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Abstract
Images acquired with a telescope are blurred and corrupted by noise. The blurring is
usually modelled by a convolution with the Point Spread Function and the noise by
Additive Gaussian Noise. Recovering the observed image is an ill-posed inverse prob-
lem. Sparse deconvolution is well known to be an efficient deconvolution technique,
leading to optimized pixel Mean Square Errors, but without any guarantee that the
shapes of objects (e.g. galaxy images) contained in the data will be preserved. In this
paper, we introduce a new shape constraint and exhibit its properties. By combining it
with a standard sparse regularization in the wavelet domain, we introduce the Shape
COnstraint REstoration algorithm (SCORE), which performs a standard sparse decon-
volution, while preserving galaxy shapes. We show through numerical experiments
that this new approach leads to a reduction of galaxy ellipticitiy measurement errors
by at least 44%.

Keywords Image restoration · Deconvolution · Shape constraint · Astrophysics ·
Cosmology
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ρ Function that returns the spectral radius of a matrix
In Identity matrix of size n
1n All-ones matrix of size n
ι+ Moreau’s indicator function of the vector set with non-negative entries
sgn Sign function

1 Introduction

Every acquisition systemgenerates imageswith imperfections.Generally, the structure
of the system induces a blurring of the images. This blur is often modeled using a
Point Spread Function (PSF). Here, we will consider this PSF to be space-invariant
and denote it h ∈ R

n×n . In addition, the sensors’ variations are likely to introduce
noise in the image. We consider this noise to be additive and denote it b ∈ R

n×n . The
observational model is then as follows:

y = xT ∗ h + b, (1)

where xT ∈ R
n×n is the ground truth image, and y ∈ R

n×n is the observed image. We
can partially restore y by applying the least squares method. In this case, the solution
oscillates because the problem in Eq. 1 is ill-conditioned. An exploratorywork [29] has
been done for image deconvolution in themoments space, however the PSF profilewas
assumed to be Gaussian and the observed image did not contain noise. More generally,
it is an ill-posed problem and can, instead, be tackled using regularization [3]. For this
purpose, we can add constraints related to the signal’s energy, its derivatives [3], such
as total variation [5,28], or its sparsity [10,32] where sparsity measures the number
of non-zero elements in a signal. These commonly used methods are well suited for
solutions that optimize the Mean Square Error (MSE). The MSE of an estimation,
x ∈ R

n×n , of xT , is

MSE(x) =
n2∑

i=1

(xT [i] − x[i])2 . (2)

While standard, the MSE is not always the target criterion we want to optimize. For
instance, in astrophysics, the shape of galaxies (often encoded through a measure of
its ellipticity) is central to many scientific goals, such as in weak gravitational lens-
ing [19] or galaxy evolution studies [27]. There is, however, no guarantee that the
deconvolution process, especially if non-linear, preserves the galaxies’ shapes. For
this reason, full galaxy image deconvolution is rarely used in practice in weak lensing
studies. The effect of the PSF is, instead, accounted for using either moments-based
methods, such as the Kaiser–Squire–Broadhurst (KSB) approach [15], or forward
modeling, assuming an analytical profile for the galaxy [21]. Note neither of these
approaches produces a deconvolved image of the original galaxy. If such a profile
is required to achieve some other science goals, an explicit deconvolution would be
performed separately and the resulting image would not possess the correct ellipticity.
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In radio-interferometry, the situation is even more problematic since data are acquired
in Fourier space and these standard ellipticity measurement techniques require first
reconstructing an image. In [23,24], it was shown that standard radio-interferometry
image reconstruction techniques could not be used to obtain reliable measurements,
which led the community to develop fitting techniques in Fourier space [25,26]. Since
each Fourier component contains information about all galaxies, it therefore requires
simultaneously fitting the ellipticities of all galaxies contained in the observed image.
Such aminimization is rather complex and relies on the use of time-consumingHamil-
tonian Monte Carlo techniques. An alternative and original approach was proposed
in [17,29], using a relationship between the moments of the degraded image and the
moments of the original image and the PSF. The solution is then obtained by inverting
the moment equation. This method, however, relies on the point spread function being
an elliptical Gaussian, which is not the case in practice.

In this paper, we propose an intermediate solution, between the geometric moment
method and a standard regularized deconvolution technique such as sparsity, by embed-
ding a shape constraint derived from the moments in a restoration framework.

In Sects. 2 and 3 , we start by formulating the constraint using the analytical expres-
sion of the ellipticity. In Sect. 4, we exhibit its main properties, which will allow us
to build the Shape COnstraint REstoration algorithm (SCORE). SCORE is a sparse
restoration algorithm, intowhich the proposed constraint is plugged, leading to the first
shape constraint deconvolution algorithm. Finally, in Sect. 5, we present the results of
numerical experiments.

2 Galaxies and ShapeMeasurement

The definition of ellipticity is straightforward for an object whose light profile has
elliptical isophotes. In order to generalize this definition to objects with arbitrary
profiles, the statistical moments of its light profile (or observed image, in practice)
are used. For a galaxy image, x ∈ R

n×n , let us define its complex ellipticity e(x) =
e1(x) + ie2(x), as [1]

e1(x) = μ2,0(x) − μ0,2(x)

μ2,0(x) + μ0,2(x)
and e2(x) = 2μ1,1(x)

μ2,0(x) + μ0,2(x)
, (3)

where μs,t (x) are the centered moments. In the case of a discrete image containing
an object of interest, an unbiased estimator for these can be computed as follows:

μs,t (x) =
n∑

i=1

n∑

j=1

x[(i − 1)n + j](i − ic)
s( j − jc)

t , (4)

where ic =
∑n

i=1
∑n

j=1 i ·x[(i−1)n+ j]
∑n

i=1
∑n

j=1 x[(i−1)n+ j] and jc =
∑n

i=1
∑n

j=1 j ·x[(i−1)n+ j]
∑n

i=1
∑n

j=1 x[(i−1)n+ j] are the coordi-

nates of the centroid of x .
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Fig. 1 These two binary images only differ by a single pixel, encircled in red on the bottom right of the image
on the right. The estimated ellipticity, using (3), is 0.0016+i0.2196 for the left image and−0.0094+i0.1916

for the right one. This corresponds to a deviation of 14%

Remark In Eq. 4, i and j correspond respectively to the i th row and j th column of the
galaxy image, x .

These quantities are extremely sensitive to noise. The practical computation of galaxy
ellipticities is thus an ill-conditioned problem, as illustrated in Fig. 1. A common way
to add robustness, i.e. to reduce sensitivity to background noise, is through the use of
a window function, g ∈ R

n×n , typically chosen to be a 2-dimensional Gaussian. The
size of this window function is either fixed a priori, or fitted to y, the observed image
[12]. An estimator of the ellipticity of y, noted eint(y) = eint,1(y) + ieint,2(y), is then

eint(y) = μ2,0(y � g) − μ0,2(y � g) + 2iμ1,1(y � g)

μ2,0(y � g) + μ0,2(y � g)
. (5)

The classical KSB method [15] and its later improvements [35] are based on such
estimators. The ellipticity of aweighted version of the observed image is first computed
in order to reduce noise effects. Then the PSF effects are corrected in the moments
space. The keystone of this method is approximating the PSF effects linearly under the
assumption that the PSF has slight anisotropies. In the following, we will show that a
full restoration of an image is possible, preserving the galaxy shape information.

3 Sparse Deconvolution

Sparsity has proven to be an effective regularization technique for denoising [10,32].
Its use in deconvolution along with positivity offers satisfying results regarding the
pixel error [10]. Sparse regularization is applied in a space where the solution is known
to be sparse. In the case of galaxy images, it has been shown in [32] that starlets offer
such a sparse representation.
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In the following, wewill assume that the noise, b in Eq. 1, is white additiveGaussian
noise with variance σ 2 In .

Letφ = (φi )i∈{1,...,I } denote the starlet transformoperator,with I its chosen number
of components. The loss function for the sparse deconvolution problem can be written
as the sum of differentiable and non-differentiable terms:

L0(x) =
:=L0d (x), differentiable
︷ ︸︸ ︷
1

2σ 2 ‖x ∗ h − y‖22
︸ ︷︷ ︸

data-fidelity

+
:=L0p(x), non-diffrentiable
︷ ︸︸ ︷
‖λ0 � φ(x)‖1︸ ︷︷ ︸

sparsity

+ ι+(x)
︸ ︷︷ ︸
positivity

, (6)

where λ0 is a weighting matrix with non-negative entries.
We now give the major properties of L0 needed to construct a Sparse Restoration

Algorithm (SRA) that minimizes it. Straightforwardly, L0d has gradient

∇L0d(x) = 1

2σ 2 2hπ ∗ (x ∗ h − y) . (7)

Following from its definition, the Lipschitz constant of ∇L0d , noted α0, is

α0 = 1

2σ 2 ρ
(
2hπ ∗ h ∗ In2

)
. (8)

Following [32], we set the value of λ0 such that it is proportional to the standard
deviation map of φ∇L0d(xT ). We notice that for x = xT , we have x ∗ h − y equal to
−b which is also a white Gaussian noise of variance σ 2 In . Consequently,

φi ∗ ∇L0d(xT ) = − 1

σ 2 φi ∗ hπ ∗ b ,∀i ∈ {1, . . . , I }. (9)

It follows that φ∇L0d(xT ) is colored Gaussian noise, with variance

Σ0 = 1

σ 2

[(
φi ∗ hπ ∗ In2

) (
φi ∗ hπ ∗ In2

)
]

i∈{1,...,I }︸ ︷︷ ︸
:=(Σ0i )i∈{1,...,I }

. (10)

We then set

λ0 = [
κ[i] · diag (Σ0i )

]
i∈{1,...,I } = 1

σ 2

(
κ[i] · ‖φi ∗ hπ‖221n2

)

i∈{1,...,I } , (11)

where κ is a vector in R
I+1 of the form (0, q, . . . , q, q + 1), assuming that the com-

ponents of φ are arranged gradually from the coarse scale φ0 to the finest scale φI . In
this work, we set q = 4.
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Finally, we approximate the proximal operator of the non-differentiable part, L0p,
of the the loss function. To do so, let us first recall the exact forms of the proximal
operators of ι+ and ‖λ � ·‖1, with λ ∈ R

(I+1)×n×n
+ :

proxι+(x) = (x)+, (12)

where ∀k ∈ {1, . . . , n2},

(x)+[k] = max (x[k], 0) , (13)

and

prox‖λ�.‖1(x) = STλ(x), (14)

where STλ is the soft-thresholding operator, defined ∀k ∈ {1, . . . , (I + 1)n2} as

STλ(x)[k] =
{
x[k] − sgn (x[k]) λ if |x[k]| ≥ |λ[k]|
0 otherwise

(15)

Nevertheless, in practice, the hard-thresholding operator is preferred over the soft-
thresholding in order to reduce the bias introduced by image restoration [4,30]. Let
HTλ denote the hard-thresholding operator, defined ∀k ∈ {1, . . . , (I + 1)n2} as

HTλ(x)[k] =
{
x[k] if |x[k]| ≥ |λ[k]|
0 otherwise

. (16)

From these, we define

pλ0
(x) =

[
φ−1 (HTλ0 [φ (x)]

)]

+ , (17)

the approximation of proxL0p
we will use in the present work.

Remark pλ0
relies on two approximations. The first is related to the starlet, which is

redundant (thus non-orthogonal), as an orthogonal transform. The second is due to
assuming that the proximal operator of the sum of two non-differentiable terms is the
composition of the proximal operators of the terms, which does not hold in general.

The implementation of SRAused in thiswork is based on a proximal splitting frame,
more precisely, on forward-backward splitting methods [32]. The resulting algorithm
is given in Algorithm 1. We still need to set the stopping criterion, A; the first-guess,
t ∈ R

n×n ; αε and λ̂0 which are respectively the estimations of α0 and λ0.
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Algorithm 1 SRA algorithm
Task: Restore xT using y and h.
Parameters: ε > 0, boolean A.
Initialization: x(0) ← t , β ← α−1

ε
while not(A) do

x(i+1) ← p
βλ̂

[
x(i) − β∇L0d

(
x(i)

)]

i ← i + 1
end while
return x(i)

We compute αε by using the power iteration method to obtain an estimation of α,
and then we multiply the output by (1+ ε) to make sure that we did not go below the
lowest upper bound (for this paper, we set ε = 0.05). λ̂0 is computed using Eq. 11.
And we set t to 1

n2
1n2 .

For the stopping criterion, we considered two cases:

The denoising case (h = δ): here the problem is well-conditioned, and we set A
to ‘i ≤ Ni ’ where Ni is the number of iterations. For the numerical experiments
we set Ni to 40.
Thegeneral case: here the problem is ill-conditioned, prompting us to set A to ‘i ≤
Ni and

∣
∣∣∣

[
L
(
x (i)

)+L
(
x (i−1)

)]−[L(x (i−2)
)+L

(
x (i−3)

)]

L(x (i−2))+L(x (i−3))

∣
∣∣∣ ≤ c’. In the present experiments,

we set Ni = 150 and c = 10−6.

4 Deconvolution with Shape Constraint

4.1 The Shape Constraint

Ideally, the shape constraint should take the form of a data fidelity term in a space
that corresponds to the ellipticity. However the ellipticity, e(x), as defined in Eq. 3 is
a non-linear function of the galaxy image, x . We thus express it as a combination of
linear quantities, which will prove easier to handle mathematically. In [2], it is shown
that the ellipticity can be rewritten using scalar products. Analogously, we derive in
Appendix A the following formulae:

e1(x) = 〈x, u3〉 〈x, u5〉 − 〈x, u1〉2 + 〈x, u2〉2
〈x, u3〉 〈x, u4〉 − 〈x, u1〉2 − 〈x, u2〉2

,

e2(x) = 2(〈x, u3〉 〈x, u6〉 − 〈x, u1〉 〈x, u2〉)
〈x, u3〉 〈x, u4〉 − 〈x, u1〉2 − 〈x, u2〉2

,

(18)

with (uk)k∈{1,...,6} in R
6×n×n , defined for all i and j in {1, . . . , n} as

u1[(i − 1)n + j] = (i), u2[(i − 1)n + j] = ( j),
u3[(i − 1)n + j] = (1), u4[(i − 1)n + j] = (i2 + j2),
u5[(i − 1)n + j] = (i2 − j2), u6[(i − 1)n + j] = (i j).

(19)
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Fig. 2 Representation of the shearlet bands with 3 scales

Equation 18 shows that the ellipticity information is contained in the set of 6 scalar
products. Additionally, in Eq. 19, we can see that (uk)k∈{1,...,6} are constant vectors.
The scalar products are therefore all linear functions of x . Consequently, we choose
them as building blocks for the shape constraint, instead of directly using the ellipticity
(which is not a linear function of x). From this, we give a preliminary formulation of
the constraint:

M0(x) =
6∑

i=1

ωi 〈x ∗ h − y, ui 〉2 , (20)

where the components of (ωi )i∈{1,...,6} are real valued scalar weights.
As discussed in Sect. 2, the quantities in Eq. 20 are extremely sensitive to noise. A

natural way to increase the robustness of our shape constraint would be, in analogy
with the ellipticity estimator of Eq. 5, to apply a weighting function g. This choice,
however, comes with the burden of correctly choosing g. A fixed window function
would lack flexibility and likely lead to poor estimators of ellipticity for some objects
y. Fitting g to y would improve flexibility, but require an additional preprocessing
step.

An alternative approach is to apply the constraint on many windows of different
sizes and orientations, so that at least one of them is a good fit to y. To find such a
set of windows, we consider curvelet-like decompositions [31,32] where all the bands
correspond to windows with different orientations, and every scale corresponds to a
different size. Shearlets are particularly appropriate for our ends, as can be seen from
Fig. 2. This choice was also motivated by the two following properties [18,36]:

– Anistropy: Ellipticity is, itself, ameasure of anisotropy and the use of the shearlets,
which are an anisotropic transform, should help us discriminate objects according
to this criterion.

– Grid conservation: The scaling and shearing operations that transition from one
shearlet band to another conserve the points on the grid, which adds numerical
stability.
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Let ψ = (
ψ j
)
j∈{1,...,J } denote the shearlet transform operator, with J its chosen

number of components. We formulate the shape constraint as follows:

M(x) =
6∑

i=1

J∑

j=1

ωi j
〈
ψ j (x ∗ h) − ψ j (y), ui

〉2
, (21)

where
(
ωi j
)
i∈{1,...,6}
j∈{1,...,J }

are real-valued scalars (see Sect. 4.3 for their practical selection).

By taking into account the fact that the shearlet transform is a linear operator, and
denoting ψ∗

j the adjoint operator of ψ j for all j in {1, . . . , J }, we have

M(x) =
6∑

i=1

J∑

j=1

ωi j

〈
x ∗ h − y, ψ∗

j (ui )
〉2

. (22)

Wavelet moments [6,9] and curvelet moments [8,22] have been similarly used in
the past, but only for classification applications.

After formulating the constraint, we will put it into use by adding it to a sparse
restoration algorithm that computes a solution to Eq. 1. We achieve this by creating
the corresponding loss function, exhibiting its properties and, finally, building an
algorithm that minimizes it: SCORE.

4.2 The Loss Function

Combining the shape constraint from Eq. 22 and the loss function of SRA from Eq. 6,
we obtain the SCORE loss function,

L(x) =

:=Ld (x), differentiable part
︷ ︸︸ ︷
1

2σ 2 ‖x ∗ h − y‖22 + γ

2σ 2 M(x)
︸ ︷︷ ︸

shape constraint

+
:=L p(x), non-diffrentiable part
︷ ︸︸ ︷
‖λ � φ(x)‖1 + ι+(x) , (23)

where γ ∈ R+ is the trade-off between the data-fidelity term and the shape constraint
and λ is, as before, a weighting matrix with non-negative entries.

Before expressing the main properties of L , let us give a reformulation of its dif-
ferentiable part, Ld . Namely, let us show that it can be recast as a single data-fidelity
term with a modified norm. As a starting point, on the one hand, we have

γ

2σ 2 M(x) = γ

2σ 2

∑

i, j

ωi j

〈
x ∗ h − y, ψ∗

j (ui )
〉2

, (24)

= γ

2σ 2

∑

i, j

ωi j

([
ψ∗

j (ui )
]


[x ∗ h − y]

)
 ([
ψ∗

j (ui )
]


[x ∗ h − y]

)
,

(25)
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= 1

2σ 2 (x ∗ h − y)
 γ
∑

i, j

:=Qi j�0
︷ ︸︸ ︷

ωi jψ
∗
j (ui )

[
ψ∗

j (ui )
]


︸ ︷︷ ︸
:=Q�0

(x ∗ h − y) . (26)

Similarly, on the other hand, we have

1

2σ 2 ‖x ∗ h − y‖22 = 1

2σ 2 (x ∗ h − y)
 In (x ∗ h − y) . (27)

By summing Eqs. 26 and 27 , we obtain

Ld(x) = 1

2σ 2 (x ∗ h − y)
 (In + γ Q)
︸ ︷︷ ︸

:=S�0

(x ∗ h − y) , (28)

Ld(x) = 1

2σ 2 ‖x ∗ h − y‖S . (29)

We can thus interpret the weighted data-fidelity term in Eq. 29 as an extension of the
space of the data-fidelity. When using it, we are effectively not only considering the
image space by itself, but also taking the space of scalar products of M into account.

4.3 Properties of L

Analogously to Sect. 3, we first determine the values of the constants (other than
γ , which we study in detail in Sect. 5.1) that appear in L , and how to handle its
differentiable and non-differentiable parts within an optimization framework.

To determine
(
ωi j
)
i∈{1,...,6}
j∈{1,...,J }

in (22), let us impose that the unweighted data-fidelity

and the shape constraint exert the same relative influence when γ is 1. In addition,
without any further prior, we want all components of Q to have equal influence. With
no guarantee of orthogonality, we then impose the following conditions

⎧
⎪⎨

⎪⎩

‖In‖F =
6∑

i=1

J∑

j=1

‖Qi j‖F,

‖Qi j‖F = ‖Qkl‖F, ∀i, k ∈ {1, . . . , 6} , ∀ j, l ∈ {1, . . . , J } .

(30)

Solving the system in 30, leads to:

ωi j = n
∥
∥∥ψ∗

j (ui )
∥
∥∥
2

2

, ∀i ∈ {1, . . . , 6} , ∀ j ∈ {1, . . . , J }. (31)

The gradient of Ld follows from Eq. 28:

∇Ld(x) = 1

2σ 2 2hπ ∗ S (x ∗ h − y) . (32)
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Its Lipschitz constant, noted α, is

α = 1

2σ 2 ρ (2hπ ∗ h ∗ S) . (33)

In order to set λ, we once again propagate residual noise. Since

φi ∗ ∇Ld(x) = − 1

σ 2 φi ∗ hπ ∗ Sb,∀i ∈ {1, . . . , I } , (34)

φLd(x) is colored Gaussian noise, with variance

Σ = 1

σ 2

[
(φi ∗ hπ ∗ S) (φi ∗ hπ ∗ S)


]

i∈{1,...,I }︸ ︷︷ ︸
:=(Σi )i∈{1,...,I }

. (35)

This allows us to chose

λ = [
κ[i] · diag (Σi )

]
i∈{1,...,I } . (36)

Lastly, similar to Sect. 4.2, we approximate proxL p
by

pλ(x) =
[
φ−1 (HTλ [φ (x)])

]

+ . (37)

4.4 Algorithm

The SCORE algorithm is given in Algorithm 2. As with Sect. 3, we also need to set
the stopping criterion, A; the first-guess, t ∈ R

n×n ; αε and λ̂ which are respectively
the estimations of α and λ.

Algorithm 2 SCORE algorithm
Task: Restore xT using y and h.
Parameters: γ , ε > 0, boolean A.
Initialization: x(0) ← t , β ← α−1

ε
while not(A) do

x(i+1) ← p
βλ̂

[
x(i) − β∇Ld

(
x(i)

)]

i ← i + 1
end while
return x(i)

As forAlgorithm 1,we computeαε by using the power iterationmethod to obtain an
estimation of α, and then multiplying the output by (1+ ε) (for this paper, ε = 0.05).
For the other variables, we considered:



88 Page 12 of 22 Journal of Fourier Analysis and Applications (2021) 27 :88

The denoising case (h = δ): here the problem is well-conditioned, therefore we
set A to ‘i ≤ Ni ’ where Ni is the number of iterations. To set t , we gave it the
value of the output of SRA. Finally, we directly compute λ̂ using the formula in
Eq. 36.
The general case: here the problem is ill-conditioned, which leads us to set A

to ‘i ≤ Ni and

∣
∣∣∣

[
L
(
x (i)

)+L
(
x (i−1)

)]−[L(x (i−2)
)+L

(
x (i−3)

)]

L(x (i−2))+L(x (i−3))

∣
∣∣∣ ≤ c’. We choose the first

guess t = 1
n2

�. To compute λ̂, we generate G realisations of white Gaussian noise

of variance σ 2 In2 . In this paper, we set c to 10
−6 and G to 100.

Assuming that each image contains only one galaxy such that all of its active pixels
are connected, we add a post-processing step to remove the other isolated blobs in the
output image. Todo so,wemask the isolated blobs byfirst binarizing each output image
using its 80th percentile pixel value as a threshold. Then, under the safe assumption
that the galaxy of interest should correspond to the largest blob, we set every other
blob’s pixels to 0.

5 Numerical Experiments

In this section, we perform numerical experiments on simulated galaxy images. We
start by describing the dataset, then detail the implementation framework used. We
also present two experiments, one on denoising and one on deconvolution.

5.1 Dataset & Implementation

To build our dataset, we generate 300 galaxy images, simulated using parameters fitted
on real galaxies from the catalog COSMOS [20] and 300 PSF images with a Moffat
profile. Each image has 96× 96 pixels. For further details on the data generation, see
Appendix B. To create the observations, we convolve each galaxy with a PSF then
add noise.

Regarding noise levels, we use the following definition for the signal-to-noise ratio
(SNR) of an observation y of xT :

SNR(y) = ‖xT ‖2
σ

.

The chosen SNR levels are 40, 75, 150 and 380, with 300 observations generated for
each.
The implementation was done using Python 3.6.8, ModOpt 1.3.0,1 Alpha-
Transform2 and Matplotlib [13].

In order to study the influence of γ from Eq. 23, we perform a two-step grid search
by first determining the magnitude of the optimal parameter, then testing a finer grid

1 https://github.com/CEA-COSMIC/ModOpt.
2 https://github.com/dedale-fet/alpha-transform.

https://github.com/CEA-COSMIC/ModOpt
https://github.com/dedale-fet/alpha-transform
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Table 1 Values of γ∗ SNR Denoising Full restoration

40 1.2 1.2

75 0.8 1.6

150 1.0 1.2

380 0.8 0.6

of values in that range. The criterion chosen is

γ∗ = argmin
γ

δe(γ ), where δe(γ ) = mean
i

[
MSE

(
e
(
x̂γ,i

))]
, (38)

such that mean
i

(xi ) is the mean of (xi )i over i and x̂γ,i is the SCORE estimation of the

i th galaxy with trade-off parameter equal to γ . The resulting γ∗ are shown, per SNR
level, in Table 1. Its value is close to 1 in all cases.

5.2 Results

5.2.1 Denoising

We first consider the denoising case (h = δ). The top row of Fig. 3 shows an
example of an original galaxy image and its corresponding degraded observation, the
center row shows the denoised images with both SCORE and SRA, and the bottom
row the corresponding residual images. Figure 4 shows the MSE and ellipticity errors
δe as a function of SNR.

We can see that SCORE leads to a slight degradation in pixel MSE, compared to
SRA. This is not unexpected as the latter’s data fidelity term is entirely expressed
in the image domain, while that of SCORE is shared with a shape component, as
shown in Sect. 4.2. SCORE’s ellipticity errors are significantly reduced, by a factor of
about 2.

5.2.2 Deconvolution

Similarly, Fig. 5 shows an example galaxy, its recovered profiles with both approaches,
and the corresponding residuals, while Fig. 6 shows the distributions of pixel and
ellipticity errors at all SNRs.

In the case of deconvolution, SCORE performs better than SRA for both MSE and
ellipticity errors. Indeed, the MSE yielded by SCORE is lower by at least 16% (and
36.3% at most) compared to SRA. The example of Fig. 6 illustrates that SCORE’s
output has a smoother profile,with a better restoration of the tail of the galaxy compared
to SRA.Additionally, the residual of SCORE is, towards the center of the object, fainter
than that of SRA.

We observe different trends when looking at pixel MSE between the denoising case
and the full restoration one. We believe this is due to the different conditioning of the
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Fig. 3 Denoising results of galaxy #38 for SNR=75. Top: original image and observed data (i.e. blurred
image with noise). Center: denoised images with SCORE and SRA. Bottom: residual images with SCORE

and SRA
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Fig. 4 Left: relative MSE per SNR of the galaxies for the denoising experiment. Right: ellipticity error δe
per SNR. In both cases, the curves correspond to the mean per SNR and the vertical bars to the standard

deviation

two problems. The deconvolution is more ill-conditioned than a simple denoising.
Therefore, the broader the space of solutions, the higher the chance that an additional
constraint would bring the solution closer to the ground truth.

In terms of ellipticity, SCORE’s δe is not only lower than SRA, but seems also
less biased and more consistent according to the error bars. In the denoising case, it
is 44.1% at least (and 70.3% at most) lower, and in the deconvolution case, 49.5% at
least (and 62.3% at most). Figures 3 and 5 show that the galaxy’s profile and its shape
are better preserved with SCORE than with SRA.

6 Reproducible Research

In the spirit of repeatable and reproducible research, all the codes and the resulting
material have been made publicly available on GitHub at the following link: https://
github.com/CosmoStat/score. In addition, at the end of the description of each figure,
this icon provides a hyperlink to a Jupyter Notebook that shows how to generate
the figure.

7 Conclusion

In order to better preserve the shapes of galaxies during a restoration process, we
have proposed a new regularization term, based on the second-order moments. We
have shown that our shape constraint can easily be plugged into a sparse recovery
algorithm, leading to a new method called SCORE. For denoising, when comparing
to sparse recovery, we have shown that adding the shape constraint leads to a trade-
off between the mean square error and the galaxy ellipticity error, where the latter is
reduced by at least 44.1%, while theMSE is, however, increased by at most 28.5%. For
deconvolution, both are improved (by at least 49.5% for the ellipticity error and 16.9%
for theMSE).We believe this different behavior between denoising and deconvolution
is due to the fact that the space of potential solutions is large in the deconvolution

https://github.com/CosmoStat/score
https://github.com/CosmoStat/score
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Fig. 5 Deconvolution results of galaxy #16 for SNR=75. Top: original image and observed data (i.e. blurred
imagewith noise). Center: deconvolved imageswith SCORE and SRA.Bottom: residual images for SCORE

and SRA, using the same color bar
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Fig. 6 Same as Fig. 4, for the deconvolution experiment

case, and that the additive shape regularizing term helps to better constrain the inverse
problem.

Additionally, SCORE contains only one parameter that cannot be chosen analyti-
cally, namely the trade-off between the data-fidelity and the shape constraint terms,
γ .

We have used in this paper the Forward-Backward sparse deconvolution algorithm
for its simplicity, but any more recent proximal algorithm such as Condat-Vu [7,
37] could be used as well. The shape constraint could also easily be added to other
existing deconvolution techniques, such as Total Variation [38] or deep learning [14,
33]. Finally, the shape constraint could also be improved by using moments at higher
orders and also in different spaces [11,16,29,39].

Acknowledgements We would like to thank Christophe Kervazo, Tobías Liaudat, Florent Sureau, Kon-
stantinos Themelis, Samuel Farrens, Jérôme Bobin, Ming Jiang, Axel Guinot and Jan Flusser for useful
discussions.

Appendices

A Expressing Galaxy Ellipticity with Inner Products

Assume that we have x ∈ R
n×n such that

e(x) = μ2,0(x) − μ0,2(x) + 2iμ1,1

μ2,0(x) + μ0,2(x)
, (39)

where μs,t is a centered moment of order (s + t), defined as follows:

μs,t (x) =
n∑

i=1

n∑

j=1

x [(i − 1)n + j] (i − ic)
s( j − jc)

t , (40)

and (ic, jc) are the coordinates of the centroid of the two dimensional image encoded
by x :
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ic=
∑n

i=1
∑n

j=1 i · x[(i − 1)n + j]
∑n

i=1
∑n

j=1 x[(i − 1)n + j] and jc=
∑n

i=1
∑n

j=1 j · x[(i − 1)n + j]
∑n

i=1
∑n

j=1 x[(i − 1)n + j] .

(41)

We want to show that

e(x)= 〈x, u3〉 〈x, u5〉 − 〈x, u1〉2 + 〈x, u2〉2 + 2i (〈x, u3〉 〈x, u6〉 − 〈x, u1〉 〈x, u2〉)
〈x, u3〉 〈x, u4〉 − 〈x, u1〉2 − 〈x, u2〉2

,

(42)

where ∀i, j ∈ {1, . . . , n},

u1[(i − 1)n + j] = (i), u2[(i − 1)n + j] = ( j),
u3[(i − 1)n + j] = (1), u4[(i − 1)n + j] = (i2 + j2),
u5[(i − 1)n + j] = (i2 − j2), u6[(i − 1)n + j] = (i j).

(43)

To do so, we only have to express μ0,2(x); μ1,1(x) and μ2,0(x) using (〈x, ui 〉)1≤i≤6.
We start by introducing ms,t (x), the non-centered moment of order (s + t),

ms,t =
n∑

i=1

n∑

j=1

x [(i − 1)n + j] i s j t . (44)

We then express μ0,2(x); μ1,1(x) and μ2,0(x) using the non-centered moments (of
order equal or less than 2), as follows:

μ0,2(x) = m0,2(x) − m2
0,1(x)

m0,0(x)
,

μ1,1(x) = m1,1(x) − m0,1(x) · m1,0(x)

m0,0(x)
,

μ2,0(x) = m2,0(x) − m2
1,0(x)

m0,0(x)
.

(45)

Expressing these non-centered moments using (〈x, ui 〉)1≤i≤6, we obtain

m0,0(x) = 〈x, u3〉 , m1,0(x) = 〈x, u1〉 ,

m0,1(x) = 〈x, u2〉 , m1,1(x) = 〈x, u6〉 ,

m0,2(x) = 1
2 (〈x, u4〉 − 〈x, u5〉) , m2,0(x) = 1

2 (〈x, u4〉 + 〈x, u5〉) .

(46)
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Using Eq. 45 and 46, we can express μ0,2(x), μ1,1(x), and μ2,0(x) using
(〈x, ui 〉)1≤i≤6:

μ0,2(x) = 1

2
(〈x, u4〉 − 〈x, u5〉) − 〈x, u2〉2

〈x, u3〉 ,

μ1,1(x) = 〈x, u6〉 − 〈x, u1〉 〈x, u2〉
〈x, u3〉 ,

μ2,0(x) = 1

2
(〈x, u4〉 + 〈x, u5〉) − 〈x, u1〉2

〈x, u3〉 .

(47)

We finish the proof by inserting Eq. 47 in Eq. 39 to obtain Eq. 42.

B Dataset Generation

To generate the galaxy and the PSF images, we chose simple and commonly used
profiles in astrophysics which are repectively Sersic and Moffat profiles. First, the
light intensity IG of a galaxy is modeled with a Sersic using the following formula:

IG(R) = Ie · exp
(

bn

[(
R

Re

) 1
n − 1

])

, (48)

where n ∈ R+ is the Sersic index, Re is the half-light radius, Ie is the light intensity at
Re and bn satisfies γ (2n; bn) = 1

2Γ (2n) with Γ and γ respectively the Gamma func-
tion and the lower incomplete gamma function. We draw the values of the parameters
n, Ie and Re from the catalog COSMOS [20] to generate isotropic galaxy images to
which we will later give a non-zero ellipticity.

Second, the light intensity IP of a PSF is modeled with a Moffat profile using the
following formula:

IP (R) = 2
β − 1

σ 2

(

1 +
[
R

σ

]2)−β

, (49)

where β is set to 4.765 (cf. Ref. [34]) and σ is calculated using the following relation:

FWHM = 2σ

√

2
1
β − 1, (50)

where FWHM is the FullWidthHalfMaximumof theMoffat profile. Its value is drawn
from a uniform distribution between 0.1 and 0.2 arcsec, which correspond respectively
to Hubble Space Telescope3 and Euclid space telescope4 observations. This gives us
preliminary, isotropic PSF images.

3 https://www.nasa.gov/mission_pages/hubble/main/index.html.
4 https://www.euclid-ec.org.

https://www.nasa.gov/mission_pages/hubble/main/index.html
https://www.euclid-ec.org
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We finally give an ellipticity to the both these galaxy and PSF images. To do so,
we draw the values of the ellipticity components from a centered normal distribution
truncated between−1 and 1. The standard deviations are chosen as 0.3 for the galaxies
and 0.03 for the PSF [2].
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