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Evaluation of six blood-based 
age prediction models using 
DNA methylation analysis by 
pyrosequencing
Antoine Daunay1, Laura G. Baudrin1,2, Jean-François Deleuze1,3 & Alexandre How-Kit   1

DNA methylation has been identified as the most promising molecular biomarker for the prediction 
of age. Several DNA methylation-based models have been proposed for age prediction based on 
blood samples, using mainly pyrosequencing. These methods present different performances for age 
prediction and have rarely, if ever, been evaluated and intercompared in an independent validation 
study. Here, for the first time, we evaluate and compare six blood-based age prediction models 
(Bekaert1, Park2, Thong3, Weidner4, and the Zbiec-Piekarska 15 and Zbiec-Piekarska 26), using DNA 
methylation analysis by pyrosequencing on 100 blood samples from French individuals aged between 
19–65 years. For each model, we perform correlation analysis and evaluate age-prediction performance 
(mean absolute deviation (MAD) and standard error of the estimate (SEE)). The best age-prediction 
performances were found with the Bekaert and Thong models (MAD of 4.5–5.2, SEE of 6.8–7.2), 
followed by the Zbiec-Piekarska 1 model (MAD of 6.8 and SEE of 9.2), while the Park, Weidner and 
Zbiec-Piekarska 2 models presented lower performances (MAD of 7.2–8.7 and SEE of 9.2–10.3). Given 
these results, we recommend performing systematic, independent evaluation of all age prediction 
models on a same cohort to validate the different models and compare their performance.

Aging is a natural biological process present in most living organisms and characterized by the progressive decline 
of several molecular, cellular and physiological functions that are influenced by both genetic and environmen-
tal factors1,2. Several studies have aimed to identify potential biological and/or molecular biomarkers of aging 
that correlate with chronological age and could be used in prediction models to estimate the chronological age 
of individuals3,4. Such prediction models could be particularly useful in forensic science and for public health 
concerns3,4.

DNA-based age prediction models rely on four types of DNA biomarkers of aging: telomere length, mito-
chondria mutations, single joint T-cell receptor excision circle (sjTREC) rearrangements and DNA methyla-
tion. Telomere shortening has been shown to be associated with aging and the replicative senescence of the cells 
characterized by the Hayflick limit5, and the inverse correlation between telomere length and chronological age 
has been used for age prediction based on DNA extracted from blood or teeth3,6,7. Similarly, the accumulation 
of mutations in mitochondrial DNA (mtDNA), induced by oxidative stress damage, has also been associated 
with aging and metabolic senescence of the cells8,9, and a large deletion of mtDNA accumulated during the aging 
process has been used for age prediction but with poor performance7,10. More recently, sjTREC loss has also been 
associated with aging11 and has been used to predict chronological age based on blood samples, using real-time 
PCR12–15.

Epigenetic alterations, including histone modifications and DNA methylation, have also been suggested as 
a hallmark of aging1. Two types of changes in DNA methylation have been characterized during aging: (i) the 
epigenetic drift, which corresponds to the progressive divergence of the methylome between individuals that 
occurs with increasing age, and (ii) the epigenetic clock, which is based on modifications of the methylome 
that correlate to chronological age similarly in every individual and are used in age prediction models16. DNA 
methylation-based age-prediction models have been developed principally for use with blood samples and are 
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based either on a low number of CpGs (DNA methylation biomarkers), using locus-specific technologies such as 
pyrosequencing, or on a higher number of CpGs requiring the use of genome-wide epigenotyping array technol-
ogies17–19. These DNA methylation models outperform both the previously described DNA-based age prediction 
models and the RNA and protein-based age prediction models, thus making DNA methylation the most promis-
ing molecular age-prediction biomarker4,20.

As a consequence, several pyrosequencing blood-based age-prediction models have been developed which 
use DNA methylation analysis by pyrosequencing, and present the advantage of requiring only a small number 
of analyzed CpGs, which is particularly useful for forensic applications. Some models were developed after ini-
tial screening for the best age-prediction biomarkers, using whole-genome epigenotyping array data21,22 due to 
the high correlation of DNA methylation quantification between epigenotyping arrays and pyrosequencing23,24, 
while other models were developed from a lower number of candidate genes using pyrosequencing analysis with-
out genome-wide pre-screening25–28. Notably, while most of the models are based on at least 3 different loci, 
one model has been developed as a single locus model and uses only two GpGs located in a gene known as 
ELOVL227. Notably, this gene has been identified as one of the best age prediction biomarkers and has thus been 
integrated into several age prediction models21,25–28. It should also be noted that the majority of the models predict 
age according to a multivariate linear equation, with the exception of one model which relies on a multivariate 
quadratic equation as it considers a quadratic relationship between ELOVL2 DNA methylation and chronologi-
cal age25. Other recurring DNA methylation-based, age prediction biomarkers used in different models include 
ASPA, KLF14 and TRIM5922,25,26,28.

While these blood-based age prediction models, which use DNA methylation analysis by pyrosequencing, 
all present a good level of age-prediction accuracy (mean absolute deviation from chronological age (MAD) 
of around 3–5 years)17, to date few have been evaluated in other studies by other laboratories26,29, and no study 
has evaluated and compared different models in the same population. Here we present an evaluation of six 
blood-based age prediction models using DNA methylation analysis by pyrosequencing on 100 blood samples 
from 100 French individuals aged from 19 to 65 years. Taking these six models, namely the models of Bekaert1, 
Park2, Thong3, Weidner4, Zbiec-Piekarska 15 and Zbiec-Piekarska 26, we began by implementing all the pyrose-
quencing assays using DNA standards with known DNA methylation values and we evaluated the correlation 
between the DNA methylation value of each CpG and the chronological age obtained with our cohort. Next, 
we evaluated and compared the correlation between the chronological age and the predicted age obtained with 
the models, as well as the performance of each age prediction model measured by the mean absolute deviation 
(MAD), the standard error of the estimate (SEE) and the percentage of correct age prediction, using a threshold 
of 5, 7.5 and 10 years difference between the predicted and chronological age. The individuals were also grouped 
according to gender and assigned to one of three age groups: Young adults (19–35 years), Middle-aged adults 
(35–49 years) and Older adults (50–65 years), in order to evaluate the performance of the six chosen models on 
the basis of gender and of three age categories.

Material and Methods
Human blood samples.  The study was conducted in accordance with current ethical and legal frame-
works. Anonymized blood samples were obtained after informed consent from healthy donors through French 
blood bank, EFS (Etablissement Français du Sang, Paris, France – research agreement 15/EFS/012). All methods 
were performed in accordance to the recommendations of the French National Committee of Ethics (Comité 
Consultatif National d’Ethique pour les Sciences de la Vie et de la Santé). Peripheral blood samples were derived 
from 100 healthy French donors (42 women and 58 men) aged from 19–65 years. Individuals were assigned to 
one of three groups according to their chronological age: Group I comprising young adults (aged 19–34 years, 
n = 34), Group II comprising middle-aged adults (ages 35–49 years, n = 33), and Group III comprising older 
adults (ages 50–65 years, n = 33) (Supplementary Fig. 1). Buffy coats were obtained from blood after 10 min cen-
trifugation at 1600g and frozen at −80 °C before DNA extraction.

DNA extraction and quantification.  DNA extraction was performed on buffy coats using the QIAmp 
DNA blood mini Kit (Qiagen) on a QIAcube robotic workstation (Qiagen) according to the manufactur-
er’s instructions. DNA quantification was performed using the QubitTM dsDNA HS assay Kit on a Qubit 3 
Fluorometer (Thermo Fischer Scientific) according to the manufacturer’s instructions.

Bisulfite conversion.  Bisulfite conversion of DNA was performed on 1 µg of genomic DNA, using the 
EpiTect Bisulfite Kit 48 (Qiagen) on a QIAcube robotic workstation (Qiagen) according to the manufacturer’s 
instructions. Bisulfitetreated DNA was diluted to a final concentration of 20 ng/µl for DNA methylation analysis 
by pyrosequencing.

PCR amplification.  The PCR primer pairs and their annealing temperatures (Ta) used for PCR on bisulfite- 
treated DNA are given in Supplementary Table 1.

The regions of interest were amplified in 20 µL PCR reactions in a Mastercyler Pro S (Eppendorf) using 20 ng 
of bisulfite-treated DNA as a template. The PCR mix included 1× HotStar Taq DNA polymerase buffer, 1.8 mM 
of additional MgCl2, 200 µM of each dNTP, 200 nM of each primer (800 nM for PDE4C) and 2 U of HotStar Taq 
DNA polymerase. Cycling conditions included an initial denaturation step performed for 10 min at 95 °C, fol-
lowed by 50 cycles of 30 sec denaturation at 95 °C, 30 sec annealing at Ta and 30 sec elongation at 72 °C. The final 
step included 5 min elongation at 72 °C.

DNA methylation analysis by pyrosequencing.  The pyrosequencing primers and corresponding 
sequences for analysis by pyrosequencing are given in Supplementary Table 1.
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10 µl of PCR product was purified and prepared for pyrosequencing according to a previously described pro-
tocol30,31. DNA methylation analysis was performed using PyroMark Gold SQA Q96 Kit (Qiagen) on a PyroMark 
Q96 MD (Qiagen) and analyzed with PyroMark CpG software (Qiagen). DNA methylation data of the 100 blood 
samples from French individuals are available in Supplementary Dataset.xlsx.

Statistical analysis and graphical representation.  All statistical analysis and graphical representations 
were performed using R (https://www.r-project.org/) and MS Excel (Microsoft). The correlation between chron-
ological age and DNA methylation predicted age was assessed using the Pearson r correlation coefficient. The 
coefficient of determination R² was calculated as the square of the r coefficient. For each age prediction model, 
the mean absolute deviation (MAD), the standard error of the estimate (SEE) and the percentage of correct pre-
dictions were calculated.

Results
Implementation of the eleven pyrosequencing assays and the six blood-based age prediction 
models.  Six blood-based age prediction models using pyrosequencing for DNA methylation analysis were 
selected for evaluation on blood samples from 100 French donors aged between 19 and 65 years. The selected 
models were those of Bekaert1, Park2, Thong3, Zbiec-Piekarska 15, Zbiec-Piekarska 26, and Weidner4, which use 
4, 3, 3, 2, 5 and 3 CpG sites in 4 (ASPA, EDARADD, ELOLV2 and PDE4C), 3 (CCDC102B, ELOVL2 and ZNF423), 
3 (ELOVL2, KLF14 and TRIM59), 1 (ELOVL2), 5 (C1orf132, ELOVL2, FHL2, KLF14 and TRIM59) and 3 (ASPA, 
ITGA2B and PDE4C) genes of interest respectively (Fig. 1). In total, 11 genes including 52 CpG sites were ana-
lyzed by pyrosequencing (Supplementary Tables 1 and 2). Contrary to the original studies, the DNA extractions 
were performed on buffy coats instead of whole blood. However this modification should not impact the DNA 
methylation analysis, as the buffy coat is the main source of DNA in whole blood.

The 11 different, previously published, pyrosequencing assays were first evaluated against standards of known 
degrees of DNA methylation (0, 25, 50, 75 and 100%) in order to determine their efficiency and linearity, and 
to detect any possible PCR-induced biases (Supplementary Figs 2 and 3). All pyrosequencing assays presented 
an observed DNA methylation of the 0% and 100% DNA methylation standards close to the expected values, 
with a higher variability of the observed value of the 100% standard for some CpG sites (Supplementary Figs 2 
and 3). The 25%, 50% and 75% DNA methylation standards presented a quantification close to or slightly lower 
than their expected value, with the notable exception of the PDEC assay for which all the observed values were 
close to 0 (Supplementary Figs 2 and 3). In most assays, these results indicated the presence of only a slight PCR 
bias in favor of the unmethylated allele, however this bias was very strong for the PDE4C gene. To also evalu-
ate the possible amplification biases induced by the use of different PCR cycles, we performed replicate experi-
ments for the eleven assays with the same bisulfite-treated commercial DNA sample using either 45 or 50 PCR 
cycles (Supplementary Fig. 3). The DNA methylation values obtained for all CpGs included in the age-prediction 
models were very similar for both experimental conditions and presented no statistically significant differences 
(Supplementary Fig. 3), indicating that the use of 45 or 50 cycles of PCR should not modify the quantification of 
DNA methylation or the prediction of age.

The correlation analysis of DNA methylation of all CpGs and the chronological age of all individuals revealed 
a strong correlation present overall (mean absolute r = 0.640), which was stronger for the CpGs included in the 
six age-prediction models (mean absolute r = 0.758), although these CpGs correlations were not systematically 
the strongest within a given region (Supplementary Fig. 5 and Table 1). It should also be noted that all the CpGs 
of ITGA2B presented a weak correlation (−0.464≥ r ≥−0.325 while all the CpGs of ELOVL2, 4 of which are 
included in 5 different age prediction models, presented a very strong correlation (0.742≥ r ≥0.862); this explains 
55.1% to 74.3% of the age variance in our group of individuals (Supplementary Fig. 5 and Table 1). The Pearson 
correlation coefficient of the CpGs included in the six age prediction models was very similar between men and 
women, with the exception of ASPA and C1orf132 which presented a difference of 0.165 and 0.166 respectively in 
their r coefficients (Table 1).

Figure 1.  Description of the CpGs included in the six blood-based age prediction models using DNA 
methylation analysis by pyrosequencing.
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Gene Symbol CpG

All Men Women

r R² r R² r R²

ASPA
1 −0.635 0.403 −0.681 0.464 −0.516 0.267

2 −0.591 0.349 −0.601 0.361 −0.550 0.302

C1orf132

1 −0.677 0.458 −0.743 0.552 −0.577 0.333

2 −0.700 0.490 −0.726 0.528 −0.643 0.414

3 −0.699 0.489 −0.754 0.568 −0.597 0.356

CCDC102B
1 −0.672 0.452 −0.682 0.465 −0.686 0.470

2 −0.573 0.328 −0.537 0.289 −0.638 0.408

EDARADD
1 −0.747 0.558 −0.770 0.593 −0.713 0.508

2 −0.675 0.456 −0.677 0.458 −0.658 0.433

ELOVL2

1 0.742 0.551 0.755 0.570 0.710 0.504

2 0.790 0.624 0.799 0.638 0.763 0.582

3 0.833 0.694 0.829 0.688 0.830 0.689

4 0.831 0.691 0.818 0.670 0.847 0.717

5 0.785 0.616 0.769 0.592 0.805 0.648

6 0.862 0.743 0.852 0.726 0.877 0.769

7 0.794 0.630 0.782 0.611 0.807 0.652

FHL2

1 0.795 0.632 0.775 0.601 0.822 0.676

2 0.753 0.567 0.724 0.525 0.791 0.625

3 0.764 0.583 0.722 0.521 0.837 0.700

4 0.782 0.612 0.747 0.558 0.838 0.702

5 0.742 0.550 0.712 0.507 0.780 0.608

6 0.698 0.488 0.652 0.425 0.770 0.593

7 0.626 0.392 0.592 0.350 0.674 0.454

8 0.672 0.452 0.652 0.425 0.691 0.478

9 0.660 0.436 0.596 0.356 0.761 0.579

10 0.561 0.315 0.514 0.264 0.634 0.402

ITGA2B

1 −0.464 0.215 −0.465 0.216 −0.421 0.177

2 −0.341 0.116 −0.359 0.129 −0.278 0.077

3 −0.325 0.106 −0.315 0.099 −0.319 0.102

KLF14

1 0.768 0.590 0.765 0.586 0.789 0.622

2 0.693 0.480 0.700 0.491 0.666 0.444

3 0.618 0.382 0.657 0.432 0.509 0.259

4 0.499 0.249 0.480 0.231 0.514 0.265

PDE4C

1 0.757 0.574 0.772 0.597 0.721 0.519

2 0.459 0.210 0.473 0.224 0.392 0.154

3 0.468 0.219 0.518 0.269 0.321 0.103

4 0.296 0.087 0.156 0.024 0.495 0.245

5 0.524 0.275 0.566 0.320 0.467 0.218

6 0.377 0.142 0.342 0.117 0.415 0.172

7 0.429 0.184 0.419 0.175 0.450 0.203

8 0.361 0.130 0.402 0.161 0.245 0.060

TRIM59

1 0.570 0.325 0.592 0.350 0.505 0.255

2 0.570 0.325 0.543 0.295 0.631 0.398

3 0.730 0.533 0.695 0.483 0.788 0.622

4 0.695 0.482 0.694 0.481 0.680 0.462

5 0.758 0.575 0.759 0.576 0.748 0.560

6 0.755 0.570 0.729 0.532 0.790 0.624

7 0.739 0.547 0.719 0.516 0.774 0.599

8 0.652 0.425 0.638 0.407 0.672 0.452

ZNF423

1 −0.648 0.420 −0.670 0.449 −0.584 0.342

2 −0.551 0.303 −0.625 0.390 −0.427 0.183

3 −0.586 0.344 −0.621 0.385 −0.495 0.245

Table 1.  Correlation between chronological age and DNA methylation for all CpGs analyzed. For each category 
and each gene, the strongest correlation is indicated in bold. The CpGs included in one of the six age prediction 
models are underlined.
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The formulas used to predict age in the six different age prediction models given in Table 2 were obtained 
from previous studies21,22,28 or personal communications by the authors of the models (Bekaert, Thong and 
Zbiec-Piekarska 1 age prediction models).

Evaluation and comparison of the six blood-based age prediction models.  The predicted age 
obtained with the six age-prediction models was plotted against the chronological age (Fig. 2A). The first obser-
vation for all age prediction models was that there was no visible and statistically significant difference between 
men and women for their predicted age, indicating that the six models are not in fact influenced by gender 
(Fig. 2A, Supplementary Table 4), as had been assumed in the original studies where the models were developed. 
Correlation analysis indicated a strong correlation (0.783≤ r ≤0.883) between predicted and chronological age 
for the six models, which explained 61.3% to 77.8% of the age variation (Table 3). The Weidner model showed the 
lowest correlation in all individuals (r = 0.783) and in women (r = 0.755), and the second lowest correlation in 
men (r = 0.792). The Bekaert model, in contrast, presented the highest correlation in men (r = 0.883), in women 
(r = 0.888) and in all individuals (r = 0.883) (Table 3).

When the differences between chronological and predicted age were plotted for the six models, we observed 
that some models presented overestimations or underestimations of different magnitudes for predicted age com-
pared to chronological age, and these over/under-estimations also seemed to be influenced by chronological age 
(Fig. 2B). Therefore we divided our cohort into three groups composed of young adults (Group I, aged 19–34 
years, n = 34), middle-aged adults (Group II, aged 35–49 years, n = 33) and older adults (Group III, aged 50–65 
years, n = 33), and we measured the mean and median differences between the predicted and the chronological 
age of the different groups (Supplementary Table 3). Contrary to gender, statistically significant differences were 
observed for all models between the three age groups indicating that the models have different capacity of age 
prediction depending on the age range of the samples (Supplementary Fig. 4). The models of Bekaert, Thong 
and Zbiec-Pierkarska 1 presented very slight over- and under-estimations of the predicted age compared to the 
chronological age with mean and median age differences of about 2.5 years or less when all individuals were con-
sidered (Fig. 2B, Supplementary Table 3). Moreover, these models all tended to slightly overestimate the age of 
younger individuals and to underestimate the age of older individuals (Fig. 2B, Supplementary Table 3). The Park 
and Weidner models presented overall overestimations of the predicted age (mean and median over-estimation 
of 4.74–7.41 years), which were stronger in younger individuals (mean and median over-estimation of 7.50–9.61 
years, Fig. 2B, Supplementary Table 3). Finally, the Zbiec-Pierkarska 2 model tended to underestimate the pre-
dicted age (mean and median underestimation of 5.99 and 6.41 years respectively) more often in older individuals 
(mean and median under-estimation of around 10 years) than in younger individuals (mean and median under-
estimation of around 2 years, Fig. 2B, Supplementary Table 3).

The performance and accuracy of the six age prediction models were evaluated by calculating the mean abso-
lute deviation (MAD), the standard error of estimate (SEE) and the percentage of correct predictions (PCP), 
considering a difference of 5, 7.5 and 10 years between the predicted and chronological ages for all individuals, 
as well as for men and for women, and for the three groups based on their chronological age (Table 4). When 
all individuals were considered, the models of Bekaert and Thong presented the best performance (MAD of 
4.5 and 5.2 and SEE of 6.8 and 7.1), while the models of Zbiec-Piekarska 1 & 2 and Weidner presented a lower 
performance (MAD of 6.8–7.2 and SEE of 8.6–9.6) and the model of Park presented the lowest performance 
of all (MAD of 8.7 and SEE of 10.2); the same tendencies were observed when men and women were analyzed 
in two distinct groups (Table 4). Notably, the model of Bekaert, together with the models of Zbiec-Piekarska 2, 
Thong and Weidner showed the best performance for young adults (MAD of 4.2 and SEE of 5.8–6.3), middle-age 
adults (MAD of 4.5–4.7 and SEE of 6.8–7.6) and older adults (MAD of 4.7–4.9 and SEE of 6.8–7.7) respectively 
(Table 4). The poorest performance was observed in the groups of the young and middle-age adults with the Park 
and Weiner models (MAD of 8.9–9.9 and SEE of 10.3–11.8); while in older adults the poorest performance was 
observed with the Zbiec-Piekarska 2 model (MAD of 10.5 and SEE of 12.6, Table 4).

When a threshold of 5 years was chosen, and regardless of how the individuals were grouped, the age predic-
tion accuracy was best in the Bekaert model (65–73% of correct predictions), while higher thresholds identified 
both the Bekaert and Thong models as giving the best age prediction accuracies (76–94% of correct predictions, 
followed by Zbiec-Piekarska 1 model (59−86% of correct predictions, Table 4). The age prediction accuracies of 
the Weidner and Zbiec-Piekarska 2 models were highest in the young (62–94% of correct predictions) and older 
(64–82% of correct predictions) adults regardless of the threshold applied, and were lowest in the older (21–53% 

Age prediction 
model Formula

Bekaert 26.444119 − 0.201902 × ASPA (CpG1) − 0.239205 × EDARADD (CpG1) + 0.0063745 × ELOVL2 
(CpG6)² + 0.6352654 × PDE4C (CpG1)

Park 39.73167 − 0.69994 × CCDC102B (CpG1) + 1.19242 × ELOVL2 (CpG1) − 0.28914 × ZNF423 (CpG1)

Thong −20.372 + 0.830 × ELOVL2 (CpG5) + 1.723 × KLF14 (CpG2) + 0.715 × TRIM59 (CpG5)

Weidner 38.0 − 0.264 × ASPA (CpG1) − 0.237 × ITGA2B + 1.647 (CpG2) × PDE4C (CpG1)

Zbiec-Piekarska 1 −42.8393176902677 + 0.63266203860581 × ELOVL2 (CpG5) + 0.877474742612866 × ELOVL2 (CpG7)

Zbiec-Piekarska 2
3.26847784751817 − 0.355450171437202 × C1orf132 (CpG1) + 0.465445549010653 × ELOVL2 
(CpG7) + 0.237081243617191 × FHL2 (CpG2) + 0.832684435238792 × KLF14 
(CpG1) + 0.306488541137007 × TRIM59 (CpG7)

Table 2.  Formulas of the different age prediction models used.
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Figure 2.  Comparison of the predicted ages obtained with the six age-prediction models. (A) Scatterplot of 
predicted age and chronological age obtained with the six age-prediction models. (B) Differences between 
chronological age and predicted age plotted against chronological age.

Age prediction model

All Men Women

r R² r R² r R²

Bekaert 0.883 0.780 0.883 0.779 0.888 0.789

Park 0.831 0.690 0.842 0.709 0.810 0.656

Thong 0.853 0.727 0.848 0.719 0.854 0.729

Weidner 0.783 0.613 0.792 0.627 0.755 0.570

Zbiec.Piekarska 1 0.804 0.646 0.790 0.625 0.820 0.672

Zbiec.Piekarska 2 0.856 0.732 0.852 0.725 0.857 0.734

Table 3.  Correlation between chronological age and predicted age obtained with the six age prediction models.
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of correct predictions) and young (15–48% of correct predictions) adults (Table 4). Finally, the Park model pre-
sented an overall low age prediction accuracy for all groups (24–36% of correct predictions with a threshold of 5 
years), and this was less pronounced in the group of men and in the older individuals (Table 4).

In order to evaluate the impact of a second measure of DNA methylation on the age prediction performance, 
we performed a duplicate PCR and pyrosequencing experiment for ELOVL2 on all samples and compared the 
age predictions obtained with each replicate and with the mean of duplicates (Supplementary Fig. 6). While 
the age predictions calculated from each replicate dataset showed similar performances (MAD = 5.8–6.8 and 
SEE = 7.8–8.6), an improvement was observed when the predicted age was calculated with the mean of duplicates 
(MAD = 5.2 and SEE = 6.8) (Supplementary Fig. 6).

Discussion
In the present study, we evaluated six blood-based age prediction models using DNA methylation analysis by 
pyrosequencing on 100 blood samples from French individuals, categorized by gender and age. We started by 
implementing the eleven published pyrosequencing assays, analyzing 52 CpG sites using DNA standards with 
known DNA methylation values. This revealed the presence of a strong bias in favor of the unmethylated allele 
for PDE4C, while for the other assays no or only slight PCR biases were observed (Supplementary Figs 2 and 3). 
However, the models using PDE4C i.e. the models of Bekaert and Weidner, did not show strong age prediction 
biases in our study suggesting that the DNA methylation bias of PDE4C assay could already be present in the 
original studies. Moreover, these results could not be compared to the original studies as none of the original 
studies presented pyrosequencing results based on DNA standards. However they could be useful for the future 
implementation and calibration of these pyrosequencing assays in other laboratories. Compared to the original 
studies, we used buffy coats for DNA extraction, 1 µg of DNA for bisulfite treatment and 50 cycles for PCR ampli-
fication instead of whole blood, 200 ng to 2 µg of DNA and 40–45 cycles respectively21,22,25–28. Although these 
changes should have minor effects on the quantification of DNA methylation and the predicted age, some of them 
(the use of buffy coats and 1 µg of DNA for bisulfite treatment) could hardly be applied to forensics where only 
bloodstains are sometimes available.

Model Characteristic All Men Women Group I Group II Group III

Bekaert

MAD 4.5 4.8 4.0 4.2 4.5 4.7

SEE 6.8 7.6 5.6 6.3 7.6 6.8

Correct prediction (%)

≤5 years 69 69 69 65 73 70

≤7.5 years 86 84 88 88 88 82

≤10 years 92 91 93 94 91 91

Park

MAD 8.7 8.3 9.1 8.9 9.7 7.4

SEE 10.3 10.2 10.6 10.3 11.5 9.5

Correct prediction (%)

≤5 years 29 33 24 26 24 36

≤7.5 years 47 52 40 47 39 55

≤10 years 63 69 55 56 58 76

Thong

MAD 5.2 5.5 4.9 5.7 4.7 5.3

SEE 7.2 7.7 6.6 7.6 6.8 7.6

Correct prediction (%)

≤5 years 55 55 55 53 55 58

≤7.5 years 82 83 81 76 88 82

≤10 years 87 86 88 82 94 85

Weidner

MAD 7.2 7.3 7.0 9.9 6.6 4.9

SEE 9.6 10.0 9.3 11.8 9.5 7.7

Correct prediction (%)

≤5 years 45 45 45 21 52 64

≤7.5 years 59 57 62 35 64 79

≤10 years 69 66 74 53 73 82

Zbiec-Piekarska 1

MAD 6.8 7.3 6.2 6.9 6.2 7.4

SEE 8.6 9.4 7.6 8.5 8.1 9.7

Correct prediction (%)

≤5 years 47 48 45 41 58 42

≤7.5 years 64 62 67 59 73 61

≤10 years 78 72 86 76 79 79

Zbiec-Piekarska 2

MAD 7.2 7.7 6.5 4.2 7.0 10.5

SEE 9.2 9.7 8.7 5.8 8.6 12.6

Correct prediction (%)

≤5 years 40 41 38 62 42 15

≤7.5 years 59 57 62 82 61 33

≤10 years 73 71 76 94 76 48

Table 4.  Evaluation of the accuracy of the six age prediction models. Intergroup comparisons were assessed by 
Student’s T-tests (see Supplementary Table 4).
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The correlation analysis between the DNA methylation of each CpG and chronological age also revealed that 
all CpGs included in the six age-prediction models presented a strong correlation with chronological age, with 
the notable exception of ITGA2B (r = −0.341, Table 2), which is included in the Weidner model22. The absence 
of a correlation between ITGA2B methylation and chronological age has already been observed by Bekaert et al., 
who excluded this gene from their model25.

The correlation analysis of the six selected models revealed a strong correlation between the predicted and 
chronological age, with the Bekaert model (r = 0.883) presenting the best observed correlation, followed by the 
models of Zbiec-Piekarska 2 (r = 0.856), Thong (r = 0.853), Park (r = 0.831), Zbiec-Piekarska 1 (r = 0.804) and 
Weidner (r = 0.783, Table 3). However, none of the calculated r coefficients exceeded 0.9 in our study, whereas in 
the original studies establishing these models, the r coefficients ranged from 0.927 to 0.977 in the training sets as 
well as in the validation sets (Supplementary Table 4)21,25–28. The lower r coefficients obtained in our study could 
principally be explained by the smaller age range of our cohort (19–65 years) compared to the original studies 
(0–91 years, Supplementary Table 4)21,22,25–28. This phenomenon has already been described in a previous study 
where the use of restricted ranges of data resulted in a decrease of the r coefficient32.

Of the six models, the Bekaert model presented the best overall performance and accuracy for age prediction 
(MAD of 4.5 and SEE of 6.8, Table 4) in our cohort of 100 French blood samples, closely followed by the Thong 
model (MAD of 5.2 and SEE of 7.2). Thus both models presented overall performances close to the original stud-
ies (MAD of 3.75 for the Bekaert model and 3.3–5 for the Thong model, Supplementary Table 4)25,26, suggesting 
small inter-laboratory variations.

The Zbiec-Piekarska 1 model is the only age prediction model based solely on 2 CpGs located at a single locus 
and requiring only one PCR and pyrosequencing assay, thus rendering this model particularly useful for rapid 
age estimation when only low quantities of DNA are available such as in forensic applications. This model pre-
sented a good overall performance (MAD of 6.8 and SEE of 8.6, Supplementary Table 4), although slightly below 
the performances obtained in the original study (MAD of 5.03 and 5.75 in both the training and validation sets 
respectively, Supplementary Table 4)27. However, we showed for the first time that the use of the mean of two 
replicates for the quantification of DNA methylation rather than a single replicate improved the performance of 
age prediction of Zbiec-Piekarska 1 model. This suggests that the use of duplicate measures of DNA methylation 
could potentially be a simple way to increase the performance of age prediction for every model. The Weidner 
model, which was the first blood-based age-prediction model to be developed using pyrosequencing, presented 
one of the lowest performances for age prediction (MAD of 7.2 and SEE of 9.6) with an overestimation of the pre-
dicted age in younger adults (Table 4). This model gave lower performances to those of the original study (MAD 
of 4.49–5.43 and RMSE of 5.6–7.2, Supplementary Table 4), where slight over-estimations of the predicted age in 
younger individuals were also visible22.

The overall accuracy observed for the Zbiec-Piekarska 2 and Park models was among the lowest out of the six 
models tested (MAD of 7.2–8.7 and SEE of 9.2–10.3, Table 4), which contrasted with the better values of the per-
formance indicators for these models in the original studies (MAD of 3.1–3.9 and SEE of 4.5–6.9, Supplementary 
Table 4)21,28. Two independent studies also evaluated the Zbiec-Piekarska 2 model and found a higher MAD (4.18 
and 4.8) compared to the original study26,29, suggesting that inter-laboratory variability can influence the per-
formance of a model. However, in our study, the models of Zbiec-Piekarska 2 and Park tended to systematically 
under- and over-estimate the predicted age compared to the chronological age (Fig. 2, Supplementary Table 3), 
a finding not observed in the original studies21,28. Analysis of the raw pyrosequencing data from the original 
studies of the Park21 and Zbiec-Piekarska 2 models28 indicated that our pyrosequencing data for ELOVL2 CpG1 
and C1orf132 CpG1 presented a higher level of DNA methylation for all age groups, which may have potentially 
induced a systematic over- and under-estimation of the predicted age respectively (not shown). Thus, to avoid this 
potential technical bias, we recommend that DNA methylation data on standards with known DNA methylation 
levels should be provided in the original studies in which the age-prediction models are developed, and that a 
systematic calibration of each pyrosequencing assay based on the evaluation of the above-mentioned standards 
should be performed in different laboratories during implementation of the pyrosequencing assays and the age 
prediction models, as slight variations of the experimental conditions (quantity of input DNA, annealing tem-
perature, pyrosequencing instruments…) from one laboratory to another can modify the quantification of DNA 
methylation27,30.

Finally, we also observed in our study that gender had little or no effect on age prediction accuracy, which 
is consistent with reports in previous studies21,25,28. However, while an increase in the chronological age of the 
individuals has been shown to negatively influence age prediction accuracy in most studies to date21,25,26,28, this 
observation was not clearly visible in our own study, a fact that could probably be explained by the narrow age 
range of our cohort. Due to the limited number of individuals included in our study, our conclusions on the six 
blood-based age prediction models should be further confirmed and strengthened in other validation studies 
using larger cohorts.

Conclusion
This study constitutes the first independent evaluation and validation based on blood samples of 100 individu-
als from a French cohort, tested with six previously developed blood-based age prediction models using DNA 
methylation analysis by pyrosequencing, with the aim of performing a direct intercomparison of the six models in 
addition to comparing the results to the original studies in which the models were developed. The study notably 
revealed various differences in performance for age prediction in the six models, with the models of Bekaert and 
Thong presenting the best age prediction accuracy. The model of Zbiec-Piekarska 1 was the easiest to implement, 
being based on 2 CpGs included in a single pyrosequencing assay, and presented a good performance for age pre-
diction which could prove particularly useful for forensic applications where the amount of available DNA is lim-
ited. In our hands, the models of Park and Zbiec-Piekarska 2 presented slight over- and under-estimation biases 
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in predicted age compared to chronological age, probably caused by inter-laboratory variations during implemen-
tation of the pyrosequencing assays. Thus age-prediction models developed in the future should include DNA 
methylation data on standards with known DNA methylation values for every pyrosequencing assay to facilitate 
the implementation of these models in other laboratories. Moreover, a systematic evaluation of the different age 
prediction models on a same population should be performed in order to compare their performance and iden-
tify the model with the best age prediction accuracy.
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