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A B S T R A C T

This article presents a physics-informed deep learning method for the quantitative estimation of the spatial
coordinates of gamma interactions within a monolithic scintillator, with a focus on Positron Emission
Tomography (PET) imaging. A Density Neural Network approach is designed to estimate the 2-dimensional
gamma photon interaction coordinates in a fast lead tungstate (PbWO4) monolithic scintillator detector. We
introduce a custom loss function to estimate the inherent uncertainties associated with the reconstruction
process and to incorporate the physical constraints of the detector.

This unique combination allows for more robust and reliable position estimations and the obtained
results demonstrate the effectiveness of the proposed approach and highlights the significant benefits of the
uncertainties estimation. We discuss its potential impact on improving PET imaging quality and show how the
results can be used to improve the exploitation of the model, to bring benefits to the application and how
to evaluate the validity of the given prediction and the associated uncertainties. Importantly, our proposed
methodology extends beyond this specific use case, as it can be generalized to other applications beyond PET
imaging.
1. Introduction

1.1. Context and objectives

Gamma photon detection is used in numerous industrial, medical
and security applications. It is often based on scintillating crystals
coupled with a light collection and readout system. The scintillator is
either pixelated, consisting on an array of small individual crystals, or
continuous, made of a large monolithic block. The choice between both
technologies is often based on a trade-off between sensitivity and res-
olution performances. For pixelated detectors, the spatial localization
of the detection is provided by the crystal impacted by the gamma
photon, whereas for continuous detectors, designated algorithms shall
be used to derive spatial information. Several algorithms have been
proposed, based either on prior knowledge of the physics of detection
or on a machine learning approach (Kawula et al., 2021). The main
objective of this work is the development of a physics informed deep
learning method for a quantitative estimation of the spatial coordinates
of the gamma interaction within a monolithic scintillator, including
uncertainties. The application framework is nuclear medicine imaging,
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more specifically the detection of 511 keV gamma photons in Positron
Emission Tomography (PET).

PET imaging is a powerful in vivo functional imaging modality
mainly used in oncology, neurology and cardiology. It is based on the
administration to the patient of a biomarker labeled with a radionuclide
that decays through positron emission, followed by the detection in
coincidence, outside the body, of pairs of 511 keV gamma photons
resulting from the annihilation of the emitted positrons with elec-
trons of surrounded media. The data acquisition process is followed
by the tomographic reconstruction of a three-dimensional image of
the biomarker distribution within the body. The quality of the re-
constructed image highly depends on the performances of the gamma
photon detectors in terms of sensitivity, spatial resolution, and temporal
resolution. The detector spatial resolution has a direct impact on the
contrast recovery of small structures in the image. A higher detection
efficiency translates into a higher number of detected coincidences,
resulting in a better signal-to-noise ratio (SNR) in the PET image. The
improvement of the coincidence resolving time (CRT), characterizing
the capability of a pair of detectors to resolve the difference between
vailable online 13 January 2024
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the times of interaction of the two 511 keV gamma photons detected
in coincidence, also helps for increasing the SNR in the image (Schaart,
2021). This principle is referred to as time-of-flight (ToF) PET.

State of the art clinical PET systems are based on pixelated detectors
made of LSO (lutetium oxyorthosilicate) or LYSO (lutetium–yttrium
oxyorthosilicate) crystals, with a pixel pitch between 3.5 and 5 mm.
These PET systems have, at best, a CRT of 210 ps (van Sluis et al.,
2019), an intrinsic spatial resolution in the reconstructed image of
3.5 mm (van Sluis et al., 2019) (about 3 mm at the detector level),
and an absolute sensitivity of ∼ 20 counts/sec/kBq (i.e. ∼ 2%) (Grant
et al., 2016). Major efforts are being made worldwide in nuclear instru-
mentation research groups to improve these parameters, in particular
to decrease the CRT below 100 ps, ideally down to 10 ps (Lecoq
et al., 2020). There is a trend toward the development of PET detectors
based on monolithic crystals for their higher sensitivity, since there
are no intercrystal gaps (Gonzalez-Montoro et al., 2021). Based on
the scintillation light distribution readout, dedicated neural networks
have recently been proposed to provide a single 3-dimensional gamma
photon interaction position within the monolithic crystal (see, for
example (Belov et al., 2023; Freire et al., 2022; Carra et al., 2022;
Jaliparthi et al., 2021; Kawula et al., 2021)). All these studies demon-
strate the benefit of using a machine learning approach for an accurate
position estimation.

In this study, we propose to address the question of the reconstruc-
tion of the 2-dimensional gamma photon interaction coordinates for
a fast lead tungstate (PbWO4) monolithic scintillator detector (Yvon
et al., 2020), that is not straightforward due to the specificity of
our acquisition system which is not a conventional pixelated pho-
todetector. Our system consists indeed in the use of a micro-channel
plate photomultiplier tube (MCP-PMT) which necessitates a dedicated
process to reconstruct gamma photon interaction parameters from the
acquired signal, as we describe in this paper. Moreover, we aim not
only to perform the reconstruction but to associate uncertainties on
the reconstruction. We will exploit and validate these uncertainties
to assess the reliability of the network prediction. This approach is
new in this field and the methodology we propose can be extended to
other applications on signal processing or sensor data analysis. In the
future, these spatial coordinates uncertainties could be used during the
tomographic reconstruction and potentially improve the quality of the
PET image.

1.2. Contributions and organization of the paper

Through this paper, we present a specific methodology that relies
on the paradigm of uncertainty estimation, which is a growing topic
in the scientific literature on Artificial Intelligence. Several approaches
are usually proposed, such as Bayesian Neural Network or Deep En-
sembles (Gawlikowski et al., 2021). In this paper, we use a Density
Neural Network, which is a relevant approach when the uncertainties
are dominated by fluctuations and random phenomenon in the data,
such as the source of variability during the scintillation process in our
detectors. This approach brings additional information thanks to the
uncertainties that are used to gain information on the prediction of
neural networks.

A dedicated methodology of exploitation and validation is presented
in this paper:

• The design of a dedicated loss function, based on a negative log-
likelihood of an assumed distribution. This distribution is often
assumed as a Gaussian distribution, but it is not restricted to
this type of distribution and can be adapted to the problem
to address. In our case, we decide to add physical constraints
through a truncation of a Gaussian distribution according to the
detector edges, which requires a specific implementation of the
loss function. We show that this approach brings improvements
2

for reconstructing specific events, especially close to the detector.
• The estimated uncertainties can be exploited to complete the pre-
diction of the neural network. The uncertainty can be evaluated
event by event to assess the confidence on the prediction of the
model. In our case, we show that we can statistically improve the
reconstruction resolution and this feature will be helpful in the
exploitation of the detector edges.

• The uncertainties are self-estimated by the Neural Network, thus
they are prone to the same biases as the classical prediction. Con-
sequently, the validation of the estimated uncertainty is required.
We use coverage plots as a possible approach to empirically verify
the relevance and reliability of these uncertainties.

We want to highlight that this whole methodology can be beneficial
for many applications of Deep Neural Network in regression tasks,
beyond the processing of scintillation detectors signals.

The paper is organized as follows. In Section 2, we describe the
gamma photon detector based on PbWO4, the Monte Carlo simulation
used to generate the training and testing datasets, and the preprocess-
ing of the detector raw data. Section 3 focuses on the methodology
of the deep learning approach used for this study, including the de-
scription of a baseline method for performance comparisons and the
definition and the architecture of the selected Density Neural Network.
Results are presented in Section 4. These results and the methodology
are discussed in Section 5.

2. Materials

2.1. Detector description

The ClearMind gamma detector (Fig. 1) is composed of a MCP-
PMT sealed by a monolithic PbWO4 crystal, acting both as the gamma
conversion crystal and as the optical window of the MCP-PMT. A
high quantum efficiency photoelectric layer is deposited on its inner
face. The direct deposition of a photocathode with a refraction index
superior to the refraction index of the PbWO4 crystal allows us to avoid
total reflection at the crystal/photocathode interface, thus maximizing
the photon collection efficiency of the module (Yvon et al., 2020). The
use of this ’’scintronic’’ crystal as an entrance window of a MCP-PMT
makes it possible to optimize the time resolution thanks to the excellent
electron transit time spread (∼60 ps FWHM) to the detection anodes
provided by this type of photodetector.

The PbWO4 crystal, homogeneously doped, has a surface of 59 mm×
59 mm a thickness of 5 mm, and is provided by CRYTUR (CRYTUR,
spol. s r.o., Na Lukách 2283 511 01 Turnov Czech Republic, 2020). The
photocathode deposit and the integration of the device into a MCP-PMT
structure is handled by the PHOTEK company, based on its MAPMT-253
design (MAPMT-253 Multi-Anode MCP-P.M.T. Datasheet, from Photek
Inc., 2020). We developed a signal readout system for this device using
32 transmission lines as shown in Fig. 1, Follin et al. (2022). The signals
are read out at both ends of the transmission lines, amplified and then
sampled by a SAMPIC WaveShape Recorder (Breton et al., 2020).

Typically a 511 keV energy deposit in the crystal produces 185 op-
tical photons mostly isotropically. Out of these, ∼ 20% are collected by
the 53 mm×53 mm photocathode and generate detected photoelectrons
that are collected and amplified by the MCP-PMT photodetector.

Many processes in the signal formation involves random features.
For example, the photon direction and time of production, the photo-
electron production probability, the gain of the Micro Channel Plate
used for electron multiplication, the time transit of the electron propa-
gation through the MCP-PMT, the noise of readout amplifiers are best
described using parameterized random variables. These are necessary
to describe the pulses shapes produced by a single photoelectron (SPE).

Each SPE induces a signal on typically three readout lines. Thus the
typical 30 SPE signals pileup at the output of the transmission lines
(Fig. 2), and build the event signal registered by the SAMPIC module.
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Fig. 1. Left: Schematic diagram of the ClearMind detection module. A 511 keV gamma-ray interaction in the crystal produces scintillation and Cherenkov photons that are
converted by the photocathode to photoelectrons. These photoelectrons are then multiplied by the MCP-PMT and induce signals on the transmission lines (TLs). Signals from the
left and right ends of each TL are amplified by 40 dB amplifiers and digitized by a SAMPIC module. Right: Transmission lines Printed Circuit Board (PCB). The axis 𝑥 and 𝑦
corresponds to the coordinate system that we use to locate the interaction position.
Fig. 2. Set of pulses as registered by the SAMPIC waveshape recorder for a 511 keV
energy deposit. For clarity purpose, only the pulses registered on one side of the
transmission lines are shown (half of the set).

2.2. Simulation

In order to create a sufficiently large and unbiased database to train
and test our reconstruction algorithms, we developed a detailed simu-
lation of the ClearMind detector (Sung et al., 2023). The knowledge
of the hidden physical processes available in Monte Carlo simulations
is necessary to provide the ground truth (target) for the training of
the Machine Learning models. It is also very convenient to assess the
intrinsic performances of our algorithms.

This simulation is based on the Gate v9.0 (Jan et al., 2004; Sarrut
et al., 2021-05) / Geant4 v7.0 (Agostinelli et al., 2003; Allison et al.,
2006, 2016) software allowing to simulate in full details the interaction
of the particle with matter and optical photons generation and tracking.
Furthermore, we have developed specialized software to simulate the
photodetector, analog, and digital electronic components. Necessary
parameters have been extracted from dedicated measurements (Follin
et al., 2021, 2022). This simulation includes the following main parts
of the detector response.

1. The gamma interaction in the crystal accounts for three pro-
cesses: photoelectric conversion, Compton scattering and Rayleigh
3

diffusion. The two first processes produce relativistic electron
that emits visible photons through two mechanisms: Cherenkov
radiation and scintillation (∼20 and ∼165 photons for 511 keV
𝛾-quanta respectively).

2. Each optical photon is propagated individually by the simulation
program. During the propagation all main physical effects are
taken into account: photon absorption inside the PbWO4 crystal,
reflection or absorption on the crystal borders for the different
types of the crystal surface (polished, ground, absorbing), escape
of photons from the crystal into the air.

3. Photocathode simulation includes the Fresnel reflection of visible
photons at photocathode boundaries, absorption of photons by
the photocathode and extraction of generated photoelectrons as
a function of the photon wavelength. As a result we compute,
assuming a photocathode of nominal efficiency, that we produce
in average 30 photoelectrons for a 511 keV 𝛾-ray photoelectric
conversion in the crystal and 75% of events contain at least one
Cherenkov photon converted into a photoelectron.

4. We then simulate the propagation and the multiplication of in-
dividual photoelectrons generated by the photocathode in the
MCP-PMT and parametrize the main PMT response features: time
response, PMT gain and gain fluctuation, signal sharing between
different output anodes.

5. Finally, we simulate the signal readout through the transmis-
sion lines with realistic signal shapes, taking into account the
possible overlay of several photoelectrons, electronics noise and
digitization sampling.

Most of the simulation parameters are adjusted to the results ob-
tained by the characterization of the first prototype using pulsed laser
in the single-photon regime. More details about the simulation could
be found elsewhere (Sung, 2022; Sung et al., 2023).

2.3. Waveform preprocessing and input data shaping

Depending on the energy deposited in the crystal, the SAMPIC mod-
ule records from 2 to 64 pulse shapes, typically about 30 for a deposited
energy of 511 keV. This corresponds to about 10 kBytes of raw data per
event. This volume of data is to be compared with the volume of data to
be reconstructed, the properties of the gamma interaction in the crystal:
3D position, time, deposited energy, interaction multiplicity, typically
25 bytes per event. The acquired data are therefore redundant, but also
intricate. The parameters to be reconstructed are encoded in a complex
way and are mixed in the pulse shapes.

Thus reconstructing the properties of the gamma interaction in the
crystal is a complex task.
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Fig. 3. Waveforms registered on one triggered line 𝑙. Red and green lines are the left 𝐹𝑙,Lef t (𝑡𝑗 ) and right 𝐹𝑙,Right (𝑡𝑗 ), time shifted, registered pulses shapes. Black line shows the
time difference waveform 𝐹𝑙,Lef t (𝑡𝑗 )−𝐹𝑙,Right (𝑡𝑗 ). We identify on this line three pulses clusters at 4.6 ns, 6 ns and 8.5 ns. For each of them, the time difference curve shows a bipolar
shape, correlated to the position of each photoelectron charge induction along the readout line.
We first use our knowledge of the physics of the detector to calculate
on the raw data a set of statistical variables, so called ‘‘parameter
observables’’ highly correlated to the parameters of the gamma-ray
interaction to be reconstructed, as well as a second set of ‘‘bias ob-
servables’’ which monitor the known undesirable instrumental effects
(saturation of the acquisition electronics, edge effects, etc...). The data
volume of the observables is 100 bytes per event. These observables are
then used as inputs of shallow, fully connected neural networks, whose
training takes only a few minutes. The development cycle is fast, at the
cost of a loss of information that is difficult to anticipate.

In the following paragraph, we explain the parameter observables
developed to correlate to the features targeted by the neural networks
presented in this paper: the gamma interaction position 𝑥pos (position
along the transmission lines) and 𝑦pos (perpendicular to the transmission
lines).

First, for each transmission line 𝑙, that triggered the SAMPIC acqui-
sition, the digitized pulse shapes are acquired: 𝐹𝑙,Lef t (𝑡𝑗 ) and 𝐹𝑙,Right (𝑡𝑗 )
at times 𝑡𝑗 for the Left and Right transmission line, where the index 𝑗
corresponds to the sampling time. Examples of acquired pulse shapes
are shown in Fig. 3.

We first calculate the electric charges collected (integral of the pulse
shape current over time) at both the end of the 32 transmission lines
𝐶𝑙.

We compute two interaction observables expected to be correlated
to 𝑦pos :

• We select the line with the largest collected charge and its two
neighbors. We fit a parabola on these three values. The position
of the maximum of this parabola is the first observable.

• The second observable is the median of the distribution of line
numbers weighted by the charge collected on these lines : Med𝐿 =
median(𝑙, 𝐶𝑙). It is common that one line carries a large fraction
of the total charge collected over the 32 readout lines registered
in an event. In order to extract as much information as possi-
ble from the surrounding line charge values, we developed an
‘‘upgraded’’ median algorithm documented in Appendix B. This
is the ‘‘median’’ algorithm we will use for all the observables
calculations.

Quantifying observables expected to correlate to 𝑥pos is more com-
plex. It turns out that on some lines, we can identify few pulses
4

separated in time in the recorded pulse shapes. We denote each iden-
tified pulse by the index 𝑝. When this happens, we quantify the pulse
detection times (𝑇𝑙,𝑝,Lef t and 𝑇𝑙,𝑝,Right) and the total charge 𝐶𝑙,𝑝 of each of
these pulses. The time difference 𝛥𝑡𝑙,𝑝 = 𝑇𝑙,𝑝,Lef t − 𝑇𝑙,𝑝,Right is correlated
to the position of the pulse induced by this photoelectron along this
line. We then calculate the three following observables:

• the median of the Med𝛥𝑡 = median(𝛥𝑡𝑙,𝑝, 𝐶𝑙,𝑝) distribution (all lines
and pulses), weighted by the integrated charge of the each pulses.
The details of the algorithm for the weighted median are given in
Appendix B;

• the mean of the same distribution Mean𝛥𝑡 = mean(𝛥𝑡𝑙,𝑝, 𝐶𝑙,𝑝);
• 𝛥𝑡lmax, the time difference 𝛥𝑡 of the largest pulse of the line

(greatest charge collected).

We also used the shape of the digitized pulses 𝐹𝑙,𝑝,Lef t (𝑡𝑗 ) and
𝐹𝑙,𝑝,Right (𝑡𝑗 ). The Diff 𝑙,𝑝(𝑡𝑗 ) = 𝐹𝑙,𝑝,Lef t (𝑡𝑗 ) − 𝐹𝑙,𝑝,Right (𝑡𝑗 ) show bipolar
shapes depending on the position of the pulse injection along the line.
We integrated the 𝐅irst and 𝐒econd components of the bipolar shape
Int𝑙,𝑝,𝐹 and Int𝑙,𝑝,𝑆 . We then compute the Bipol𝑙,𝑝 = (Int𝑙,𝑝,𝐹−Int𝑙,𝑝,𝑆 )∕𝐶𝑙,𝑝,
for each pulse. The saved observables are then:

• the weighted median of the distribution MedBipol = median(Bipol𝑙,𝑝)
(see Appendix B for the details)

• the mean of the distribution MeanBipol = mean(Bipol𝑙,𝑝).

Along with these observables, we also compute parameters and bias
observables relevant for reconstruction the other properties gamma
interactions in the crystal (see Appendix A). Some of them are also
expected to be relevant for the uncertainty estimation. These 23 ob-
servables are the inputs of the following neural networks.

An alternative approach would be to use the full waveforms’ data as
inputs for convolutional deep neural networks. However, preliminary
tests showed that the complexity of the data required to implement
deeper network structures, involving training times of days on our GPU
card, thus with slower development cycles. We are considering this
option for future works.

3. Methodology

3.1. Baseline method

The simplest approach to gamma-interaction reconstruction is using

the fact that the highest density of the detected photons corresponds
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to the coordinates of the interaction point. This suggests to use the
transmission line with the maximum detected charge as the reference
line. To reconstruct the coordinate across lines, 𝑦𝑅, we calculate the
weighted average of center-of-line for this and two neighboring lines:

𝑦𝑅 =
∑𝑖+1

𝑙=𝑖−1 𝑦𝑙𝐶𝑙
∑𝑖+1

𝑙=𝑖−1 𝐶𝑙

, (1)

here 𝑦𝑙 is the y-coordinate of the line center, 𝐶𝑙 is the charge of line
(only the negative signal part is used for the charge calculation), 𝑖 is

he reference line number.
The coordinate along the lines, 𝑥𝑅 is reconstructed as

𝑅 =
(𝑡Right − 𝑡Lef t )

2
× 𝑣signal , (2)

here 𝑡Right and 𝑡Lef t are the time measured at the right and left ends of
ine 𝑖 respectively and 𝑣signal is the signal propagation speed, assumed
o be 35% of speed of light in the simulation.

This approach, based only on expert knowledge of the physical
rocesses is used as a reference for comparison with the performance
f our approach based on neural networks.

.2. ML approach

This section describes our approach based on a supervised Machine
earning algorithm, that takes as input the 23 preprocessed variables
escribed in Section 2.3 and Appendix A in order to predict the inter-
ction position. We use a Neural Network model that is able to provide
oth the prediction and an estimation of an uncertainty associated to
his prediction thanks to the paradigm of Density Neural Networks.
n the contrary to the baseline method, the use of Neural Network is
ainly based on the exploitation of simulated data to build a model

hat link the observable quantities to the reconstruction of the gamma
nteraction position. Moreover, the baseline method is not able to
rovide uncertainties associated to the reconstruction, which is a key
ifference with our approach.

.2.1. Density neural network
The conventional approach to perform a regression through a Neu-

al Network is to define a loss function that measures the discrepancy
etween the predictions of the neural network and the expected values.
ith classical notations, let  = {(𝑥𝑖, 𝑦𝑖), 𝑖 = 1, 2,… , 𝑁} be the database

nd 𝜇𝜃(𝑥) the prediction of the expected value of the neural network
arameterized by 𝜃. By noting ‖ ∙ ‖ the Euclidean norm, a usual loss
unction is the Mean Square Error :

SE(𝜃) = 1
𝑁

𝑁
∑

𝑖=1
‖𝑦𝑖 − 𝜇𝜃(𝑥𝑖)‖2. (3)

he learning procedure consists in finding parameters 𝜃∗, among the
pace of possible parameters 𝛩, that minimizes the Mean Squared Error.
t corresponds to solving the following problem:
∗ = argmin

𝜃∈𝛩
MSE(𝜃). (4)

The Density Neural Network approach proposes to make the as-
umption that the expected outputs 𝑦𝑖 are a realization of a probability
istribution such as the normal distribution 𝑦𝑖 ∼  (𝜇𝜃(𝑥𝑖), 𝜎2𝜃 (𝑥𝑖))
r a mixture of normal distributions (Bishop, 1994). However, this
ethod can be adapted to other distributions and we propose to use
distribution that considers some specific physical constraints of our

pplication.
The main physical constraint on the interaction position is that this

nteraction must be located in the limits of the detector. Therefore, we
ecide to use a truncated normal distribution in order to insure this
onstraint.

Beforehand in order to avoid confusion with (𝑥, 𝑦) coordinates of the
osition of the interaction in the detector, we will note 𝑠 the inputs data
5

from the preprocessing describes in Section 2.3. So formally, our neural
network is now expected to output four values for each inputs 𝑠𝑖, the
two means 𝜇𝜃,𝑥(si), 𝜇𝜃,𝑦(si) and the two scale parameters 𝜎2𝜃,𝑥(si), 𝜎

2
𝜃,𝑦(si)

of the assumed truncated Gaussian law. We have assumed independent
normal laws on 𝑥𝑖 and 𝑦𝑖. In this case, the hypothesis that each output
𝑥𝑖, 𝑦𝑖 follows a truncated normal distribution in [𝑎, 𝑏] leads to the two
following distributions relative to the two coordinates with 𝑧 = 𝑥 or
𝑧 = 𝑦:

𝑝(𝑧𝑖|𝜇𝜃,𝑧(𝐬𝐢), 𝜎2𝜃,𝑧(𝐬𝐢)) = 1
√

2𝜋𝜎2𝜃,𝑧(𝐬𝐢)
exp

(

−
(𝑧𝑖 − 𝜇𝜃,𝑧(𝐬𝐢))2

2𝜎2𝜃,𝑧(𝐬𝐢)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Classical Gaussian Likelihood

× 1

𝛷
( 𝑏−𝜇𝜃,𝑧(𝐬𝐢)

𝜎𝜃,𝑧(𝐬𝐢)

)

−𝛷
( 𝑎−𝜇𝜃,𝑧(𝐬𝐢)

𝜎𝜃,𝑧(𝐬𝐢)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
With truncation in [𝑎,𝑏]

(5)

here 𝛷 is the Cumulative Distribution Function of the standard nor-
al distribution, 𝑎 and 𝑏 are the truncation boundary of the truncated
ormal distribution. In our application, 𝑎 and 𝑏 represent the limits of
he detector: 𝑎 = −30 mm and 𝑏 = 30 mm. In our case, the condition
≤ (𝑥𝑖, 𝑦𝑖) ≤ 𝑏 is assumed to be always verified : an interaction occurs

nside the detector; otherwise it is a simulation error and we should
ot consider it. So, by using Eq. (5), we derive the likelihood of the
arameters on the whole dataset:

(𝜃) =
∏

𝑖

∏

𝑧∈{𝑥,𝑦}
𝑝(𝑧𝑖|𝜇𝜃,𝑧(𝐬𝐢), 𝜎2𝜃,𝑧(𝐬𝐢)) (6)

aximizing this likelihood is equivalent to minimizing the negative log-
ikelihood, that is easier to handle, which leads to the following loss
unction:

(𝜃) = − log(𝐿(𝜃))

=
∑

𝑖

∑

𝑧∈{𝑥,𝑦}
log

(

𝛷
( 𝑏 − 𝜇𝜃,𝑧(𝐬𝐢)

𝜎𝜃,𝑧(𝐬𝐢)

)

−𝛷
(𝑎 − 𝜇𝜃,𝑧(𝐬𝐢)

𝜎𝜃,𝑧(𝐬𝐢)

))

+ 1
2
log(2𝜋𝜎2𝜃 (𝐬𝐢)) +

(𝑧𝑖 − 𝜇𝜃,𝑧(𝐬𝐢))2

𝜎2𝜃,𝑧(𝐬𝐢)
(7)

We want to highlight that the conventional problem with MSE
defined in Eq. (3) is a special case of Eq. (7) and 𝑎 = −∞, 𝑏 = +∞
(no truncature) and where the scale parameters 𝜎2𝜃,𝑥(𝐬𝐢) and 𝜎2𝜃,𝑦(𝐬𝐢)
are assumed to be constant (homoscedasticity hypothesis). Finally, the
optimization problem consists now in finding the parameters 𝜃∗ that
minimize this new loss function:

𝜃∗ = argmin
𝜃∈𝛩

𝑙(𝜃) (8)

We can solve this problem by using a conventional gradient descent
optimization in order to train the neural network and find optimal
parameters.

This approach brings two main components:

• the use of a Density Neural Network allows the estimation of an
uncertainty associated to the network output through the predic-
tion of the terms 𝜎2𝜃,𝑥(𝐬𝐢) and 𝜎2𝜃,𝑦(𝐬𝐢). These variances are specific
to each example and represent a higher or lower uncertainty on
the predicted positions 𝜇𝜃,𝑥(𝐬𝐢) or 𝜇𝜃,𝑦(𝐬𝐢) according to the inputs
𝐬𝐢 of the neural network. For instance, in our application, we can
expect an interaction closer to the edge of the detector is less
precisely located than an interaction at the center of the detector.
We highlight that this uncertainty is self-estimated by the neural
network and consequently must be empirically validated, we
bring elements for this validation in Section 4.3. This uncertainty
can be seen as aleatoric uncertainty (Kendall and Gal, 2017) due
to the randomness of the phenomenons involved during the detec-
tion and measurements (Cherenkov and scintillation production,
loss of optical photons, randomness in the pulse shape creation...).
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• the use of a truncated normal hypothesis allows us to consider
the physical constraints. In Section 4, we show that this property
is essential to obtain better performances for interaction close to
the edges of the detector, compared to the use of the classical MSE
approach.

3.2.2. Architecture and training
We develop two neural networks: one neural network associated

to the conventional Mean Squared Error loss function and one neural
network associated to our custom loss function with the truncated
normal hypothesis. For both architectures, all of the hidden layers are
similar: we use six hidden fully-connected layers with 256 neurons each
and a tanh activation function. The difference is the output layer:

• the output layer for the neural network associated to the MSE loss
has two neurons (one for each coordinate), with a scaled tanh
function: 𝑏−𝑎

2 tanh in order to insure that the prediction is located
inside the detector.

• the output layer for the neural network associated to the trun-
cated normal loss function has four output neurons. The first
ones output 𝜇𝜃,𝑥(𝐬𝐢) and 𝜇𝜃,𝑦(𝐬𝐢) and the activation function is the
previous scaled tanh function. The second ones output 𝜎𝜃,𝑥(𝐬𝐢)
and 𝜎𝜃,𝑥(𝐬𝐢). The activation function is softplus(𝛼) + 𝜖 where 𝛼 is
the output before applying the activation function. 𝜖 is a small
constant that ensures that 𝜎𝜃,𝑥(𝐬𝐢) and 𝜎𝜃,𝑦(𝐬𝐢) are not too close to 0
and avoids divergence issues. In our case, we choose 𝜖 = 10−6 mm.

The neural networks and their trainings are computed by using the
Tensorflow (Abadi et al., 2015) library. The optimizer is the Adam
algorithm. The training is stopped by an early stopping procedure that
monitors the validation loss; we use randomly 20% of our data as
validation data. The code has been executed on a NVIDIA RTX Quadro
5000. The training time is a dozen of minutes.

3.2.3. Generated datasets
We used three datasets to train and test our supervised Machine

learning algorithms. All of them use the detector modeling explained
in Section 2, corresponding to a PbWO4 scintillation crystal of 59 mm ×
59 mm. The inputs are the 23 observables described in Section 2.3 and
Appendix A from the 32 transmission lines and the outputs are both
coordinate X and Y of the gamma interaction, which are saved thanks
to the Geant4 simulation.

1. For the training set, we simulate a Gamma photon source shaped
in a 6 cm cube. The energy spectrum has been adjusted to in-
crease the probability of high energy deposits in the PbWO4 and
thus generate an approximately flat deposited energy spectrum.
Thus we generate 7 times more 1.2 MeV than 300 keV photons.
The gamma rays impinge the PbWO4 crystal perpendicularly and
uniformly over the entire surface of the optical window. This
training batch contains 450 000 events.

2. The first test dataset simulates an grid of 9 × 9 511-keV gamma
ray point sources, regularly spaced by 7 mm. Again the gamma
rays impinge the PbWO4 crystal perpendicularly to the surface
of the optical window. This test dataset contains 300 000 events.

3. The second test dataset simulates a 6 cm cube-shaped Gamma
photon source, mono-energetic at 511 keV. The gamma rays im-
pinge the PbWO4 crystal perpendicularly and uniformly on the
whole surface of the optical window. This test dataset contains
600 000 events. We design this test dataset with a high number
of examples in order to conduct an accurate analysis of the
performances of the neural network considering the uncertainty
estimation.
6

Fig. 4. Simulated sources — Expected positions.

4. Results

4.1. Evaluation on the grid of sources — First test dataset

The positions of the grid of sources are represented on Fig. 4. This
configuration helps visualizing directly some properties of the different
reconstruction algorithms. The results are presented on Fig. 5.

They show that the algorithms are all able to reconstruct the sources
in the center area of the detector, between −20 mm and +20 mm in
both directions. However, the baseline method and the conventional
Neural Network associated to a MSE loss function are not able to give
a prediction on the edge of the detector. These predictions are even
incorrectly attributed to other position at −25 mm and +25 mm for
the conventional MSE approach. This ‘‘folding’’ of the predictions will
imply a lower confidence of the reconstruction in this area, as we
show in Section 4.2. On the contrary, the use of the truncated Gaussian
likelihood is able to provide positions close to the edge and avoid the
‘‘folding’’ effect. This property shows a first advantage of the use of this
custom loss function.

The bottom right figure introduces the benefits of the uncertainty
evaluation. To produce this figure, we use a weighting on each event 𝑖
according to the predicted uncertainties terms 𝜎𝜃,𝑥(𝐬𝐢) for the X position,
and 𝜎𝜃,𝑦(𝐬𝐢) for the 𝑌 position. The weights are computed using the
following equation:

𝑤𝑖 =
(𝜎𝜃,𝑥(𝐬𝐢)2 + 𝜎𝜃,𝑦(𝐬𝐢)2)−1

𝐹
, (9)

where 𝐹 is a normalization factor such that ∑

𝑖(𝑤𝑖) is equal to the
number of detected events on the considered bin of the histogram.

𝐹 =
∑

𝑖∈bin
(𝜎𝜃,𝑥(𝐬𝐢)2 + 𝜎𝜃,𝑦(𝐬𝐢)2)−1 (10)

This weighting penalizes the events with a high predicted uncer-
tainty. The result shows a reduction of the spreading effect, making the
reconstruction more accurate on the detector. We quantify this gain in
accuracy in Section 4.2.

4.2. Evaluation on the uniform simulation — Second test dataset

For the global evaluation of the performances, we use the simu-
lation of a uniform distribution of sources (cube source) in front of
the detector. The direct reconstruction provided by the algorithms is
shown on Fig. 6. The results show the same properties as the grid
simulation, especially the inability of the baseline method and the
conventional MSE to reconstruct the edges of the detector. We can
see a partial ‘‘folding’’ effect on the reconstruction with the truncated
Gaussian likelihood. This effect is attenuated by applying the weighting
as defined in Eq. (9).
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Fig. 5. Grid reconstruction by the different methods.
Fig. 7 shows for each true position the average 2D distance to
the reconstructed position. A high average 2D distance in this case
corresponds to a high spread of the reconstructions. At the center of
the detector, the baseline method provides less spread reconstructions,
between 2 and 3 mm, than the conventional MSE and our approach
with the truncated Gaussian likelihood, between 3 and 4 mm. However,
the area of high spread, over 6 mm, is larger for the baseline method
than the machine learning method. We show later that this default
highly affects the precision of the reconstruction, even at the center
of the detector.

The use of the weighting helps the truncated Gaussian likelihood to
give more importance to the most certain events, leading to a spread
between 1 and 2 mm at the center of the detector, between 2 and 4 mm
in the intermediate area. The area with the higher spread, over 6 mm,
is thinner than the other algorithms.

Fig. 8 shows for each predicted position the average 2D distance to
the true position. A high average 2D distance in this case corresponds
to a low precision of the reconstructions. Black areas correspond to area
with no predicted position due to the inability of the algorithms to
reconstruct some positions, as shown on Fig. 6. The baseline method
gives very low accurate results, mostly over 6 mm, even at the center
of the detector. By combining with the previous information, we can
give the following interpretation:
7

• if the algorithm provides a localization at the center of the
detector, we cannot trust the algorithm since the reconstruction
error is over 5 mm, as shown on Fig. 8 ;

• if the true position is the center of the detector, we can trust
the algorithm because the reconstruction error is between 2 and
3 mm, as shown on Fig. 7. However, for a real application, we
cannot access to the true position, then we cannot exploit this
information.

The conventional MSE shows a better precision than the baseline
method, with a reconstruction error between 3 mm at the center of
the detector to 5 mm close to the edges. The areas with very high
reconstruction error, over 6 mm, are limited. The truncated Gaussian
likelihood shows similar performances as the conventional MSE for the
precision, with the ability to reconstruct the edges, with less precision.
The application of the weighting improves the results, providing a
precision between 1 and 2 mm at the center of the detector, between
3 and 5 mm in the intermediate area and over 6 mm in a thin band
close to the edge. This band corresponds to the part of the detector
without optical layer and it is expected to have a degradation of the
performances in this area.

Finally, Figs. 9 and 10 show the overall results, considering the
whole test dataset. The histograms represent the global reconstruction
errors, without selecting any position. We also compute the Root Mean
Squared Error (RMSE) of the predictions.
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Fig. 6. Reconstruction of the uniform simulation.
Table 1
Table of performances. Best values are in bold.

Quantity Baseline
method

Conventional
MSE

Truncated
Gaussian lik.

Truncated
Gaussian lik.
weighting

Mean error X
(mm)

−0.01 0.01 −0.32 −0.39

RMSE X
(mm)

8.05 4.8 5.11 2.61

Std dev X
(mm)

8.05 4.8 5.1 2.58

Mean error Y
(mm)

0.00 0.19 0.04 0.02

RMSE Y
(mm)

5.5 4.72 5.08 1.91

Std dev Y
(mm)

5.5 4.72 5.08 1.91

Mean 2D
error (mm)

6.07 4.36 4.56 2.51

For both coordinates, the baseline method shows the worse perfor-
mances. This result shows the advantage to use a Machine Learning
approach to address this reconstruction problem, due to the complex
link between the observable variables and the positions.
8

We apply a new 1D-weighting dedicated to each coordinate:

𝑤𝑋,𝑖 =
(𝜎𝜃,𝑥(𝐬𝐢))−2

∑

𝑗 (𝜎𝜃,𝑥(𝐬𝐣))−2
(11)

𝑤𝑌 ,𝑖 =
(𝜎𝜃,𝑦(𝐬𝐢))−2

∑

𝑗 (𝜎𝜃,𝑦(𝐬𝐣))−2
(12)

On average, the conventional MSE gives slightly better results than
the truncated Gaussian likelihood in terms of RMSE. We can expect
this behavior because the MSE approach is specifically designed to
minimize the MSE, thus its squared root the RMSE.

Table 1 summarizes several performances such as the mean er-
ror (the bias) on the histogram, RMSE and the Standard Deviation
(spread of the distribution without bias). A small bias is observed for
the reconstructions with the truncated Gaussian likelihood methods
for the X coordinate, under 1 mm. On the contrary, the conven-
tional MSE presents a bias for the Y coordinate reconstruction. On the
other metrics, the weighting applied to the truncated Gaussian likeli-
hood outperforms the other methods: the application of this weighting
helps improving the performances by giving less importance to uncer-
tain reconstructions. Especially, the RMSE reaches 2.61 mm for the X
coordinate and 1.91 mm for the Y coordinate.

Finally, the Mean 2D error corresponds to the mean of the Euclidean
distances between the predicted position and the expected position.
Regarding this metric, the Machine Learning algorithms show better
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Fig. 7. 2D error reconstruction according to the true position, corresponding to the spread of the reconstruction — The color scale has been threshold at 6 mm for visualization

purpose.
performances than the baseline method. The weighting given by our
uncertainty estimation outperforms the other methods and reaches a
Mean 2D error of 2.51 mm.

4.3. Calibration of the uncertainties

The evaluation of the performances shows the advantage of using
the uncertainty prediction as a weighting of the uncertain reconstruc-
tion. However, these results do not provide accurate elements to assess
the calibration of the uncertainties. In this section, we provide an
evaluation of the quality of the uncertainty estimation by using a
coverage plot.

To produce this plot, we consider a probability level 𝛼. For each
event 𝑖, our neural network provides a prediction of the parameters
𝜇(𝑖)
𝜃 and 𝜎(𝑖)𝜃 for a truncated Gaussian distribution, with bounds 𝑎 and

𝑏. Under the hypothesis of this distribution, we compute the Prediction
Intervals (PI) at level 𝛼 for each event 𝐼 (𝑖)(𝛼) such that:

𝑝(𝑦true ∈ 𝐼 (𝑖)(𝛼)) = 𝛼 (13)

where 𝑦true is the expected value. There is an infinite number of
possible intervals that correspond to this condition, we choose the
interval that is centered on the expected median. Then, we compute
the number of events whose expected value belongs indeed to the
9

Prediction Interval, which leads to the Prediction Interval Coverage
Probability (PICP) at level 𝛼:

PICP(𝛼) =
|{𝑦true ∈ 𝐼 (𝑖)(𝛼)}𝑖|

𝑁
(14)

where |𝐸| is the cardinal of the ensemble 𝐸 and 𝑁 is the total
number of events. The PICP can be seen as the empirical frequency of
the true values that indeed belong to the Prediction Interval. Finally,
we compare the PICP(𝛼) to the probability level 𝛼:

• if PICP(𝛼) = 𝛼, we have a perfect calibration;
• if PICP(𝛼) > 𝛼, the model is under-confident, or in other word,

conservative;
• if PICP(𝛼) < 𝛼, the model is over-confident.

Fig. 11 shows the results for different probability levels 𝛼. For
both coordinates, the PICP is close to the value 𝛼 which means the
Prediction Interval can be trusted in average. The model is slightly
over-confident for probability levels under 75% and conservative for
higher probability levels. For instance, Prediction Intervals at 95% are
conservative.

5. Discussion

The use of Machine Learning approaches to reconstruct gamma
photon position of interaction in monolithic crystals is a hot topic
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Fig. 8. 2D error reconstruction according to the predicted position, corresponding to the precision of the reconstruction — The color scale has been threshold at 6 mm for

visualization purpose.
nowadays. For PET applications, most of the time it is a LYSO scin-
tillator of several tenth of millimeters size and about 1 cm thickness
coupled with pixelated silicon photomultiplier (SiPM). For example,
in Belov et al. (2023) the spatial resolution obtained with a feed-
forward neural network is 0.74 ± 0.01 mm for the XY plane and
an average 1.01 ± 0.01 mm for the Z coordinate. Similar results
were obtained in Freire et al. (2022) with one multilayer perceptron
with five hidden layers and 100 nodes. In Carra et al. (2022), the
sub-millimeter precision in XY plane is obtained with an algorithm
based on neural networks integrated into a second neural network for
simultaneous estimation of the event position and timestamp. Even a
preclinical PET system with an annular monolithic LYSO scintillator
was proposed by Jaliparthi et al. (2021) with an inner diameter of 6 cm
with minimum transaxial scintillator thickness of about 1 cm covered
by SiPMs. Authors of these study obtained the spatial resolution on
reconstructed interaction position of about half of millimeter with a
ten-layer deep residual-convolutional neural networks. Sub-millimeter
precise photon interaction position determination in CeBr3 crystal and
LaBr33:Ce (Kawula et al., 2021) for Compton Camera imaging system
was obtained with a newly designed convolutional neural network of
five layers.

As shown in these recent studies and in Section 4, the Machine
Learning approaches provide promising and more accurate reconstruc-
tions than the baseline methods, only based on the knowledge of the
10
detector. In contrast to prior research with LYSO or other scintillation
only crystals, this current study aims a precise reconstruction of the
gamma photon interaction in a PbWO4 crystal with faster (Cherenkov
effect) but fewer (lower light yield) optical photons. Moreover, in
contrary to pixelated SiPM with one readout channel per pixel, a MCP-
PMT with fewer readout channels (2 × 32 instead of 32 × 32) is
used. These differences introduce additional complexity on the precise
position reconstruction. The coordinate along the transmission lines (X-
coordinate) turned out to be complex to reconstruct, but our machine
learning models were able to learn to address this complexity.

For monolithic crystals, the so-called edge-effect worsens the spatial
localization performance toward the detector borders (Freire et al.,
2022). In our study, the use of a dedicated loss function, the truncated
Gaussian likelihood, helps recovering some dead area at the edges that
are not reconstructed by the baseline methods or the conventional
MSE. This effect can be explained by the fact that no interaction can
be observed outside of the detector, so the MSE avoids to provide
predictions close to the area outside of the detector and consequently,
close to the edges. Because we include this prior knowledge in the
truncated Gaussian likelihood, the model trained with this loss function
can predict positions close to the edges.

Different from previous research, an uncertainty on the gamma pho-
ton interaction reconstruction is provided in this study by the Density
Neural Network. This additional information is included by a weighting
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Fig. 9. Global histogram of reconstruction errors on the X position.
in the performance evaluation. We have shown that it significantly
improves the performances. We can object that this improvement is
‘‘artificial’’ because we do not improve the prediction, we give less
importance in the metrics to the uncertain prediction. However, it is
very promising for the application in PET imaging because the tomo-
graphic image reconstruction relies on the processing of a large number
of events. If some events carry less information, they can degrade the
SNR in the reconstructed image. As a consequence, accounting for
the uncertainty information in the tomographic reconstruction shall
increase the SNR in the image. The uncertainty can be included in a
spatial resolution model adapted to each individual event, enabling an
event-based resolution modeling image reconstruction. The proposed
approach would be innovative for PET imaging, with the best of our
knowledge, and its impact on the reconstructed image quality must be
assessed. The combination of the proposed gamma photon interaction
reconstruction in the detector with the full PET image reconstruction
is planned for future works.

Finally, the calibration of the uncertainties show that their pre-
diction is satisfying, although not perfect. The disagreement between
the probability level and the empirical frequency can come from two
factors:

• the prediction of the neural networks can be improved by opti-
mizing the model and the training phase;

• the truncated Gaussian hypothesis could not be the best represen-
tation of the uncertainty. Further works are planned to use other
11
probability distribution functions, under the constraint that these
probability distributions must not diverge and be differentiable so
that they can be used as loss functions.

6. Conclusion

Our objective to predict the 2D position of gamma interaction in
the ClearMind detector is successfully achieved thanks to Machine
Learning methods. Our neural network outperforms the baseline ap-
proaches based on physical knowledge only and used as inputs of the
model. The introduction of Density Neural Networks provides a reliable
estimation of the uncertainty in the prediction of the neural network
that can be used to discriminate reconstructions that are likely less
accurate. We aim to draw benefits from this method in further works
for PET image reconstruction. Moreover, we exploit the flexibility of
the Density Neural Network approach to design a truncated gaussian
loss function based on physical constraints. This property helps for the
reconstruction of events in areas far from the center of the detector,
increasing the exploitable surface of the crystal. We want to highlight
that this methodology is generic and can be adapted to other use cases,
as far as we are able to introduce such constraints in the loss function.

The preprocessing step is also important to reduce the number of
input variables, thus to get a compact neural network that can be
embedded as close as possible to the detector. The computation time
on test data on a conventional CPU is 14 s for the 600 000 events,
corresponding to 23 μs per event.
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Fig. 10. Global histogram of reconstruction errors on the Y position.

Fig. 11. Coverage plots — The models are slightly too confident for probability levels lower than 75% and slightly too conservative for probability levels higher than 75%.
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In outlooks, we want to conduct a sensitivity analysis on the input
variables. The objective is to study the importance of the preprocessed
observables for the prediction of the positions. We will verify if we find
the expected correlation between the prediction of the positions and
the identified observables given by the physical expertise. Moreover,
the analysis will be performed on the uncertainty estimation in order
to understand which quantities have the highest influence on the
uncertainty in the reconstruction. We will compare the performances
in reconstruction with the use of the raw data, in order to assess the
possible loss of information due to this preprocessing. In further works,
we will also apply this methodology for the Depth of Interaction, energy
and time reconstructions in order to obtain complete information on the
gamma ray reconstructions. Moreover, these results will be exploited
to complete PET image reconstruction in dedicated studies, in order to
improve the SNR on the image by the weighting or the discrimination
of uncertain reconstruction.
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Appendix A. Statistical processing of raw waveforms

The following paragraphs describes the preprocessed observables
we developed for the ClearMind detector in addition to the description
in Section 2.3. First, for each line that triggered the SAMPIC acquisition,
let us define 𝐹𝑙,Lef t (𝑡𝑗 ) and 𝐹𝑙,Right (𝑡𝑗 ), the digitized pulse shapes (Left
and Right of transmission line) at time 𝑡𝑗 .

Then, before computing event observables, we calculate for each
triggered line:

• The times of the first samples of the pulse shapes 𝑇0,Lef t , 𝑇0,Right
• The times calculated on the rising edges of the pulses, extrapo-

lated to the half height between the sampled values, 𝑇𝑙,Lef t and
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𝑇𝑙,Right .
• The time lapse when the pulses have exceeded the WaveCatcher
trigger threshold.

• The time lapse when the pulses have saturated the WaveCatcher.
• The sum of the charges collected at both ends of the transmission

lines 𝐶𝑙.

The selected observables can be classified into several categories.
First, a general parameter stores the number of transmission lines

that have acquired a signal.
Then we store the observables expected to be correlated to the

interaction time of the gamma photon in the crystal. These are :

• The time of the first SAMPIC sample recorded on the first trans-
mission line that acquired a signal. This time 𝑇First is then sub-
tracted from all the time variables associated with the event.

• The time of the first photoelectron detected on the event. We store
the lowest photoelectron time value (defined as 0.5 × (𝑇𝑙,Lef t +
𝑇𝑙,Right) of all the lines that triggered the acquisition.

We add four bias observables, intended to help the neural network
to decorrelate possible stacking effects on the pulse shapes. These are

• the time lapse beyond 50% of the amplitude on the pulse shapes
𝐹𝑙,Lef t (𝑡𝑗 )) and 𝐹𝑙,Right (𝑡𝑗 ) (one observable for Left pulse shape and
one for Right)

• the computed pulses’ rise time (one observable per side)

Then we store the observables expected to be correlated to the
nergy deposited by the interaction in the detector which is a quantity
hat is planned to be reconstructed for future works. These observables
re also expected to bring information to estimate the uncertainties on
he interaction position. We store :

• The sum of the charges collected over all lines 𝐶𝑇 .
• The sum of the time lapse when pulses have exceeded the trigger-

ing threshold of the WaveCatcher 𝑇Thres over all lines.
• The sum over of the time lapse when pulses have saturated the

WaveCatcher (bias observable), 𝑇Sat .

hen we store observables correlated to the position on the axis per-
endicular to the transmission lines 𝑥pos and along transmission line
pos, as explained in Section 2.3.

Finally, we compute quantities expected to be correlated to the
epth of interaction (DOI) of the gamma in the crystal, used for future
orks to achieve 3D reconstruction. We use the fact that the farther

he gamma interaction occurs from the photoelectric layer, the more
hotoelectrons are produced over a large area. The depth of interaction
s thus correlated to the dispersion of the produced photoelectrons. We
an also expect that this dispersion is relevant for our neural network
o estimate the uncertainty on 𝑥pos and 𝑦pos. To quantify this dispersion
e first calculate the distribution: |𝑙 − Med𝐿|, weighted by the charge
easured on the line l, 𝐶𝑙. Med𝑙 = median(|𝑙−𝑀𝑒𝑑𝐿|, 𝐶𝑙). The two first

bservables are then :

• the median(|𝑙 −Med𝐿|, 𝐶𝑙) and
• the mean(|𝑙 −Mean𝐿|, 𝐶𝑙)

To quantify the dispersion along the transmission lines, we use the
ame algorithms, but on the previously computed 𝛥𝑡𝑙,𝑝 and Bipol𝑙,𝑝
istributions (Section 2.3), weighted by the charge collected in the
ulses. The observables are then :

• the median(|𝛥𝑡𝑙,𝑝 −Med𝛥𝑡|, 𝐶𝑙,𝑝),
• the mean(|𝛥𝑡𝑙,𝑝 −Mean𝛥𝑡|, 𝐶𝑙,𝑝),
• the median(|Bipol𝑙,𝑝 −MedBipol|, 𝐶𝑙,𝑝)
• the mean(|Bipol𝑙,𝑝 −MeanBipol|, 𝐶𝑙,𝑝)

We did not devise until now any bias observables on the depth of
nteraction parameter.
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Appendix B. Median algorithm on weighted distributions

Following is our algorithm for computing the median of a binned distribution, written in C++. It uses the STL library to sort the input values.
Instead of returning the central value of the bin where the mid-point value of the distribution happen, we decided to make use of the values of the
neighboring bins to qualify the result.

bool CompPairValues(const PairValues& Pair1, const PairValues& Pair2)
{ return (Pair1.Val<Pair2.Val); }

// Compute the mid point of a set of values VValue of weigths Vweight
double Calc_Median_Weighted( vector<double> Vvalues, vector<double> Vweigth, bool PrintInside) {
unsigned long NbPair = Vvalues.size();
if(NbPair==0) { cerr<<"Error in DY_Calc_Median_Weighted: Vvalues empty" <<endl;
exit(-1);

}

// We store values in pairs
vector<PairValues> VPair(NbPair);
double Half_SomWeight = 0.;
for( unsigned long ind= 0; ind < NbPair; ind++) {
VPair[ind].Val = Vvalues[ind];
VPair[ind].weigth = Vweigth[ind];
Half_SomWeight += VPair[ind].weigth;

}
Half_SomWeight *= 0.5;

// We sort values, stable_sort ou sort
std::stable_sort( VPair.begin(), VPair.end(), CompPairValues);

// We find mid-weight point
double ValPlus = 0.; double ValMinus = 0.;
double SomWeigPlus = 0.; double SomWeigMinus = 0.;
unsigned long IndexPlus =0;
for( unsigned long Index =0; Index<NbPair; Index++)
{ SomWeigPlus+= VPair[Index].weigth;
ValPlus= VPair[Index].Val;
IndexPlus= Index;
if(SomWeigPlus>Half_SomWeight) break;
SomWeigMinus = SomWeigPlus;
ValMinus = ValPlus;

}

// Compute the Median
double ValueMedian, ValueMedian2, Median;
double SomWeigMinDes ;
if( (IndexPlus == 0) || (IndexPlus == (NbPair-1)) )
Median = ValPlus;

else {
double Un_WeightIndPlus= 1./VPair[IndexPlus].weigth;
// Rising Option
double DiffSom = Half_SomWeight-SomWeigMinus;
double DeltaVal = ValPlus-ValMinus;
ValueMedian = ValMinus + DeltaVal*DiffSom*Un_WeightIndPlus;
// Descending option
double ValMinDes = VPair[IndexPlus+1].Val;
SomWeigMinDes = Half_SomWeight*2. - SomWeigPlus;
double DiffSom2 = Half_SomWeight - SomWeigMinDes;
double DeltaVal2 = ValPlus-ValMinDes;
ValueMedian2 = ValMinDes + DeltaVal2*DiffSom2*Un_WeightIndPlus;
Median = 0.5*(ValueMedian+ValueMedian2);

}
if( PrintInside) // Print everything for debugging { }
return Median;

}
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