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▪ Microscale turbulence  cross-field transport 
degrades the confinement unless a transport 
barrier exists

ExB velocity in DIII-D tokamak 

Core SOL

Core-edge-wall interaction influences tokamak confinement 
quality

▪ Turbulence regulated by ExB sheared flow at LCFS

▪ Goals : 1) study of kinetic plasma wall interaction 
2)  implementation in GYSELA gyrokinetic code (WIP)

core SOL

𝑬𝒓 in SOL influenced by plasma-wall interaction
[Stangeby]

[Wagner1982]

[Ritz 1991]
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▪ Electrons: low inertia compared to ions

9/28/2023Yann Munschy – EFTC 2023

Plasma wall interaction results from absorbing wall and inertia 
difference between ions and electrons

𝜆𝐷 =
𝜀0𝑇0

𝑛0𝑒2
≈ 10−5𝑚

[Stangeby 2000, …Ghendrih 2011 and many more]
Wall (dense, cold) 
sink of particles 

𝑛𝑒

𝑛𝑖

𝜙
Δ𝜙𝑠ℎ

Plasma
(hot, low density)

Debye Sheath
(few lD)

Repels slow electrons Accelerates ions

[Bohm1949] In avg. no net current at wall 

▪ Positively charged layer: Debye sheath (Poisson)

▪ Main properties of sheath: 

▪ 𝜆𝐷 ≪ 𝜌𝑐 turbulent scale → sheath difficult to 
describe in turbulence code, GK quasineutrality ≠ 
Poisson eq. (no ∥ Laplacian)
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Fluid theory of plasma-wall 
interaction1
Comparison with kinetic 
simulations2
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Simplified 1D geometry: single magnetic field line, no curvature

open field lines Particle transport 
core → edge

Core
(closed field 

surfaces)

Divertor
(plasma-wall interaction)

plasma-wall interaction
(sheath)

≈10−6m

Particle source
quasineutral plasma

≈10m

9/28/2023 5/21
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1D fluid model to describe plasma along a magnetic field line

Heat flux

9/28/2023

Closure required !
(zero for a maxwellian) 

Density

𝑥 : position along 
            magnetic field line

Particle source

Energy source 𝑎 ∈ {𝑒, 𝑖} ions and electrons

particle flux momentum flux

Energy 
flux

Conservation of density

Conservation of momentum

Conservation of energy

6/21



Particle flux governed by the source
Total pressure constant in quasineutral limit 

▪ Quasineutral limit: 

Source term shape

Total pressure

Yann Munschy – EFTC 2023

Steady state eq. 

7/21
▪ Rq:                      at sheath entrance 
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Quasineutral plasma flow is necessarily subsonic

from Maxwellian closure

▪ Control parameter

Constant 
(quasineutral plasma)

in quasineutral
plasma

increases with

is maximum after 
source region

increases

Mach number

8/21
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Supersonic transition driven by quasineutrality breakdown

decreases with 
quasineutrality
breakdown

9/28/20239/28/2023

▪ Outside source region

▪ At the sheath entrance

▪ At the sheath entrance

Decrease of A driven by quasineutrality
breakdown

▪ Scale separation sheath size << plasma size   
→ in sheath

9/21



▪ Il

9/28/2023Yann Munschy – EFTC 2023

Sound speed critically depends on the chosen closure

At sheath entrance

Similar expression for 𝐴𝑠

closure-dependent ! 

▪ Polytropic closure

▪ Maxwellian closure 

▪ High order linear closure with

▪ Isothermal closure

[Ghendrih2011]
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Fluid theory of plasma-wall 
interaction1
Comparison with kinetic 
simulations2
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Boltzmann-Poisson system 1D in space and 1D in velocity to study 
kinetic plasma wall interaction

▪ Normalizations:

time length velocity

mass ratio

Electrons & ions 
distribution functionNormalized Boltzmann eq.

Normalized Poisson eq.

12/21
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Single species collisions → Fokker-Planck operator
Inter species collisions → fluid-like momentum/energy exchange

Momentum & energy exchange terms 

[Dif-Pradalier2011, Estève 2015]   

Intra species Fokker-Planck collision operator
Collisionality decreases 

with velocity

Inter species collision operator

13/21



9/28/2023

Wall = particle, momentum, energy sink immersed in plasma

▪ Relaxation of        towards     in the wall

Simulation box 
edges

▪ Particles, momentum energy absorption in 

wall

▪ Wall immersed inside simulation domain

▪ No boundary condition @ plasma-wall 

transition

▪ Decorrelate sheath physics from numerical BC

Yann Munschy – EFTC 2023 14/21
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Expected kinetic physics: ion accelerated towards the wall
slow electrons reflected back to plasma

▪ Acceleration of ions

Yann Munschy – EFTC 2023

Sheath entrance

All ions 
absorbed in wall

▪ Reflection of slow electrons

Sheath entrance

Fast electrons 
absorbed in wall

slow electrons 
reflected in plasma

▪ Cut-off velocity between fast and slow electrons

15/21
▪ Steady state at wall: 
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Ion distribution function at sheath entrance:
acceleration & no ions coming back from the wall

Yann Munschy – EFTC 2023

▪ Positive mean velocity 
(Bohm criterion ?)

▪ No ions coming back 
from wall

▪ Prediction for 𝑓𝑖

𝑓𝑖  𝑝𝑟𝑒𝑑.
𝑓𝑖

Collisions

Competition between 
particle source & collisions

Source 
term 
shape

▪ Simulation 𝑓𝑖

16/21
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Electron distribution function at sheath entrance: 
slow electrons reflected into plasma, fast ones absorbed

Yann Munschy – EFTC 2023

𝑓𝑒

Source 
term

▪ Prediction for

𝑓𝑒 𝑝𝑟𝑒𝑑.

𝑓𝑒

lost 
electrons

𝑣𝑐−𝑣𝑐

reflected 
electrons 

▪ Simulation 𝑓𝑒

Finite strength of penalization
& collisions

lost 
electrons

reflected 

−𝑣𝑐 𝑣𝑐
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A parameter constant after source region
→ fluid theory suggests subsonic regime

▪ Maxwellian 
closure

W
al

l
Particle 
  source

W
al

l

Particle 
source

Yann Munschy – EFTC 2023 18/21



Limit of fluid theory : Mach number cannot only depend on A

W
al

l

Particle 
source

Yann Munschy – EFTC 2023

W
al

l

Particle 
source

𝑴

𝒖𝒊

𝒄𝒔

19/21
From closure 𝑀 increases 

with constant 𝐴 Incompatible with fluid theory



Non vanishing electron heat flux:

50% of electron 
energy flux

Electrons

Yann Munschy – EFTC 2023

30% of 
total 
energy flux

Energy flux = convective + heat

convective
convective

9/28/2023 20/21

Maxwellian closure irrelevant No known closure leads to 
correct prediction of heat flux



▪ Comparison of kinetic simulation of plasma-wall interaction with fluid theory

▪ Trajectories of particles in plasma highlight kinetic sheath physics at play :
o Acceleration of ions, reflection of slow electrons
o Collisions 

▪ Reduced fluid model fails to predict plasma behavior :

o Sound speed critically depends on closure : Bohm’s criterion is unoperational
o Vanishing heat flux closure not relevant
o Validity of other closures can be questioned : isothermal, zero collisional flux, high order 

moments…
o Sheath heat transmission factor in good agreement with predictions (6% difference)

Conclusion

Kinetic plasma-sheath self organization[Munschy et al. 2023]

Kinetic plasma-wall interaction using immersed 
boundary conditions

[Munschy et al. 2023]
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Sheath heat transmission factor: good agreement with predictions

9/28/2023 229/28/2023

Sheath 
entrance wall

𝜸

𝛾pred.

▪ and measured experimentally 
(Langmuir probes)

gives an estimation of deposited 
power on divertor plates

▪ Usual value    

▪ Good agreement with kinetic code
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Scale separation  supersonic transition at sheath entrance

9/28/2023

▪ Scale separation
≈10μm

𝑥0 𝑥𝑤

≈10m ≫

Quasineutral 

plasma

sheat
h

Sheath horizon 
at 𝑧 = 𝑥/𝜆𝐷 → +∞ 

Quasineutral 
plasma

𝑧0 +∞

▪ Expansion in powers of 
1/𝑧

▪ Adiabatic electrons : taken at sheath horizon 𝑧 →
+ ∞

▪ Poisson equation

𝐾 > 0

▪ E gives Supersonic transition at sheath 
horizon

Bohm’s criterionand 

[Ghendrih2011, Munschy2023] 9/28/2023
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Robust physics with respect to the choice of the penalization 
term

𝒋𝐭𝐨𝐭 conducting
insulating

𝝆 conducting
insulating

𝝓 − 𝝓𝐬𝐡

w
al

l
w

al
l

1. Constant coefficients : conducting wall 

Charge conservation from Boltzmann eq.

2. Adaptive coefficients : insulating wall

→ currents in 
wall

𝜕𝑡𝜌 + 𝜕𝑥𝑗tot =  −       {𝜈iw 𝑛i − 𝑛w

}−𝜈ew 𝑛e − 𝑛w
𝑗e + 𝑗i

𝜈iw = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝜈ew 𝑥, 𝑡 = 𝜈iw

𝑛i − 𝑛w

𝑛e − 𝑛w

Rhs. vanishing
→ no net current in wall

• Robust physics : almost identical potential drop in the sheath in 
both cases : focus on the conducting case in the following

24



𝑓𝑖
𝑓𝑒

Fast electrons 
absorbed in the 

wall

Bulk electrons 
reflected into 
the plasma

Escaping velocity:

𝑣c =
2𝑒 Δ𝜙sh

𝑚e𝑛𝑒

𝑛𝑖

𝜙Δ𝜙𝑠ℎ

Sheath entrance

Sheath

Wall

𝑠𝑖𝑛𝑘 =

Shape resembles sum 
of two Maxwellian with 
different temperatures : 
collisions vs. injection of 
particles by the source

Electron reemission from the 
wall 
• finite strength of 

penalization
& collisions

9/28/2023Yann Munschy – EFTC 2023

Distribution functions at sheath entrance

25
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Sheath entrance definition 

26



▪ Phase space characteristics for electrons in the 
whole plasma 

▪ Particle source fraction injected in passing region 
: 1% for a typical value of sheath potential drop 

▪ Without collisions trapped particles stay trapped 
while passing are absorbed in the wall 

▪ Collisions : necessary transfer mechanism 
between trapped and passing, and necessary 
condition to reach steady state (the particle 
source must be compensated by the sink in the 
wall region)

9/28/2023Yann Munschy – EFTC 2023

Collisions = detrapping mechanism trapped and passing 
Trapped 
electrons

Passing electrons

w
al

l

w
al

l

Center of 
plasma 27



Potential drop prediction [Stangeby]

Δ𝜙sh
pred.

=
𝑇e

sh

𝑒
log 2𝜋

𝑚e

𝑚i
𝑀2 1 +

𝑇i
sh

𝑇e
sh

-> Comes from  Γi
sh = Γe

+ pred

Escaping velocity:

𝑣c =
2𝑒 Δ𝜙sh

𝑚e𝑛𝑒

𝑛𝑖

𝜙Δ𝜙𝑠ℎ

Sheath entrance

Sheath

Wall

Γe
+ pred

𝑓e
sh, pred.

No flux
(symmetry)

Γe
+ pred = න

𝑣c

+∞

𝑑𝑣 𝑣𝑓e
sh, pred.

 With 𝑓e
sh, pred.

truncated maxwellian of temperature 𝑇e
sh

9/28/2023Yann Munschy – EFTC 2023

Using Stangeby’s prediction of the sheath potential drop to 
explain parametric dependencies

28



𝑓𝑒

Γe
+

Γe
−

Δ𝜙𝑠ℎ
𝑝𝑟𝑒𝑑.

=
 ෩𝑻𝒆

𝒔𝒉

𝑒
log 2𝜋

𝑚𝑒

𝑚𝑖
𝑀2 1 +

𝑇𝑖
𝑠ℎ

෩𝑻𝒆
𝒔𝒉

1 +
Γ𝑒

−

Γ𝑖
𝑠ℎ

Correction term 2: 
• Effective temperature to match forward flux to 

predicted Maxwellian flux

Potential drop prediction [Stangeby]

Δ𝜙sh
pred.

=
𝑇e

sh

𝑒
log 2𝜋

𝑚e

𝑚i
𝑀2 1 +

𝑇i
sh

𝑇e
sh

Correction term 1: 
• electron reemission from the wall due to finite 

penalization strength

Corrected potential drop prediction 

Γe
−Γi

sh = Γe
++ ≤ Γe

+ Γe
− = න

−∞

−𝑣c

𝑑𝑣 𝑣𝑓e
sh 

Γe
+ pred

= න
𝑣𝑐

+∞

𝑑𝑣 𝑣 maxw. (𝑇e
sh) ≠ න

𝑣𝑐

+∞

𝑑𝑣 𝑣 maxw. ෩𝑻𝒆
𝒔𝒉 = Γe

+ Γe
+

Correction terms for the potential drop prediction  

9/28/2023Yann Munschy – EFTC 2023 29



W
al

l

Debye sheath 
entrance 9/28/2023

(Filled by collisions in 1D, 
Electric field as well in higher 
dimensions)

Ions trajectories in phase space: acceleration & gap 

Acceleration 
creates gap

𝑣

𝑥

𝑓𝑖

▪ kinetic energy

▪ No collisions → Hamiltonian 
invariant

30Yann Munschy – EFTC 2023



Debye 
sheath 

entrance

W
al

l

9/28/2023

Fast electrons overcome the sheath potential barrier

fast electrons 
(absorbed in wall)

Trapped electrons
(reflected in the 

plasma)

𝑣

𝑥

Empty phase space 
region

▪ kinetic energy

▪ No collisions → Hamiltonian 
invariant

𝑓𝑒

Yann Munschy – EFTC 2023 31



Relation 𝚫ഥ𝝓𝒔𝒉 ∝ 𝐥𝐨𝐠
𝒎𝒆

𝒎𝒊
 verified

• Electron reemission from the wall explains the 
difference observed between theory and 
simulation

𝑓𝑒
𝚪𝐞

− = න
−∞

−𝑣c

𝑑𝑣𝑣𝑓e
sh(𝑣) 

no correction

Δ ത𝜙shcorrected for 𝚪𝐞
−

prediction

Wall with currents / without currents

Δ𝜙sh
pred.

=
𝑇e

sh

𝑒
log 2𝜋𝑀2 1 +

𝑇i
sh

𝑇e
sh

1 +
𝚪𝐞

−

Γi
sh

×
𝑚e

𝑚i

Δ ത𝜙sh
pred.

=
𝑒Δ𝜙sh

pred.

𝑇e
sh

 − log Θ =
1

2
log

𝑚e

𝑚i

Θ

9/28/2023Yann Munschy – EFTC 2023

Ion-to-electron mass ratio dependency recovered

• Electron reemission : finite steepness of penalization 
mask & absorption of electrons in wall not perfect 

32



Linear relation 𝚫𝝓𝒔𝒉 ∝ 𝑻𝒆
𝒔𝒉 recovered

• The faster the electrons, the greater the potential drop

Δ𝜙sh
pred.

=
𝑇e

sh

𝑒
log 2𝜋

𝑚e

𝑚i
𝑀2 1 +

𝑇i
sh

𝑇e
sh

1 +
Γe

−

Γi
sh

Λ

𝑒Δ𝜙sh
pred.

Λ
= 𝑇e

sh

𝑒Δ𝜙sh/Λ
𝚪𝐞

− corrected

prediction

𝑒Δ𝜙sh/Λ
෩𝑻𝐞

𝒔𝒉 corrected

𝑓𝑒

Correction 1 : 
𝚪𝐞

−

Correction 2 : ෩𝐓𝐞
𝐬𝐡

9/28/2023Yann Munschy – EFTC 2023

Electron temperature dependency 𝚫𝝓𝒔𝒉 ∝ 𝑻𝒆
𝒔𝒉 recovered

33



9/28/2023

Existing solution for including sheath physics in GK codes

➢ Logical sheath
• At a point of the simulation / plasma boundary
• Count the number of ions going out of the plasma
• Absorb an equal number of the fastest electrons
• Reflect the other electrons back into the plasma 

→ Equality of ion and electron fluxes at plasma boundary
→ Equality of fluxes defines the electron threshold 

velocity

➢ Conducting sheath
• define electron threshold velocity is defined with 

the electric potential

• Absorb all outcoming ions, and electrons faster 
than 𝑣𝑐

• No direct constraint on electron and ion fluxes
• Idea : the potential at plasma boundary reacts to 

the current  

1

2
𝑚𝑒𝑣𝑐

2 = 𝑒𝜙𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

Yann Munschy – EFTC 2023 34
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1D1V code parallelized on GPU with non equidistant grid points 
to mesh Debye length

▪ Backward semi Lagrangian scheme for 
Boltzmann eq. 

▪ Cubic spline interpolation on non equidistant 
mesh
o Test bench for C++ version of GYSELA (5D 

gyrokinetic code)
▪ GPU parallelization

▪ 1 simulation: 20h on NVIDIA Tesla V100 (5120 
CUDA cores)

Yann Munschy – EFTC 2023

[Bourne2022]

10 points per 1 points per 

35



Intra species: 𝐶𝑎𝑎 𝑓𝑎 = 𝜕𝑣𝑎
𝐷𝑣𝑓𝑀𝑎𝜕𝑣𝑎

𝑓𝑎

𝑓𝑀𝑎
;  𝑓𝑀𝑎 =

𝑛𝑎

2𝜋𝑇𝑀𝑎
exp

1

2𝑇𝑀𝑎
𝑣𝑎 − 𝑢𝑀𝑎

2  

Inter species: 𝐶𝑎𝑏 𝑓𝑎 =
2𝑄𝑎𝑏

𝑀

𝑛𝑎𝑇𝑎

𝑚𝑎

2𝑇𝑎
𝑣𝑎 − 𝑉𝑎

2 −
1

2
𝐹𝑀𝑎 +

𝑅𝑎𝑏
𝑀

𝑛𝑎𝑇𝑎
𝑣𝑎 − 𝑉𝑎 𝐹𝑀𝑎

Conservation of density: ׬ 𝑑𝑣 𝐶𝑎𝑎 𝑓𝑎 = 0

Conservation of momentum: ׬ 𝑑𝑣 𝑣𝑎𝐶𝑎𝑎 𝑓𝑎 = 0

Conservation of energy: ׬ 𝑑𝑣 𝑣𝑎𝐶𝑎𝑎 𝑓𝑎 = 0
Gives 𝑇𝑀𝑎 𝑥, 𝑡 and 𝑢𝑀𝑎(𝑥, 𝑡)

𝑅𝑎𝑏
𝑀 = −𝑛𝑎𝜈𝑎𝑏 𝑢𝑎 −

𝐴𝑏

𝐴𝑎
𝑢𝑏 friction force (momentum transfer)

𝑄𝑎𝑏
𝑀 = −3𝑛𝑎

𝐴𝑏

𝐴𝑏+𝐴𝑎
𝜈𝑎𝑏 𝑇𝑎 − 𝑇𝑏 − 𝑢𝑎𝑅𝑎𝑏

𝑀 energy transfer

[Dif-Pradalier2011]

[Esteve2015]

9/28/2023Yann Munschy – EFTC 2023

Collisions

36



Escaping velocity:

𝑣c =
2𝑒 Δ𝜙sh

𝑚e𝑛𝑒

𝑛𝑖

𝜙Δ𝜙𝑠ℎ

Sheath entrance

Sheath

Wall

Γe
+ pred

𝑓e
sh, pred.

No flux
(symmetry)

9/28/2023Yann Munschy – EFTC 2023

Prediction for potential drop in the sheath region
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Breakdown of electron flux at sheath entrance

38



[Bourne 2022]

9/28/2023Yann Munschy – EFTC 2023

Numerical parameters for reference simulation

39
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Code verification : fluid conservation equations

40
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Effect of collisions on the distribution function shape

41
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