DP mechanisms, the stochastic behavior of our op-

erator does not come from an additional random noise, since the

operator is inherently probabilistic. This is this very property of

our operator that we leverage to ensure DP. The moments accoun-

tant measures the discrepancy between the output distributions

associated with two adjacent databases
6
. Computing the privacy

cost of the training, as well as the a priori accuracy, requires thus
knowing the probabilities of outputting each class.

7.4 Computing the probability distribution of
the output

We compute the probability distribution of the output of the al-

gorithm SHIELD with a given polynomial parameterization in a

recursive manner.

For a sample 𝑥 of Δ, letM𝑃,𝑥 be the mechanism that takes the

whole database (concatenation of the teachers’ datasets) as input

and outputs the class sent to the student i.e. the output of SHIELD,

with the polynomial parameterization 𝑃 ∈ N[𝑋].
Let 𝑑 be the database composed of the teachers’ data. Let 𝑘 be a

class of the problem.

If 𝑃 = 𝑋𝑝 , 𝑝 ∈ N∗, P[M𝑃,𝑥 (𝑑) = 𝑘] =
(𝑛𝑘
𝑛

)𝑝
.

If 𝑃 = 𝑋𝑝 + 𝑄 (𝑋), where 𝑄 ∈ N[X] and 𝑝 ∈ N∗ is greater or
equal than the degree of 𝑄 ,

P[M𝑃,𝑥 (𝑑) = 𝑘] =
(𝑛𝑘
𝑛

)𝑝
+ ©«1 −

𝐾∑︁
𝑗=1

(𝑛 𝑗
𝑛

)𝑝ª®¬P[M𝑄,𝑥 (𝑑) = 𝑘] .

Using these expressions, we simply compute the moments ac-

countant for each query by taking the maximum over all pairs

(𝑑, 𝑑′) such that 𝑑 is the database constituted by the concatenation

of the teachers’ database and 𝑑′ is a database adjacent to 𝑑 . We then

derive the overall privacy cost using the moments accountant’s

composition properties.

Note that the obtained DP guarantees are data-dependent since
we explored only the pairs of adjacent databases such that one

of them is the actual database given by our application. The very

values 𝜖 and 𝛿 of these guarantees then reveal some information

about the training data. In a real-life scenario, these values should

be sanitized before being published, as in [34] for instance, but this

is beyond the scope of this work.

7.5 The differential privacy analysis does not
apply to the server

When we compute the probabilities of outputting a class, we do

not suppose anything about whose votes are drawn i.e. we do not

condition the probabilities on some particular drawing event. This

6
The moments accountant involves the logarithm of the expected ratio of the proba-

bilities of outputting a certain value for two adjacent databases but we do not detail it

here since this is not the focus of this paper

54

Probabilistic Homomorphic Majority Voting with DP WAHC ’23, November 26, 2023, Copenhagen, Denmark

amounts to assume that the adversary only sees the output class,

and does not know, in particular, which teachers were selected in

the sampling. This assumption cannot apply to the server since it

draws the one-hot encodings itself and knows which teachers they

come from, for having receiving the encodings one by one from

the teachers. Appendix A gives an insight of why this subtlety may

be problematic.

This observation shows that we need to constrain the server not

to see the student model once it is trained. Note that the information

leakage induced by the server’s knowledge may not jeopardize

much the data privacy in practice. We only argue here that our DP

analysis does not allow us to derive DP guarantees from the point

of view of the server, which might be possible with a more involved

(and likely quite complex) analysis, although with probably worse

guarantees.

8 EXPERIMENTAL RESULTS
8.1 Choice of the polynomial parameterization
We tested SPEED with SHIELD on MNIST dataset [27]. While the

offset parameter has been set to 1, a key aspect of our experiments

is the choice of a polynomial parameterization that realizes a good

trade-off between model accuracy, DP guarantees and computa-

tional efficiency. Since the computational time overall depends on

the sum of coefficients and the degree of the polynomial param-

eterization, we proceeded by constraining the maximum degree

and the maximum value for the sum of coefficients of the polyno-

mials. We fixed the maximum degree to 4 to achieve a reasonable

balance between the multiplicative depth, the number of tries and

the argmax accuracy. For several integer values (6, 12, 17, 32), we

considered all the polynomials of degree at most 4 whose sum of

coefficients is less than this value. We do not go beyond a sum of

coefficients equal to 32 to keep the computational time low. We

then computed the DP guarantee 𝜖 , with 𝛿 = 10
−5

being fixed,

for each polynomial, as well as its GTA score that acts as a proxy

for the student model accuracy which could not be determined in

reasonable time for so many polynomials. Finally, we focused on

the polynomials belonging to the Pareto front for these two criteria

- DP guarantee 𝜖 and GTA - and picked the ones that yielded among

the best DP guarantees without harming the accuracy too much. In

practice, as it can be seen on Figure 2 the DP guarantee guided more

our choice because the GTA, besides being only a heuristic for the

actual student model accuracy, did not vary much among the poly-

nomials of the Pareto front. Note that the GTA of the exact argmax

is 72.35%. The chosen polynomials are respectively 2𝑋 3 + 3𝑋 2 + 𝑋 ,
2𝑋 4 + 6𝑋 3 + 3𝑋 2 +𝑋 , 6𝑋 4 + 6𝑋 3 + 4𝑋 2 +𝑋 and 8𝑋 4 + 6𝑋 3 + 4𝑋 2 +𝑋
for a sum of coefficients of at most 6, 12, 17, 32

7
. We did not display

the Pareto front for a sum of coefficients of at most 6 because it

only contains one polynomial.

Table 1 displays the GTA, the student model accuracy and the

DP guarantee 𝜖 for the chosen polynomial parameterizations, 𝛿 =

10
−5

being fixed. The GTA and DP guarantee are averaged on

the whole set of 8000 samples used for semi-supervised training,

7
The chosen polynomial among the ones with a sum of coefficients at most 32 has a

sum of coefficients equal to 19 only. This is good news for computational complexity

because it allows us to batch all samples into a single ciphertext and therefore optimize

the computation.

71.3

D
P
 g

u
a
ra

n
te

e
 ε

Ground truth accuracy (%)

: sum of coef. at most 12

: sum of coef. at most 17

: sum of coef. at most 32

71.4 71.5 71.6 71.7 71.8 71.9

Figure 2: Pareto fronts of the polynomials for a fixed max-
imum sum of coefficients. The polynomials we chose for
running the student model training are indicated by red-
edged diamonds.

the DP guarantee being remultiplied by 100, the number of actual

queries to the teachers. The student model accuracy is averaged

over ten runs, each of which used a different random subset of 100

samples as labeled samples. The table also displays the number of

correctly labeled samples (comparing to the ground truth label) out

of the 8000 samples. Note that, the observed non-mononotonous

relationship between the model and argmax accuracy may deserve

more investigations from an ML point of view. The variance of

the model accuracy among the runs is quite important and may

explain why the accuracy surprisingly does not increase when the

polynomial is better in terms of both GTA and number of correct

labels. The polynomial 2𝑋 4 + 6𝑋 3 + 3𝑋 2 + 𝑋 being the one that

yields the best model accuracy, we shall focus on this polynomial

parameterization when comparing our computational efficiency

with the state of the art (see Section 8.2).

polynomial GTA

number of

correct labels

model

accuracy

𝜖

exact argmax 72.35% 7516 (93.95%) 95.36% ∞
2𝑋 3 + 3𝑋 2 + 𝑋 70.06% 7166 (89.58%) 90.91% 2.39

2X4 + 6X3 + 3X2 + X 71.26% 7327 (91.59%) 94.66% 2

6𝑋 4 + 6𝑋 3 + 4𝑋 2 + 𝑋 71.56% 7358 (91.98%) 93.39% 1.92

8𝑋 4 + 6𝑋 3 + 4𝑋 2 + 𝑋 71.62% 7367 (92.09%) 93.15% 1.91

Table 1: Accuracy and DP guarantee (with 𝛿 = 10
−5) obtained

with several polynomial parameterizations.

8.2 SIMD SHIELD with BFV
For our implementation of the SIMD SHIELD algorithm, we use

the BFV cryptosystem in the openFHE library [4]. The chosen

parameters are: log
2
(𝑞) = 540 ; 𝑝 = 65537 ; 𝑚 = 65536 ; 𝑁 =

32768. They achieve a security level of 𝜆 = 128 bits with a standard

deviation of 3.2. Our implementation was tested on a machine with

an AMD Opteron(tm) Processor 6172 using a single thread.

55

WAHC ’23, November 26, 2023, Copenhagen, Denmark Arnaud Grivet Sébert, Martin Zuber, Oana Stan, Renaud Sirdey, & Cédric Gouy-Pailler

We achieve performances presented in Table 2 for a set of dif-

ferent polynomial parameterizations. Although we tested using

the MNIST data set, the performance of an HE algorithm does

not depend on the underlying data by construction. Otherwise one
could infer something on the data from seeing the computation

happen in the encrypted domain. For our implementation, we need

to run the SHIELD algorithm over 100 samples. In the table how-

ever, we also present computation times for the case whereby we

optimize the batching space with a higher number of samples to

give an idea of what computation times could be achieved by opti-

mizing parameters further. For now, these optimizations are not yet

possible in keeping with the Homomorphic Encryption Security

Standard [3] which recommends the use of power-of-two cyclo-

tomic polynomials. A new standard is reported to be in the works

which would open applications to the secure use of non-power-of-

two cyclotomic polynomials. That would allow us to optimize our

parameters further.

polynomial samples time (s) time/sample (s)

2𝑋 3 + 3𝑋 2 + 𝑋 100 87.2 0.87

341 112 0.33

2X4 + 6X3 + 3X2 + X 100 123 1.23
143 135 0.94

6𝑋 4 + 6𝑋 3 + 4𝑋 2 + 𝑋 100 138 1.38

8𝑋 4 + 6𝑋 3 + 4𝑋 2 + 𝑋 100 144 1.44

paper samples time (s) time/sample (s)

[20] 100 390 3.9

[20] + [9] 100 160 1.6

[23] 100 190 1.9

Table 2: Performance for the SIMD implementation of
SHIELD (for 10 classes) for different polynomial parameteri-
zations compared with previous work implementing exact
argmax computations.

Table 2 also compares our method with previous existing meth-

ods for non-stochastic argmax computations. Among these methods,

the one presented in [20] as well as its later improvement in [9]

perform worse overall for all polynomial parameterizations that we

tested. It is important to note that these methods do not (and can-

not) use batching by construction. Therefore the time per sample

is fixed and does not depend on the amount of samples processed.

Times in Table 2 for [23] are taken from their Table 4 because it

most closely matches our use-case. However important differences

remain: we report their timings (amortized over 100 samples) ex-

trapolated from 8 (1.52 s) to 10 (1.9 s) classes (this is conservative

as the complexity of their method is at least linear in the number of

items); additionally their timings are for a minimum computation,

which is less time-consuming than an argmin computation, but no

times are given for an argmin in [23]. On top of that, [23] makes

heavy use of batching and also report additional amortized timings.

However, by construction, they are constrained to batching sizes

much higher than ours for security purposes, therefore the amor-

tized time of 0.03s per sample reported in [23] cannot be obtained

over 100 samples.

8.3 Bitwise SHIELD with Cingulata
To show the interest of the batching approach, we also implemented

the basic version of SHIELD, as described in Algorithm 2, with

Cingulata crypto-compiler and its TFHE backend.

Let us remind that Cingulata, formerly known as Armadillo [8],

is a toolchain and run-time environment (RTE) for implement-

ing applications running over HE. Cingulata provides high-level

abstractions and tools to facilitate the implementation and the ex-

ecution of privacy-preserving applications expressed as Boolean

circuits, a representation which is natural for SHIELD.

Table 3 shows the execution times of SHIELD for different poly-

nomial parameterizations when performed in a SISD fashion with

TFHE and Cingulata. The experiments were performed with a sin-

gle thread on an Intel Xeon processor with 16 GB of memory and

Ubuntu 20.04 operating system. As shown in the table, the execu-

tion time of SHIELD increases with the degree of the polynomial

and the sum of the polynomial coefficients. As expected, the overall

performances are highly below the ones obtained when using BFV

and its batching capabilities.

polynomial samples time (s) time/sample (s)

2𝑋 3 + 3𝑋 2 + 𝑋 100 495,3 4,95

2𝑋 4 + 6𝑋 3 + 3𝑋 2 + 𝑋 100 14287,8 14,29

6𝑋 4 + 6𝑋 3 + 4𝑋 2 + 𝑋 100 20936,7 20,93

Table 3: Performance for the Cingulata with TFHE imple-
mentation of SHIELD

9 CONCLUSION AND PERSPECTIVES
We proposed SHIELD, a homomorphic stochastic operator whose

design, necessary for fast homomorphic computations, yields DP as

a natural “by-product”. This work reconciliates two complementary

but usually independent - or even mutually constraining - privacy

tools in an all-in-one operator whose inaccuracy is a crucial feature.

We hope this work will encourage new ones on the design of pri-

vate algorithms where FHE (or other cryptographic primitives) and

DP leverage the advantages of each other. For instance, developing

algorithms that would be useful in other settings than an election

and broaden the scope of machine learning applications seems

promising. In this perspective, an argmax algorithm that takes an

histogram of the votes as input rather than the “physical” votes

represented as vectors would have a more general applicability.

Testing SHIELD onmore difficult datasets and especially datasets

with numerous classes could reveal its full potential. Besides, a more

thorough theoretical study to get results that may lead us through

the choice of the parameters (polynomial, offset) is desirable. Other

versions including sampling without replacement (Appendix A) or

an exponential version of SHIELD (Section 4.4) would also deserve

theoretical and experimental analyses. Studying SHIELD in terms of

strategy-proofness and fairness could be interesting too and would

extend the added value of SHIELD to the area of computational

social choice and voting rules [11].

56

Probabilistic Homomorphic Majority Voting with DP WAHC ’23, November 26, 2023, Copenhagen, Denmark

ACKNOWLEDGMENTS
We thankVictor Berger early discussions on the idea of ground truth

accuracy as well as the anonymous referees for their comments

which lead to improvements of this paper. This work was supported

by the France 2030 ANR Project ANR-22-PECY-003 SecureCompute

and the European Union’s Horizon Europe Research and Innovation

Programme under Grant Agreement No. 101070670 (ENCRYPT - A

Scalable and Practical Privacy-preserving Framework).

REFERENCES
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep learning with differential privacy. In

ACM SIGSAC. 308–318.
[2] Naman Agarwal, Ananda Theertha Suresh, Felix Xinnan X Yu, Sanjiv Kumar,

and Brendan McMahan. 2018. cpsgd: Communication-efficient and differentially-

private distributed sgd. NeurIPS 31 (2018), 7564–7575.
[3] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey

Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, Satya Lokam,

Daniele Micciancio, Dustin Moody, Travis Morrison, Amit Sahai, and Vinod

Vaikuntanathan. 2018. Homomorphic Encryption Security Standard. Technical
Report. HomomorphicEncryption.org, Toronto, Canada.

[4] Ahmad Al Badawi, Jack Bates, Flavio Bergamaschi, David Bruce Cousins, Saroja

Erabelli, Nicholas Genise, Shai Halevi, Hamish Hunt, Andrey Kim, Yongwoo Lee,

Zeyu Liu, Daniele Micciancio, Ian Quah, Yuriy Polyakov, Saraswathy R.V., Kurt

Rohloff, Jonathan Saylor, Dmitriy Suponitsky, Matthew Triplett, Vinod Vaikun-

tanathan, and Vincent Zucca. 2022. OpenFHE: Open-Source Fully Homomorphic

Encryption Library. Cryptology ePrint Archive, Paper 2022/915. (2022).

[5] Johes Bater, Xi He, William Ehrich, Ashwin Machanavajjhala, and Jennie Rogers.

2018. Shrinkwrap: efficient sql query processing in differentially private data

federations. Proceedings of the VLDB Endowment 12, 3 (2018).
[6] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghu-

nathan, David Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnes, and Bernhard

Seefeld. 2017. Prochlo: Strong privacy for analytics in the crowd. In Proceedings
of the 26th symposium on operating systems principles. 441–459.

[7] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2014. (Leveled) Fully

Homomorphic Encryption without Bootstrapping. ACM Trans. Comput. Theory
6, 3, Article 13 (7 2014), 36 pages.

[8] Sergiu Carpov, Paul Dubrulle, and Renaud Sirdey. 2015. Armadillo: a compilation

chain for privacy preserving applications. In Proceedings of the 3rd International
Workshop on Security in Cloud Computing. 13–19.

[9] Olive Chakraborty and Martin Zuber. 2022. Efficient and Accurate Homomorphic

Comparisons. In Proceedings of the 10th Workshop on Encrypted Computing &
Applied Homomorphic Cryptography (WAHC’22). Association for Computing

Machinery, 35–46. https://doi.org/10.1145/3560827.3563375

[10] Albert Cheu, Adam Smith, Jonathan Ullman, David Zeber, and Maxim Zhilyaev.

2019. Distributed differential privacy via shuffling. In Advances in Cryptology–
EUROCRYPT 2019: 38th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Darmstadt, Germany, May 19–23, 2019,
Proceedings, Part I 38. Springer, 375–403.

[11] Yann Chevaleyre, Ulle Endriss, Jérôme Lang, and Nicolas Maudet. 2007. A short

introduction to computational social choice. In International conference on current
trends in theory and practice of computer science. Springer, 51–69.

[12] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Faster

Fully Homomorphic Encryption: Bootstrapping in Less Than 0.1 Seconds. In

Advances in Cryptology – ASIACRYPT 2016, Jung Hee Cheon and Tsuyoshi Takagi

(Eds.). Vol. 10031. Springer Berlin Heidelberg, 3–33. https://doi.org/10.1007/978-

3-662-53887-6_1 Series Title: Lecture Notes in Computer Science.

[13] John C Duchi, Michael I Jordan, and Martin J Wainwright. 2013. Local privacy

and statistical minimax rates. In 2013 IEEE 54th Annual Symposium on Foundations
of Computer Science. IEEE, 429–438.

[14] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and

Moni Naor. 2006. Our data, ourselves: Privacy via distributed noise generation. In

Annual International Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 486–503.

[15] Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of differ-

ential privacy. Foundations and Trends® in Theoretical Computer Science 9, 3–4
(2014), 211–407.

[16] Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Kunal

Talwar, and Abhradeep Thakurta. 2019. Amplification by shuffling: From local to

central differential privacy via anonymity. In Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2468–2479.

[17] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat Practical Fully Homo-

morphic Encryption. IACR Cryptology ePrint Archive 2012 (2012), 144.

[18] Matthew Franklin and Moti Yung. 1992. Communication Complexity of Secure

Computation (Extended Abstract). In Proceedings of the Twenty-Fourth Annual
ACM Symposium on Theory of Computing (STOC ’92). Association for Computing

Machinery, New York, NY, USA, 699–710.

[19] Slawomir Goryczka and Li Xiong. 2015. A comprehensive comparison of multi-

party secure additions with differential privacy. IEEE transactions on dependable
and secure computing 14, 5 (2015), 463–477.

[20] Arnaud Grivet Sébert, Rafaël Pinot, Martin Zuber, Cedric Gouy-Pailler, and

Renaud Sirdey. 2021. SPEED: secure, PrivatE, and efficient deep learning. Machine
Learning 110, 4 (2021), 675–694.

[21] Meng Hao, Hongwei Li, Xizhao Luo, Guowen Xu, Haomiao Yang, and Sen Liu.

2019. Efficient and privacy-enhanced federated learning for industrial artificial

intelligence. IEEE Transactions on Industrial Informatics 16, 10 (2019), 6532–6542.
[22] Alberto Ibarrondo, Hervé Chabanne, Vincent Despiegel, and Melek Önen. Grote:

Group Testing for Privacy-Preserving Face Identification. In Proceedings of the
Thirteenth ACM Conference on Data and Application Security and Privacy (2023-

04-24). ACM, 117–128. https://doi.org/10.1145/3577923.3583656

[23] Ilia Iliashenko and Vincent Zucca. 2021. Faster homomorphic comparison opera-

tions for BGV and BFV. Proceedings on Privacy Enhancing Technologies 2021, 3
(2021), 246–264. https://doi.org/10.2478/popets-2021-0046 Publisher: De Gruyter

Open.

[24] Bin Jia, Xiaosong Zhang, Jiewen Liu, Yang Zhang, Ke Huang, and Yongquan

Liang. 2021. Blockchain-enabled federated learning data protection aggregation

scheme with differential privacy and homomorphic encryption in IIoT. IEEE
Transactions on Industrial Informatics 18, 6 (2021), 4049–4058.

[25] Peter Kairouz, Sewoong Oh, and Pramod Viswanath. 2016. Extremal mechanisms

for local differential privacy. The Journal of Machine Learning Research 17, 1

(2016), 492–542.

[26] Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi Nissim, Sofya Raskhodnikova,

and Adam Smith. 2011. What can we learn privately? SIAM J. Comput. 40, 3
(2011), 793–826.

[27] Yann LeCun, Corinna Cortes, and CJ Burges. 2010. MNIST handwritten digit

database. 2010. URL http://yann. lecun. com/exdb/mnist 7 (2010), 23.
[28] Joon-Woo Lee, HyungChul Kang, Yongwoo Lee, Woosuk Choi, Jieun Eom, Maxim

Deryabin, Eunsang Lee, Junghyun Lee, Donghoon Yoo, Young-Sik Kim, et al.

2022. Privacy-preserving machine learning with fully homomorphic encryption

for deep neural network. IEEE Access 10 (2022), 30039–30054.
[29] Baiyu Li, Daniele Micciancio, Mark Schultz, and Jessica Sorrell. 2022. Securing

approximate homomorphic encryption using differential privacy. In Annual
International Cryptology Conference. Springer, 560–589.

[30] Frank McSherry and Kunal Talwar. 2007. Mechanism design via differential

privacy. In 48th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’07). IEEE, 94–103.

[31] Ilya Mironov. 2017. Rényi differential privacy. In 2017 IEEE 30th Computer Security
Foundations Symposium (CSF). IEEE, 263–275.

[32] Tabitha Ogilvie. 2023. Differential Privacy for Free? Harnessing the Noise in

Approximate Homomorphic Encryption. Cryptology ePrint Archive, Paper

2023/701. (2023).

[33] Nicolas Papernot, Martín Abadi, Ulfar Erlingsson, Ian Goodfellow, and Kunal

Talwar. 2016. Semi-supervised knowledge transfer for deep learning from private

training data. arXiv preprint arXiv:1610.05755 (2016).
[34] Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal Tal-

war, and Úlfar Erlingsson. 2018. Scalable private learning with pate. arXiv
preprint arXiv:1802.08908 (2018).

[35] N. P. Smart and F. Vercauteren. 2011. Fully Homomorphic SIMD Operations.

Cryptology ePrint Archive, Paper 2011/133. (2011).

[36] Timothy Stevens, Christian Skalka, Christelle Vincent, John Ring, Samuel Clark,

and Joseph Near. 2022. Efficient Differentially Private Secure Aggregation for

Federated Learning via Hardness of Learning with Errors. In 31st USENIX Security
Symposium (USENIX Security 22). 1379–1395.

[37] Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko Ludwig, Rui

Zhang, and Yi Zhou. 2019. A hybrid approach to privacy-preserving federated

learning. In Proceedings of the 12th ACM workshop on artificial intelligence and
security. 1–11.

[38] Jonathan Ullman. 2018. Tight lower bounds for locally differentially private

selection. arXiv preprint arXiv:1802.02638 (2018).
[39] Jelle Van Den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. 2015.

Vuvuzela: Scalable private messaging resistant to traffic analysis. In Proceedings
of the 25th Symposium on Operating Systems Principles. 137–152.

[40] SameerWagh, Paul Cuff, and Prateek Mittal. 2018. Differentially private oblivious

ram. Proceedings on Privacy Enhancing Technologies 2018, 4 (2018), 64–84.
[41] Sameer Wagh, Xi He, Ashwin Machanavajjhala, and Prateek Mittal. 2021. DP-

cryptography: marrying differential privacy and cryptography in emerging ap-

plications. Commun. ACM 64, 2 (2021), 84–93.

[42] Wennan Zhu, Peter Kairouz, Brendan McMahan, Haicheng Sun, and Wei Li.

2020. Federated heavy hitters discovery with differential privacy. In International
Conference on Artificial Intelligence and Statistics. PMLR, 3837–3847.

57

https://doi.org/10.1145/3560827.3563375
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1145/3577923.3583656
https://doi.org/10.2478/popets-2021-0046

WAHC ’23, November 26, 2023, Copenhagen, Denmark Arnaud Grivet Sébert, Martin Zuber, Oana Stan, Renaud Sirdey, & Cédric Gouy-Pailler

A INFORMATION LEAKAGE VIA
KNOWLEDGE OF THE SELECTED
TEACHERS

Let us propose some concrete situations where the DP guarantees

are obviously not protecting the vote of the server’s victim, i.e. a

teacher whose vote the server wants to know. With the polynomial

parameterization 𝑋𝑘 + 𝑋 , 𝑘 ∈ N ∗ \{1}, if the server draws 𝑘 − 1
teachers and its victim for the term 𝑋𝑘 and then its victim for the

term 𝑋 , then the server will know that the class sent to the student

is its victim’s vote. Supposing that the server knows the votes of all

the teachers except its victim’s (classical assumption in DP), it will

be able to recover its victim’s votes in many cases. For instance,

with the polynomial parameterization 𝑋𝑘 + 𝑋 , 𝑘 ∈ N∗ \ {1}, if the
server draws 𝑘 teachers who do not all have the same vote for the

term 𝑋𝑘 and its victim for the term 𝑋 , then the class sent to the

student is its victim’s vote.

To address this vulnerability, we could think of an additional

entity that receives the votes from the teachers and shuffles them

before sending them to the server. However, the server would know

if a same vote was drawn several times (remind that the drawing

is with replacement), which still constitutes some information we

did not account for in our DP analysis. Suppose that the server

knows that all the teachers except its victim voted for a class 𝑐 .

Moreover, suppose that the offset parameter is set to 1 and that

there are |𝐶 | classes in the problem. Then, there are |𝐶 | − 1 votes
different than 𝑐 and the victim’s vote, which is unknown. Assume

that the polynomial parameterization is |𝐶 |𝑋 2 + 𝑋 . If the 2|𝐶 | + 1
votes that the server drew are all from different sources - teachers

or dummy one-hot encodings - (remind that the server knows it)

and the output class is not 𝑐 , then the server knows with certainty

that its victim did not vote for 𝑐 (otherwise, there would have been

|𝐶 | + 1 drawn votes for 𝑐 and, among the |𝐶 | pairs the server drew
for the term in 𝑋 2

, no pair would have been composed of two

identical votes different from 𝑐 and at least one pair would have

been composed of two votes for 𝑐 and then the output would have

been 𝑐).

We could extend the threat model and assume that the server has

access to the final model by designing a more complex algorithm for

which the teachers would be homomorphically selected, yet with a

significant additional computational cost. Another interesting idea

mentioned above would be to make use of an intermediate entity

that would shuffle the encrypted votes before the server receives

them, with inspiration from the ESA (Encode, Shuffle, Analyze)

method from [6]. Nevertheless, as we saw, the server would still

know if it selected several times the same teacher, even without

knowingwhich one it is, and this is still theoretically an information

leakage that is not simple to analyze. A way to solve this issue and

to actually leverage the anonymity provided by the shuffling would

be to design an algorithm that uses sampling without replacement

and to force the teachers to send a new encryption of their votes

for each polynomial rounds, which would significantly increase the

complexity of the protocol and its communication cost.

B ON COUNTER-PRODUCTIVE NOISE FOR
DATA-DEPENDENT DIFFERENTIAL
PRIVACY GUARANTEES

Null data-dependent privacy cost of the exact argmax: While

doing experiments on a subset of MNIST with polynomial parame-

terizations that yield better and better accuracies (up to the prob-

ability of getting the true argmax being more than 99,99%) we

remarked that the value epsilon of the privacy cost did not increase

much and did not seem to approach infinity. This surprising result

suggested that the exact argmax operator had a finite privacy cost.

Actually, on the subset we were working on, for every sample, the

dominant class had at least two more votes than the second dom-

inant class. We will say in the following that the distribution has

a highly dominant argmax. This implies that any database which

is adjacent to the database 𝑑 we were working on has the same

dominant class as 𝑑 for every sample. As a consequence, the output

of the argmax does not leak any information about which of two

adjacent databases was used as input. In other words, the privacy

cost of the exact argmax operator is null in this case.

Counter-productivity of the noise regarding privacy: On
the contrary, the so-called private argmax operator (noised by an

additional random noise as in PATE [33, 34] and SPEED [20] or

intrinsically stochastic as in SHIELD) may output any class and

the probabilities of outputting a class depend on the frequencies

of the votes for all classes. As a consequence, even changing only

one teacher will change the probabilities of outputting a certain

class, even if the effect is mild. Therefore, since the output of the DP

argmax operator gives information on the probability of outputting

a class, it also gives information on the frequencies of the the votes.

We end up in a situation where applying noise is counter-productive

in the sense that it increases the privacy cost of revealing the output

(by an infinite factor actually). Note that this was not the case for

the entire MNIST training set but only for a certain subset of it.

The case of data-independent DP guarantees: This consid-
eration only applies to data-dependent DP guarantees. In the data-

independent case, the privacy cost of the exact argmax would be

infinite because we would consider the maximum over all the pairs

of adjacent databases i.e. all the possible pairs of distributions of 𝑛

votes among 𝐾 classes that differ by one vote on two classes.

Example of the age’s sign: The noise addition degrading pri-

vacy guarantees is very counter-intuitive and may surprise a priori.
Let us take a simple example to understand how the noise affects

privacy. Revealing the sign of the age of a person is infinitely private

(epsilon and delta null) if we assume that the adversary already

knows that a person must have a positive age (quite natural as-

sumption!). Imagine now that we noise the age with a unimodal

noise, whose mode is zero, say a Gaussian noise, before computing

the sign. The lesser the unnoised age, the more likely the sign of

the noised age will be negative. This implies that revealing the sign

of the noised age does leak some information about the unnoised

age. Clearly, the noise addition does harm the privacy guarantees

in this case. Nevertheless, note that this does not contradict the

post-processing immunity of DP. Indeed, the noise is not added

at the end, over the infinitely private sign of the age, rather, it is

added before the computation of the sign, inside the mechanism

and not afterwards.

58

	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Homomorphic encryption
	3.2 Differential privacy

	4 SHIELD: Secure and Homomorphic Imperfect Election via Lightweight Design
	4.1 Principle of SHIELD
	4.2 Multi-degree SHIELD
	4.3 Offset parameter
	4.4 Exponential argmax operator

	5 FHE implementation of SHIELD
	5.1 Implementing SIMD-SHIELD

	6 An application case: SPEED
	6.1 PATE workflow
	6.2 Data protection in SPEED
	6.3 Faster SPEED with SHIELD

	7 Analysis of SHIELD
	7.1 Computational complexity of SHIELD
	7.2 A priori accuracy metrics
	7.3 Differential privacy analysis
	7.4 Computing the probability distribution of the output
	7.5 The differential privacy analysis does not apply to the server

	8 Experimental results
	8.1 Choice of the polynomial parameterization
	8.2 SIMD SHIELD with BFV
	8.3 Bitwise SHIELD with Cingulata

	9 Conclusion and perspectives
	Acknowledgments
	References
	A Information leakage via knowledge of the selected teachers
	B On counter-productive noise for data-dependent differential privacy guarantees

