
HAL Id: cea-04456059
https://cea.hal.science/cea-04456059

Submitted on 11 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Mosaic: in-memory computing and routing for
small-world spike-based neuromorphic systems

Thomas Dalgaty, Filippo Moro, Yiğit Demirağ, Alessio de Pra, Giacomo
Indiveri, Elisa Vianello, Melika Payvand

To cite this version:
Thomas Dalgaty, Filippo Moro, Yiğit Demirağ, Alessio de Pra, Giacomo Indiveri, et al.. Mosaic:
in-memory computing and routing for small-world spike-based neuromorphic systems. Nature Com-
munications, 2024, 15 (1), pp.142. �10.1038/s41467-023-44365-x�. �cea-04456059�

https://cea.hal.science/cea-04456059
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Article https://doi.org/10.1038/s41467-023-44365-x

Mosaic: in-memory computing and routing
for small-world spike-based neuromorphic
systems

Thomas Dalgaty 1,3, Filippo Moro1,3, Yiğit Demirağ 2,3, Alessio De Pra 1,
Giacomo Indiveri 2, Elisa Vianello 1 & Melika Payvand 2

The brain’s connectivity is locally dense and globally sparse, forming a small-
world graph—a principle prevalent in the evolution of various species, sug-
gesting a universal solution for efficient information routing. However, current
artificial neural network circuit architectures do not fully embrace small-world
neural networkmodels. Here, we present the neuromorphicMosaic: a non-von
Neumann systolic architecture employing distributed memristors for in-
memory computing and in-memory routing, efficiently implementing small-
world graph topologies for Spiking Neural Networks (SNNs). We’ve designed,
fabricated, and experimentally demonstrated the Mosaic’s building blocks,
using integrated memristors with 130 nm CMOS technology. We show that
thanks to enforcing locality in the connectivity, routing efficiency of Mosaic is
at least one order of magnitude higher than other SNN hardware platforms.
This is while Mosaic achieves a competitive accuracy in a variety of edge
benchmarks. Mosaic offers a scalable approach for edge systems based on
distributed spike-based computing and in-memory routing.

Despite millions of years of evolution, the fundamental wiring princi-
ple of biological brains has been preserved: dense local and sparse
global connectivity through synapses between neurons. This persis-
tence indicates the efficiency of this solution in optimizing both
computation and the utilization of the underlying neural substrate1.
Studies have revealed that this connectivity pattern in neuronal net-
works increases the signal propagation speed2, enhances echo-state
properties3 and allows for amore synchronized global network4. While
densely connected neurons in the network are attributed to per-
forming functions such as integration and feature extraction
functions5, long-range sparse connectionsmay play a significant role in
the hierarchical organization of such functions6. Such neural con-
nectivity is called small-worldness in graph theory and is widely
observed in the cortical connections of the human brain2,7,8 (Fig. 1a, b).
Small-world connectivity matrices, representing neuronal connec-
tions, display a distinctive pattern with a dense diagonal and pro-
gressively fewer connections between neurons as their distance from
the diagonal increases (see Fig. 1c).

Crossbar arrays of non-volatile memory technologies e.g., Float-
ing Gates9, Resistive Random Access Memory (RRAM)10–15, and Phase
ChangeMemory (PCM)16–19 have been previously proposed as a means
for realizing artificial neural networks on hardware (Fig. 1d). These
computing architectures perform in-memory vector-matrix multi-
plication, the core operation of artificial neural networks, reducing the
datamovement, and consequently the power consumption, relative to
conventional von Neumann architectures9,20–25.

However, existing crossbar array architectures are not inherently
efficient for realizing small-world neural networks at all scales. Imple-
menting networks with small-world connectivity in a large crossbar
array would result in an under-utilization of the off-diagonal memory
elements (i.e., a ratio of non-allocated to allocated connections > 10)
(see Fig. 1d and Supplementary Note 1). Furthermore, the impact of
analog-related hardware non-idealities such as current sneak-paths,
parasitic resistance, and capacitance of the metal lines, as well as
excessively large read currents and diminishing yield limit the max-
imum size of crossbar arrays in practice26–28.
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These issues are also common to biological networks. As the
resistance attenuates the spread of the action potential, cytoplasmic
resistance sets an upper bound to the length of dendrites1. Hence, the
intrinsic physical structure of the nervous systems necessitates the use
of local over global connectivity.

Drawing inspiration from the biological solution for the same
problem leads to (i) a similar optimal silicon layout, a small-world graph,
and (ii) a similar information transfer mechanism through electrical
pulses, or spikes. A large crossbar can be divided into an array of
smaller, more locally connected crossbars. These correspond to the
green squares of Fig. 1e. Each green crossbar hosts a cluster of spiking
neurons with a high degree of local connectivity. To pass information
among these clusters, small routers can be placed between them - the
blue tiles in Fig. 1e. We call this two-dimensional systolic matrix of dis-
tributed crossbars, or tiles, the neuromorphicMosaic architecture. Each
green tile serves as an analog computing core, which sends out infor-
mation in the formof spikes,while eachblue tile serves as a routing core
that spreads the spikes throughout the mesh to other green tiles. Thus,
the Mosaic takes advantage of distributed and de-centralized comput-
ing and routing to enable not only in-memory computing, but also in-
memory routing (Fig. 1f). Though the Mosaic architecture is indepen-
dent of the choice ofmemory technology, herewe are taking advantage
of the resistivememory, for its non-volatility, small footprint, low access
time and power, and fast programming29.

Neighborhood-based computing with resistive memory has
been previously explored through using Cellular Neural

Networks30,31, Self-organizing Maps (SOM)32, and the cross-net
architecture33. Though cellular architectures use local clustering,
their lack of global connectivity limits both the speed of information
propagation and their configurability. Therefore their application
has been mostly limited to low-level image processing34. This also
applies for SOMs, which exploit neighboring connectivity and are
typically trained with unsupervised methods to visualize low-
dimensional data35. Similarly, the crossnet architecture proposed to
use distributed small tilted integrated crossbars on top of the Com-
plementaryMetal-Oxide-Semiconductor (CMOS) substrate, to create
local connectivity domains for image processing33. The tilted cross-
bars allow the nano-wire feature size to be independent of the CMOS
technology node36. However, this approach requires extra post-
processing lithographic steps in the fabrication process, which has so
far limited its realization.

Unlike most previous approaches, the Mosaic supports both
dense local connectivity, and globally sparse long-range connections,
by introducing re-configurable routing crossbars between the com-
puting tiles. This allows to flexibly program specific small-world net-
work configurations and to compile them onto the Mosaic for solving
the desired task. Moreover, the Mosaic is fully compatible with stan-
dard integrated RRAM/CMOS processes available at the foundries,
without the need for extra post-processing steps. Specifically, we have
designed the Mosaic for small-world Spiking Neural Networks (SNNs),
where the communication between the tiles is through electrical pul-
ses, or spikes. In the realm of SNN hardware, the Mosaic goes beyond
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Fig. 1 | Small-world graphs in biological network and how to build that into a
hardware architecture for edge applications. a Depiction of small-world prop-
erty in the brain, with highly-clustered neighboring regions highlighted with the
same color. b Network connectivity of the brain is a small-world graph, with highly
clusteredgroupsof neuronswith sparse connectivity among them. c (adapted from
Bullmore and Sporns8). The functional connectivity matrix which is derived from
anatomical data with rows and columns representing neural units. The diagonal
region of the matrix (darkest colors) contains the strongest connectivity which
represents the connections between the neighboring regions. The off-diagonal
elements are not connected. d Hardware implementation of the connectivity
matrix of c, with neurons and synapses arranged in a crossbar architecture. The red
squares represent the group of memory devices in the diagonal, connecting
neighboring neurons. Black squares show the group of memory devices that are
never programmed in a small-world network, and are thus highlighted as “wasted”.

e TheMosaic architecture breaks the large crossbars into small densely-connected
crossbars (green Neuron Tiles) and connects them through small routing crossbars
(blue Routing Tiles). This gives rise to a distributed two-dimensional mesh, with
highly connected clusters of neurons, connected to each other through routers.
f The state of the resistive memory devices in Neuron Tiles determines how the
information is processed, while the state of the routing devices determines how it is
propagated in the mesh. The resistive memory devices are integrated into 130 nm
technology. g Plot showing the required memory (number of memristors) as a
function of the number of neurons per tile, for different total numbers of neurons
in the network. The horizontal dashed line indicates the number of required
memory bits using a fully-connected RRAM crossbar array. The cross (X) illustrates
the cross-over point below which the Mosaic approach becomes favorable. h The
Mosaic can be used for a variety of edge AI applications, benchmarked here on
sensory processing and Reinforcement learning tasks.
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the Address-Event Representation (AER)37,38, the standard spike-based
communication scheme, by removing the need to store each neuron’s
connectivity information in either bulky local or centralized memory
units which draw static power and can consume a large chip area
(Supplementary Note 2).

In this Article, we first present the Mosaic architecture. We report
electrical circuit measurements from computational and Routing Tiles
that we designed and fabricated in 130 nm CMOS technology co-
integrated with Hafnium dioxide-based RRAM devices. Then, cali-
brated on thesemeasurements, and using a novel method for training
small-world neural networks that exploits the intrinsic layout of the
Mosaic, we run system-level simulations applied to a variety of edge
computing tasks (Fig. 1h). Finally, we compare our approach to other
neuromorphic hardware platforms which highlights the significant
reduction in spike-routing energy, between one and four orders of
magnitude.

Results
In the Mosaic (Fig. 1e), each of the tiles consists of a small memristor
crossbar that can receive and transmit spikes to and from their
neighboring tiles to the North (N), South (S), East (E) and West (W)
directions (Supplementary Note 4). The memristive crossbar array in
the green Neuron Tiles stores the synaptic weights of several Leaky
Integrate andFire (LIF) neurons.Theseneurons are implementedusing
analog circuits and are located at the termination of each row, emitting
voltage spikes at their outputs39. The spikes from the Neuron Tile are
copied in four directions of N, S, E and W. These spikes are commu-
nicated between Neuron Tiles through a mesh of blue Routing Tiles,
whose crossbar array stores the connectivity pattern between Neuron
Tiles. The Routing Tiles at different directions decides whether or not
the received spike shouldbe further communicated. Together, the two
tiles give rise to a continuous mosaic of neuromorphic computation
and memory for realizing small-world SNNs.

Small-world topology can beobtained by randomly programming
memristors in a computer model of the Mosaic (see Methods and
Supplementary Note 3). The resulting graph exhibits an intriguing set
of connection patterns that reflect those found in many of the small-
world graphical motifs observed in animal nervous systems. For
example, central ‘hub-like’ neurons with connections to numerous
nodes, reciprocal connections between pairs of nodes reminiscent of
winner-take-all mechanisms, and some heavily connected local neural
clusters8. If desired, these graph properties couldbe adapted on the fly
by re-programming the RRAMstates in the two tile types. For example,
a set of desired small-world graph properties can be achieved by ran-
domly programming the RRAM devices into their High-Conductive
State (HCS) with a certain probability (Supplementary Note 3). Ran-
dom programming can for example be achieved elegantly by simply
modulating RRAM programming voltages40.

For Mosaic-based small-world graphs, we estimate the required
number ofmemory devices (synaptic weight and routing weight) as a
function of the total number of neurons in a network, through a
mathematical derivation (see Methods). Fig. 1g plots the memory
footprint as a function of the number of neurons in each tile for
different network sizes. Horizontal dashed lines show the number of
memory elements using one large crossbar for each network size, as
has previously been used for Recurrent Neural Networks (RNN)
implementations41. The cross-over points, at which the Mosaic
memory footprint becomes favorable, are denoted with a cross.
While for smaller network sizes (i.e. 128 neurons) no memory
reduction is observed compared to a single large array, the memory
saving becomes increasingly important as the network is scaled. For
example, given a network of 1024 neurons and 4 neurons per Neuron
Tile, the Mosaic requires almost one order of magnitude fewer
memory devices than a single crossbar to implement an equivalent
network model.

Hardware measurements
Neuron tile circuits: small-worlds. Each Neuron Tile in the Mosaic
(Fig. 2a) is composed of multiple rows, a circuit that models a LIF
neuron and its synapses. The details of one neuron row is shown in
Fig. 2b. It has N parallel one-transistor-one-resistor (1T1R) RRAM
structures at its input. The synaptic weights of each neuron are stored
in the conductance level of theRRAMdevices in one row.On the arrival
of any of the input events Vin<i>, the amplifier pins node Vx to Vtop, and
thus a read voltage equivalent to Vtop − Vbot is applied across Gi, giving
rise to current iin at M1, and in turn to ibuff. This current pulse is mir-
rored through Iw to the “synaptic dynamics” circuit, Differential Pair
Integrator (DPI)42, which low pass filters it through charging the
capacitor M9 in the presence of the pulse, and discharging it through
current Itau in its absence. The charge/discharge of M9 generates an
exponentially decaying current, Isyn, which is injected into the neuron’s
membrane potential node, Vmem, and charges capacitor M13. The
capacitor leaks throughM11, whose rate is controlled by Vlk at its gate.
As soon as the voltage developed on Vmem passes the threshold of the
following inverter stage, it generates a pulse, at Vout. The refractory
period time constant depends on the capacitorM16 and the bias on Vrp.
(For a more detailed explanation of the circuit, please see Supple-
mentary Note 5).

We have fabricated and measured the circuits of the Neuron Tile
in a 130 nm CMOS technology integrated with RRAM devices43. The
measurements were done on the wafer level, using a probe station
shown in Fig. 2c. In the fabricated circuit, we statistically characterized
the RRAMs through iterative programming44 and controlling the pro-
gramming current, resulting in nine stable conductance states, G,
shown in Fig. 2d. After programming each device, we apply a pulse on
Vin <0 > and measure the voltage on Vsyn, which is the voltage devel-
oped on theM9 capacitor. We repeat the experiment for four different
conductance levels of 4μS, 48μS, 64μS and 147μS. The resulting Vsyn

traces are plotted in Fig. 2e.Vsyn starts from the initial value close to the
power supply, 1.2 V. The amount of discharge depends on the Iw cur-
rent which is a linear function of the conductance value of the RRAM,
G. The higher the G, the higher the Iw, and higher the decrease in Vsyn,
resulting in higher Isyn which is integrated by the neuron membrane
Vmem. The peak value of themembrane potential in response to a pulse
is measured across one array of 5 neurons, each with a different con-
ductance level (Fig. 2g). Each pulse increases the membrane potential
according to the corresponding conductance level, and once it hits a
threshold, it generates an output spike (Fig. 2f). The peak value of the
neuron’s membrane potential and thus its firing rate is proportional to
the conductanceG, as shown in Fig. 2h. The error bars on the plot show
the variability of the devices in the 4 kb array. It is worth noting that
this implementation does not take into account the negativeweight, as
the focus of the design has been on the concept. Negative weights
couldbe implementedusing adifferential signaling approach, by using
two RRAMs per synapse45.

Routing tile circuits: connecting small-worlds. A Routing Tile circuit
is shown in Fig. 3a. It acts as a flexiblemeans of configuring how spikes
emitted from Neuron Tiles propagate locally between small-worlds.
Thus, the routedmessage entails a spike, which is either blockedby the
router, if the corresponding RRAM is in its High-Resistive State (HRS),
or is passed otherwise. The functional principles of the Routing Tile
circuits are similar to the Neuron Tiles. The principal difference is the
replacement of the synapse and neuron circuit models with a simple
current comparator circuit (highlighted with a black box in Fig. 3b).
Themeasurements were done on the wafer level, using a probe station
shown in Fig. 3c. On the arrival of a spike on an input port of the
Routing Tile,Vin < i > , 0 < i <N, a current proportional toGi flows to the
device, giving rise to readcurrent ibuff. A current comparator compares
ibuff against iref, which is a bias generatedonchip by providing a voltage
from the I/Opad to the gate of a transistor (not shown in Fig. 3). The Iref
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value is decided based on the “Threshold” conductance boundary in
Fig. 3d. The Routing Tile regenerates a spike if the resulting ibuff is
higher than iref, and blocks it otherwise, since the output remains at
zero. Therefore, the state of the device serves to either pass or block
input spikes arriving from different input ports (N, S,W, E), sending
them to its output ports (Supplementary Note 4). Since the routing
array acts as a binary pass or no-pass, the decision boundary is on
whether the devices is in its HCS or Low-Conductive State (LCS), as
shown in Fig. 3d46. Using a fabricated Routing Tile circuit, we demon-
strate its functionality experimentally in Fig. 3e. Continuous and
dashed blue traces show the waveforms applied to the <N> and <S>
inputs of the tile respectively, while the orange trace shows the
response of the output towards the E port. The E output port follows
the N input resulting from the corresponding RRAMprogrammed into
its HCS, while the input from the S port gets blocked as the corre-
sponding RRAM device is in its LCS, and thus the output remains at
zero. This output pulsepropagates onward to the next tile. Note that in
Fig. 3d theoutput spikedoes not appear as rectangular due to the large
capacitive loadof the probe station (seeMethods). To allow forgreater
reconfigurability, more channels per direction can be used in the
Routing Tiles (see Supplementary Note 6).

Hardware-aware simulations
Application to real-time sensory-motor processing through
hardware-aware simulations. The Mosaic is a programmable

hardware well suited for the application of pre-trained small-world
Recurrent Spiking Neural Network (RSNN) in energy and memory-
constrained applications at the edge. Through hardware-aware simu-
lations, we assess the suitability of the Mosaic on a series of repre-
sentative sensory processing tasks, including anomaly detection in
heartbeat (application in wearable devices), keyword spotting (appli-
cation in voice command), and motor system control (application in
robotics) tasks (Fig. 4a, b, c respectively).We apply these tasks to three
network cases, (i) a non-constrained RSNN with full-bit precision
weights (32 bit Floating Point (FP32)) (Fig. 4d), (ii) Mosaic constrained
connectivity with FP32 weights (Fig. 4e), and (iii) Mosaic constrained
connectivity with noisy and quantized RRAM weights (Fig. 4f). There-
fore, case (iii) is fully hardware-aware, including the architecture
choices (e.g., number of neurons per Neuron Tile), connectivity con-
straints, noise and quantization of weights.

For training case i, we use Backpropagation Through Time
(BPTT)47 with surrogate gradient approximations of the derivative of a
LIF neuron activation function on a vanilla RSNN48 (see Methods). For
training case (ii), we introduce a Mosaic-regularized cost function
during the training, which leads to a learned weight matrix with small-
world connectivity that is mappable onto the Mosaic (see Methods).
For case (iii), wequantize theweights using amixedhardware-software
experimental methodology whereby memory elements in a Mosaic
software model are assigned conductance values programmed into a
corresponding memristor in a fabricated array. Programmed

Fig. 2 | Experimental results from the neuron column circuit. a Neuron Tile, a
crossbar with feed-forward and recurrent inputs displaying network parameters
represented by colored squares. b Schematic of a single row of the fabricated
crossbars, where RRAMs represent neuron weights. Insets show scanning and
transmission electronmicroscopy images of the 1T1R stack with a hafnium-dioxide
layer sandwiched between memristor electrodes. Upon input events Vin<i>,
Vtop−Vbot is applied across Gi, yielding iin and subsequently ibuff, which feeds into
the synaptic dynamic block, producing exponentially decaying current isyn, with a
time constant set byMOS capacitorM9 and bias current Itau. Integration of isyn into
neuron membrane potential Vmem triggers an output pulse (Vout) upon exceeding
the inverter threshold. Refractory period regulation is achieved through MOS cap
M16 and Vrp bias. c Wafer-level measurement setup utilizes an Arduino for logic

circuitry management to program RRAMs and a B1500 Device Parameter Analyzer
to read device conductance. d Cumulative distributions of RRAM conductance (G)
resulting from iterative programming in a 4096-device RRAMarraywith varied SET
programming currents. e Vsyn initially at 1.2,V decreases as capacitorM9 discharges
upon pulse arrival at time 0. Discharge magnitude depends on Iw set by G. Four
conductance values’ Vsyn curves are recorded. f Input pulse train (gray pulses) at
Vin<0> increases zeroth neuron’s Vmem (purple trace) until it fires (light blue trace)
after six pulses, causing feedback influence on neuron 1’s Vmem. g Statistical mea-
surements on peak membrane potential in response to a pulse across a 5-neuron
array over 10 cycles. h Neuron output frequency linearly correlates with G, with
error bars reflecting variability across 4096 devices.
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conductances are obtained through a closed-loop programming
strategy44,49–51.

For all the networks and tasks, the input is fed as a spike train and
the output class is identified as the neuron with the highest firing rate.
The RSNN of case (i) includes a standard input layer, recurrent layer,
and output layer. In the Mosaic cases (ii) and (iii), the inputs are
directly fed into the Mosaic Neuron Tiles from the top left, are pro-
cessed in the small-world RSNN, and the resulting output is taken
directly from theopposing sideof theMosaic, by assigning someof the
Neuron Tiles in the Mosaic as output neurons. As the inputs and out-
puts are part of the Mosaic fabric, this scheme avoids the need for
explicit input andoutput readout layers, relative to theRSNN, thatmay
greatly simplify a practical implementation.

Electrocardiography (ECG) anomaly detection. We first benchmark
our approach on a binary classification task in detecting anomalies in
the ECG recordings of theMIT-BIH Arrhythmia Database52. In order for
the data to be compatible with the RSNN, we first encode the con-
tinuous ECG time-series into trains of spikes using a delta-modulation
technique, which describes the relative changes in signal
magnitude53,54 (see Methods). An example heartbeat and its spike
encoding are plotted in Fig. 4a.

The accuracy over the test set for five iterations of training,
transfer, and test for cases (i) (red), (ii) (green) and (iii) (blue) is plotted
in Fig. 4g using a boxplot. Although the Mosaic constrains the con-
nectivity to follow a small-world pattern, the median accuracy of case
(ii) only drops by 3% compared to the non-constrained RSNN of case
(i). Introducing the quantization and noise of the RRAMdevices in case
(iii), drops the median accuracy further by another 2%, resulting in a
median accuracy of 92.4%. As often reported, the variation in the

accuracyof case iii also increases due to the cycle-to-cycle variability of
RRAM devices51.

Keyword spotting (KWS). We then benchmarked our approach on a
20-class speech task using the Spiking Heidelberg Digit (SHD)55 data-
set. SHD includes the spoken digits between zero and nine in English
and German uttered by 12 speakers. In this dataset, the speech signals
have been encoded into spikes using a biologically-inspired cochlea
model which effectively computes a spectrogram with Mel-spaced
filter banks, and convert them into instantaneous firing rates55.

The accuracy over the test set for five iterations of training,
transfer, and test for cases (i) (red), (ii) (green) and (iii) (blue) is plotted
in Fig. 4h using a boxplot. The dashed red box is taken directly from
the SHD paper55. The Mosaic connectivity constraints have only an
effect of about 2.5% drop in accuracy, and a further drop of 1% when
introducing RRAM quantization and noise constraints. Furthermore,
we experimented with various numbers of Neuron Tiles and the
number of neurons within each Neuron Tile (Supplementary Note 8,
Supplementary Fig. S10), as well as sparsity constraints (Supplemen-
tary Note 8, Supplementary Fig. S11) as hyperparameters. We found
that optimal performance can be achieved when an adequate amount
of neural resources are allocated for the task.

Motor control by reinforcement learning. Finally, we also benchmark
the Mosaic in a motor system control Reinforcement Learning (RL)
task, i.e., the Half-cheetah56. RL has applications ranging from active
sensing via camera control57 to dexterous robot locomotion58.

To train the network weights, we employ the evolutionary stra-
tegies (ES) fromSalimans et al.59 in reinforcement learning settings60–62.
ES enables stochastic perturbation of the network parameters,
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Fig. 3 | Experimental measurements of the fabricated Routing Tile circuits.
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different directions towards thedestination.bDetailed schematic of one rowof the
fabricated routing circuits. On the arrival of a spike to any of the input ports of the
Routing Tile, Vin < i > , a current proportional toGi flows in iin, similar to the Neuron
Tile. A current comparator compares this current against a reference current, Iref,
which is a bias current generated on chip through providing a DC voltage from the
I/O pads to the gate of an on-chip transistor. If iin > iref, the spike will get regener-
ated, thus “pass”, or is “blocked” otherwise. cWafer-level measurements of the test
circuits through the probe station test setup. d Measurements from 4 kb array
shows the Cumulative Distribution Function (CDF) of the RRAM in its High Con-
ductive State (HCS) and Low Conductive State (LCS). The line between the

distributions that separates the two is considered as the “Threshold” conductance,
which the decision boundary for passing or blocking the spikes. Based on this
Threshold value, the Iref bias in panel b is determined. e Experimental results from
the Routing Tile, with continuous and dashed blue traces showing the waveforms
applied to the <N > and < S > inputs, while the orange trace shows the response of
the output towards the < E > port. The < E > output port follows the <N > input,
resulting from the device programmed into the HCS, while the input from the <
S > port gets blocked as the corresponding RRAM device is in its LCS. f A binary
checker-board pattern is programmed into the routing array, to show a ratio of 10
between the High Resistive and Low Resistive state, which sets a perfect boundary
for a binary decision required for the Routing Tile.
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evaluation of the population fitness on the task and updating the
parameters using stochastic gradient estimate, in a scalableway for RL.

Figure 4i shows themaximum gained reward for five runs in cases
i, ii, and iii, which indicates that the network learns an effective policy
for forward running. Unlike tasks a and b, the network connectivity
constraints and parameter quantization have relatively little impact.

Encouragingly, across three highly distinct tasks, performance
wasonly slightly impactedwhenpassing froman unconstrainedneural
network topology to a noisy small-world neural network. In particular,
for the half-cheetah RL task, this had no impact.

Neuromorphic platform routing energy
In-memory computing greatly reduces the energy consumption
inherent to data movement in Von Neumann architectures. Although
crossbars bring memory and computing together, when neural net-
works are scaled up, neuromorphic hardware will require an array of
distributed crossbars (or cores) when faced with physical constraints,
such as IR drop and capacitive charging28. Small-world networks may
naturally permit the minimization of communication between these
crossbars, but a certain energy and latency cost associated with the

data movement will remain, since the compilation of the small-world
network on a general-purpose routing architecture is not ideal. Hard-
ware that is specifically designed for small-world networks will ideally
minimize these energy and latency costs (Fig. 1g). In order to under-
standhow the spike routing efficiency of theMosaic compares to other
SNN hardware platforms, optimized for other metrics such as max-
imizing connectivity, we compare the energy and latency of (i) routing
one spike within a core (0-hop), (ii) routing one spike to the neigh-
boring core (1-hop) and (iii) the total routing power consumption
required for tasks A and B, i.e., heartbeat anomaly detection and
spoken digit classification respectively (Fig. 4a, b).

The results are presented in Table 1. We report the energy and
latency figures, both in the original technology where the systems are
designed, and scaled values to the 130 nm technology, where Mosaic
circuits are designed, using general scaling laws63. The routing power
estimates for Tasks A andB areobtained by evaluating the0- and 1-hop
routing energy and the number of spikes required to solve the tasks,
neglecting any other circuit overheads. In particular, the optimization
of the sparsity of connections between neurons implemented to train
Mosaic assures that 95% of the spikes are routed with 0-hops

Fig. 4 | Benchmarking the Mosaic against three edge tasks, heartbeat (ECG)
arrhythmia detection, keyword spotting (KWS), and motor control by rein-
forcement learning (RL). a–c A depiction of the three tasks, along with the cor-
responding input presented to the Mosaic. a ECG task, where each of the two-
channel waveforms is encoded into up (UP) and down (DN) spiking channels,
representing the signal derivative direction. b KWS task with the spikes repre-
senting the density of information in different input (frequency) channels. c half-
cheetah RL task with input channels representing state space, consisting of posi-
tional values of different body parts of the cheetah, followed by the velocities of
those individual parts. d–f Depiction of the three network cases applied to each
task. d Case (i) involves a non-constrained Recurrent Spiking Neural Network
(RSNN) with full-bit precision weights (FP32), encompassing an input layer, a
recurrent layer, and an output layer. e Case (ii) represents Mosaic-constrained
connectivity with FP32 weights, omitting explicit input and output layers. Input

directly enters the Mosaic, and output is extracted directly from it. Circular arrows
denote local recurrent connections, while straight arrows signify sparse global
connections between cores. f Case (iii) is similar to case (ii), but with noisy and
quantized RRAM weights. g–i A comparison of task accuracy among the three
cases: case (i) (red, leftmost box), case (ii) (green, middle box), and case (iii) (blue,
right box). Boxplots display accuracy/maximum reward across five iterations, with
boxes spanning upper and lower quartiles while whiskers extend to maximum and
minimum values.Median accuracy is represented by a solid horizontal line, and the
corresponding values are indicated on top of each box. The dashed red box for the
KWS task with FP32 RSNN network is included from Cramer et al.55 with 1024
neurons for comparison (with mean value indicated). This comparison reveals that
the decline in accuracy due to Mosaic connectivity and further due to RRAM
weights is negligible across all tasks. The inset figures depict the resulting Mosaic
connectivity after training, which follows a small-world graphical structure.
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operations, while about 4% of the spikes are routed via 1-hop opera-
tions. The remaining spikes require k-hops to reach the destination
Neuron Tile. The Routing energy consumption for Tasks A and B is
estimated accounting for the total spike count and the routing hop
partition.

The scaled energy figures show that although theMosaic’s design
has not been optimized for energy efficiency, the 0- and 1-hop routing
energy is reduced relative to other approaches, even if we compare
with digital approaches in more advanced technology nodes. This
efficiency can be attributed to the Mosaic’s in-memory routing
approach resulting in low-energy routing memory access which is
distributed in space. This reduces (i) the size of each router, and thus
energy, compared to larger centralized routers employed in some
platforms, and (ii) it avoids the use of Content Addressable Memorys
(CAMs), which consumes themajority of routing energy in some other
spike-based routing mechanisms (Supplementary Note 2).

Neuromorphic platforms have each been designed to optimize
different objectives64, and the reason behind the energy efficiency of
Mosaic in communication lies behind its explicit optimization for this
very metric, thanks to its small-world connectivity layout. Despite this,
as was shown in Fig. 4, the Mosaic does not suffer from a considerable
drop in accuracy, at least for problem sizes of the sensory processing
applications on the edge. This implies that for these problems, large
connectivity between the cores is not required, which can be exploited
for reducing the energy.

The Mosaic’s latency figure per router is comparable to the
average latency of other platforms. Often, and in particular, for neural
networks with sparse firing activity, this is a negligible factor. In
applications requiring sensory processing of real-world slow-changing
signals, the time constants dictating how quickly the model state
evolves will be determined by the size of the Vlk in Fig. 2, typically on
the order of tens or hundreds of milliseconds. Although, the routing
latency grows linearly with the number of hops in the networks, as
shown in the final connectivity matrices of Fig. 4g–i, the number of
non-local connections decays down exponentially. Therefore, the
latency of routing is always much less than the the time scale of the
real-world signals on the edge, which is our target application.

The two final rows of Table 1 indicates the power consumption of
the neuromorphic platforms in tasks A and B respectively. All the
platforms are assumed to use a core (i.e., neuron tile) size of 32 neu-
rons, and to have an N-hop energy cost equal to N times the 1-hop
value. The potential of the Mosaic is clearly demonstrated, whereby a
power consumption of only a few hundreds of pico Watts is required,

relative to a few nano/microwatts in the other neuromorphic
platforms.

Discussions
We have identified small-world graphs as a favorable topology for
efficient routing, have proposed a hardware architecture that effi-
ciently implements it, designed and fabricated memristor-based
building blocks for the architecture in 130 nm technology, and
report measurements and comparison to other approaches. We
empirically quantified the impact of both the small-world neural net-
work topology and low memristor precision on three diverse and
challenging tasks representative of edge-AI settings. We also intro-
duced an adapted machine learning strategy that enforces small-
worldness and accounted for the low-precision of noisyRRAMdevices.
The results achieved across these tasks were comparable to those
achieved by floating point precision models with unconstrained net-
work connectivity.

Although the connectivity of the Mosaic is sparse, it still requires
more number of routing nodes than computing nodes. However, the
Routing Tiles are more compact than the neuron tiles, as they only
perform binary classification. This means that the read-out circuitry
does not require a large Signal to Noise Ratio (SNR), compared to the
neuron tiles. This loosened requirement reduces the overhead of the
Routing Tiles readout in terms of both area and power (Supplemen-
tary Note 9).

In this work, we have treated Mosaic as a standard RSNN, and
trained it with BPTT using the surrogate gradient approximation, and
simply added the loss terms that punish the network’s dense con-
nectivity to shape sparse graphs. Therefore, the potential computa-
tional advantages of small-world architectures do not necessarily
emerge, and the performance of the network is mainly related to its
number of parameters. In fact, we found that Mosaic requires more
neurons, but about the same number of parameters, for the same
accuracy as thatof anRSNNon the same task. This confirms that taking
advantage of small-world connectivity requires a novel training pro-
cedure, which we hope to develop in the future. Moreover, in this
paper, we have benchmarked the Mosaic on sensory processing tasks
and have proposed to take advantage of the small-worldness for
energy savings thanks to the locality of information processing.
However, from a computational perspective, these tasks do not
necessarily take advantage of the small-wordness. In future works, one
can foresee tasks that can exploit the small-world connectivity from a
computational standpoint.

Table 1 | Comparison of spike-routing performance across neuromorphic platforms

Neuromorphic chip TrueNorth78 SpiNNaker79 Neurogrid80 Dynap-SE37 Loihi81 Mosaic

Technology 28nm (0.775 V) 130nm (1.2 V) 180 nm (3 V) 180nm (1.8 V) 14 nm (0.75V) 130 nm (1.2 V)

Routing On-chip On-chip On/off-chip On-chip On-chip On-chip

0-hopb energy Original 26pJ 30.3nJ 1 nJ 30pJ 23.6pJ 400 fJa

sctc. 130 nm 62.4 pJ 30.3nJ 160 pJ 13.4 pJ 60.416 pJ 400 fJ

1-hopd energy Original 2.3 pJ 1.11 nJ 14 nJ 17 pJ (@1.3V) 3.5 pJ 1.6 pJa

sct. 130 nm 5.52pJ 1.11 nJ 8.35 nJ 17 pJ 10.24 pJ 1.6 pJa

1-hop latency Original 6.25 ns 200ps 20ns 40 ns 6.5 ns 25 ns

sct. 130 nm 29ns 200ps 14.4 ns 28.88ns 60.35 ns 25 ns

Optimized for Small-Worldness No No No Yes No Yes

Routing Power for task A 8.47 nW 9.85 μW 563.31 nW 10.02 nW 7.71 nW 809pWa

Routing Power for task B 272.82 nW 317.08μW 18.14 μW 322.7 nW 248.41 nW 5.06 nWa

aAssuming an average resistance value of 10 kΩ, and a read pulse 10ns width.
bThe same as energy per Synaptic Operation (SOP), numbers are taken from Basu et al.82.
csct. Scaled to.
dNumbers are taken from Moradi et al.37.
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Mosaic favors local processing of input data, in contrast with
conventional deep learning algorithms such as Convolutional and
Recurrent Neural Networks. However, novel approaches in deep
learning, e.g., Vision Transformers with Local Attention65 and MLP-
mixers66, treat input data in a similar way as the Mosaic, subdividing
the input dimensions, and processing the resulting patches locally.
This is also similar to how most biological system processes informa-
tion in a local fashion, such as the visual system of fruit flies67.

In the broader context, graph-based computing is currently
receiving attention as a promisingmeans of leveraging the capabilities
of SNNs68–70. The Mosaic is thus a timely dedicated hardware archi-
tecture optimized for a specific type of graph that is abundant in
nature and in the real-world and that promises to find application at
the extreme-edge.

Methods
Design, fabrication of Mosaic circuits
Neuron and routing column circuits. Both neuron and routing col-
umn share the common front-end circuit which reads the con-
ductances of the RRAM devices. The RRAM bottom electrode has a
constant DC voltageVbot applied to it and the common top electrode is
pinned to the voltage Vx by a rail-to-rail operational amplifier (OPAMP)
circuit. The OPAMP output is connected in negative feedback to its
non-inverting input (due to the 180 degrees phase-shift between the
gate and drain of transistorM1 in Fig. 2) and has the constant DC bias
voltage Vtop applied to its inverting input. As a result, the output of the
OPAMP will modulate the gate voltage of transistor M1 such that the
current it sources onto the node Vxwill maintain its voltage as close as
possible to theDCbiasVtop.Whenever an input pulseVin < n > arrives, a
current iin equal to (Vx − Vbot)Gn will flow out of the bottom electrode.
The negative feedback of the OPAMP will then act to ensure that
Vx = Vtop, by sourcing an equal current from transistor M1. By con-
necting the OPAMP output to the gate of transistorM2, a current equal
to iin, will therefore also be buffered, as ibuff, into the branch composed
of transistors M2 and M3 in series. In the Routing Tile, this current is
compared against a reference current, and if higher, a pulse is gener-
ated and transferred onwards. The current comparator circuit is
composed of two current mirrors and an inverter (Fig. 3b). In the
neuron column, this current is injected into a CMOS differential-pair
integrator synapse circuit model71 which generates an exponentially
decaying waveform from the onset of the pulse with an amplitude
proportional to the injected current. Finally, this exponential current is
injected onto the membrane capacitor of a CMOS leaky-integrate and
fire neuron circuitmodel72 where it integrates as a voltage (see Fig. 2b).
Upon exceeding a voltage threshold (the switching voltage of an
inverter) a pulse is emitted at the output of the circuit. This pulse in
turn feeds back and shunts the capacitor to ground such that it is
discharged. Further circuits were required in order to program the
device conductance states. Notably, multiplexers were integrated on
each end of the column in order to be able to apply voltages to the top
and bottom electrodes of the RRAM devices.

A critical parameter in both Neuron and Routing Tiles is the
spike’s pulse width. Minimizing the width of spikes assures maximal
energy efficiency, but that comes at a cost. If the duration of the
voltage pulse is too low, the readout current from the 1T1R will be
imprecise, and parasitic effects due to the metal lines in the array
might even impede the correct propagation of either the voltage
pulse or the readout current. For this reason, we thoroughly inves-
tigated the minimal pulse-width that allows spikes and readout cur-
rents to be reliably propagated, at a probability of 99.7% (3σ).
Extensive Monte Carlo simulation resulted in a spike pulse width of
around 100 ns. Based on these SPICE simulations, we also estimated
the energy consumption of Mosaic for the different tasks presented
in Fig. 4.

Fabrication/integration. The circuits described in the Results section
have been taped-out in 130 nm technology at CEA-Leti, in a 200mm
production line. The Front End of the Line, below metal layer 4, has
been realized by ST-Microelectronics, while from the fifth metal layer
upwards, including the deposition of the composites for RRAM devi-
ces, the process has been completed by CEA-Leti. RRAM devices are
composed of a 5 nm thickHfO2 layer sandwiched by two 5 nm thickTiN
electrodes, forming aTiN/HfO2/Ti/TiN stack. Eachdevice is accessedby
a transistor giving rise to the 1T1R unit cell. The size of the access
transistor is 650nm wide. 1T1R cells are integrated with CMOS-based
circuits by stacking the RRAM cells on the higher metal layers. In the
cases of the neuron and Routing Tiles, 1T1R cells are organized in a
small - either 2 × 2 or 2 × 4 - matrix in which the bottom electrodes are
shared between devices in the same column and the gates shared with
devices in the same row.Multiplexers operated by simple logic circuits
enable to select either a single device or a row of devices for pro-
gramming or reading operations. The circuits integrated into the
wafer, were accessed by a probe card which connected to the pads of
the dimension of [50× 90]μm2.

RRAM characteristics
Resistive switching in the devices used in our paper are based on the
formation and rupture of a filament as a result of the presence of an
electric field that is applied across the device. The change in the geo-
metry of the filament results in different resistive state in the device. A
SET/RESET operation is performed by applying a positive/negative
pulse across the device which forms/disrupts a conductive filament in
the memory cell, thus decreasing/increasing its resistance. When the
filament is formed, the cell is in theHCS, otherwise the cell is is the LCS.
For a SET operation, the bottomof the 1T1R structure is conventionally
left at ground level, and a positive voltage is applied to the 1T1R top
electrode. The reverse is applied in theRESEToperation. Typical values
for the SET operation are Vgate in [0.9 − 1.3]V, while the Vtop peak vol-
tage is normally at 2.0V. For the RESET operation, the gate voltage is
instead in the [2.75, 3.25]V range, while the bottom electrode is
reaching a peak at 3.0 V. The reading operation is performed by lim-
iting the Vtop voltage to 0.3 V, a value that avoids read disturbances,
while opening the gate voltage at 4.5V.

Mosaic circuit measurement setups
The tests involved analyzing and recording the dynamical behavior of
analog CMOS circuits as well as programming and reading RRAM
devices. Both phases required dedicated instrumentation, all simulta-
neously connected to the probe card. For programming and reading
the RRAMdevices, SourceMeasure Units (SMU)s from a Keithley 4200
SCS machine were used. To maximize stability and precision of the
programming operation, SET and RESET are performed in a quasi-
static manner. This means that a slow rising and falling voltage input is
applied to either the Top (SET) or Bottom (RESET) electrode, while the
gate is kept at a fixed value. To the Vtop(t),Vbot(t) voltages, we applied a
triangular pulsewith rising and falling times of 1 sec and picked a value
for Vgate. For a SET operation, the bottom of the 1T1R structure is
conventionally left at ground level, while in the RESET case the Vtop is
equal to 0 V and a positive voltage is applied to Vbot. Typical values for
the SET operation are Vgate in [0.9–1.3]V, while the Vtop peak voltage is
normally at 2.0V. Such values allow to modulate the RRAM resistance
in an interval of [5–30] kΩ corresponding to the HCS of the device. For
the RESET operation, the gate voltage is instead in the [2.75, 3.25]V
range, while the bottom electrode is reaching a peak at 3.0 V.

The LCS is less controllable than the HCS due to the inherent
stochasticity related to the ruptureof the conductivefilament, thus the
HRS level is spread out in a wider [80–1000] kΩ interval. The reading
operation is performedby limiting theVtop voltage to0.3 V, a value that
avoids read disturbances, while opening the gate voltage at 4.5 V.
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Inputs and outputs are analog dynamical signals. In the case of the
input, we have alternated two HP 8110 pulse generators with a Tek-
tronix AFG3011 waveform generator. As a general rule, input pulses
had a pulsewidth of 1μs and rise/fall time of 50ns. This type of pulse is
assumed as the stereotypical spiking event of a Spiking Neural Net-
work. Concerning the outputs, a 1 GHz Teledyne LeCroy oscilloscope
was utilized to record the output signals.

Mosaic layout-aware training via regularizing the loss function
We introduce a new regularization function, LM, that emphasizes the
realization cost of short and long-range connections in the Mosaic
layout. Assuming the Neuron Tiles are placed in a square layout, LM
calculates a matrix H 2 Rj × i, expressing the minimum number of
Routing Tiles used to connect a source neuron Nj to target neuron Ni,
based on their Neuron Tile positions onMosaic. Following this, a static
mask S 2 Rj × i is created to exponentially penalize the long-range
connections such that S = eβH − 1, where β is a positive number that
controls the degree of penalization for connectiondistance. Finally, we
calculate the LM =∑S⊙W2, for the recurrent weight matrix W 2 Rj × i.
Note that the weights corresponding to intra-Neuron Tile connections
(where H =0) are not penalized, allowing the neurons within a Neuron
Tile to be densely connected. During the training, task-related cross-
entropy loss term (total reward in case of RL) increases the network
performance, while LM term reduces the strength of the neural net-
work weights creating long-range connections in Mosaic layout.
Starting from the 10th epoch, we deterministically prune connections
(replacing the value of corresponding weight matrix elements to 0)
when their L1-norm is smaller than a fixed threshold value of 0.005.
This pruning procedure privileges local connections (i.e., those within
a Neuron Tile or to a nearby Neuron Tile) and naturally gives rise to a
small-world neural network topology. Our experiments found that
gradient norm clipping during the training and reducing the learning
rate by a factor of ten after 135th epoch in classification tasks help
stabilize the optimization against the detrimental effects of pruning.

RRAM-aware noise-resilient training
The strategy of choice for endowing Mosaic with the ability to solve
real-world tasks is offline training. This procedure consists of produ-
cing an abstraction of the Mosaic architecture on a server computer,
formalized as a Spiking Neural Network that is trained to solve a par-
ticular task. When the parameters of Mosaic are optimized, in a digital
floating-point-32-bits (FP32) representation, they are to be transferred
to the physical Mosaic chip. However, the parameters in Mosaic are
constituted by RRAM devices, which are not as precise as the FP32
counterparts. Furthermore, RRAMs suffer from other types of non-
idealities such as programming stochasticity, temporal conductance
relaxation, and read noise44,49–51.

To mitigate these detrimental effects at the weight transfer stage,
we adapted the noise-resilient training method for RRAM devices73,74.
Similar to quantization-aware training, at every forward pass, the ori-
ginal networkweights are altered via additive noise (quantized) using a
straight-through estimator. We used a Gaussian noise with zero mean
and standard deviation equal to 5% of the maximum conductance to
emulate transfer non-idealities. The profile of this additive noise is
based on our RRAM characterization of an array of 4096 RRAM
devices44, which are programmed with a program-and-verify scheme
(up to 10 iterations) to various conductance levels thenmeasured after
60 seconds for modeling the resulting distribution.

ECG task description
The Mosaic hardware-aware training procedure is tested on a elec-
trocardiogram arrhythmia detection task. The ECG dataset was
downloaded from the MIT-BIH arrhythmia repository52. The database
is composed of continuous 30-min recordings measured from multi-
ple subjects. The QRS complex of each heartbeat has been annotated

as either healthy or exhibiting one of many possible heart arrhythmias
by a team of cardiologists. We selected one patient exhibiting
approximately half healthy and half arrhythmic heartbeats. Each
heartbeat was isolated from the others in a 700ms time-series cen-
tered on the labeled QRS complex. Each of the two 700ms channel
signals were then converted to spikes using a delta modulation
scheme75. This consists of recording the initial value of the time-series
and, going forward in time, recording the time-stamp when this signal
changes by apre-determinedpositive or negative amount. The valueof
the signal at this time-stamp is then recorded and used in the next
comparison forward in time. This process is then repeated. For each of
the two channels this results in four respective event streams -
denoting upwards and downwards changes in the signals. During the
simulation of the neural network, these four event streams corre-
sponded to the four input neurons to the spiking recurrent neural
network implemented by the Mosaic.

Data points were presented to the model in mini-batches of 16.
Two populations of neurons in two Neuron Tiles were used to denote
whether the presented ECG signals corresponded to a healthy or an
arrhythmic heartbeat. The softmax of the total number of spikes
generated by the neurons in each population was used to obtain a
classification probability. The negative log-likelihood was then mini-
mized using the categorical cross-entropy with the labels of the
signals.

Keyword spotting task description
For keyword spotting task, we used SHD dataset (20 classes, 8156
training, 2264 test samples). Each input example drawn from the
dataset is sampled three times along the channel dimension without
overlap to obtain three augmentations of the same data with 256
channels each. The advantage of this method is that it allows feeding
the input stream to fewer Neuron Tiles by reducing the input dimen-
sion and also triples the sizes of both training and testing datasets.

We set the simulation time step to 1ms in our simulations. The
recurrent neural network architecture consists of 2048 LIF neurons
with 45msmembrane time constant. The neurons are distributed into
8 × 8 Neuron Tiles with 32 neurons each. The input spikes are fed only
into the neurons of the Mosaic layout’s first row (8 tiles). The network
prediction is determined after presenting each speech data for 100ms
by counting the total number of spikes from20 neurons (total number
of classes) in 2 output Neuron Tiles located in the bottom-right of the
Mosaic layout. The neurons inside input and output Neuron Tiles are
not recurrently connected. The network is trained using BPTT on the
loss L = LCE+ λLM, where LCE is the cross-entropy loss between input
logits and target and LM is theMosaic-layout aware regularization term.
We use batch size of 512 and suitably tuned hyperparameters.

Reinforcement learning task description
In the RL experiments, we test the versatility of a Mosaic-optimized
RSNN on a continuous action space motor-control task, half-cheetah,
implemented using the BRAX physics engine for rigid body
simulations76. At every timestep t, environment provides an input
observation vector ot 2 R25 and a scalar reward value rt. The goal of
the agent is to maximize the expected sum of total rewards
R=

P1000
t =0 rt over an episode of 1000 environment interactions by

selecting action at 2 R7 calculated by the output of the policy net-
work. The policy network of our agent consists of 256 recurrently
connected LIF neurons, with a membrane decay time constant of
30ms. The neuron placement is equally distributed into 16 Neuron
Tiles to form a 7 × 7 Mosaic layout. We note that for simulation pur-
poses, selecting a small network of 16 Neuron Tiles with 16 neurons
each, while not optimal in terms of memory footprint (Eq. (2)), was
preferred to fit the large ES population within the constraints of single
GPUmemory capacities. At each time step, the observation vector ot is
accumulated into themembrane voltages of the first 25 neurons of two
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upper left input tiles. Furthermore, action vector at is calculated by
reading the membrane voltages of the last seven neurons in the bot-
tom right corner after passing tanh non-linearity.

We considered Evolutionary Strategies (ES) as an optimization
method to adjust the RSNN weights such that after the training, the
agent can successfully solve the environment with a policy network
with only locally dense and globally sparse connectivity. We found ES
particularly promising approach for hardware-aware training as (i) it is
blind to non-differentiable hardware constraints e.g., spiking function,
quantizated weights, connectivity patterns, and (ii) highly paralleliz-
able since ES does not require spiking variable to be stored for thou-
sand time steps compared to BPTT that explicitly calculates the
gradient. In ES, the fitness function of an offspring is defined as the
combination of total reward over an episode, R and realization cost of
short and long-range connections LM (same as KWS task), such that
F =R − λLM. We used the population size of 4096 (with antithetic
sampling to reduce variance) andmutationnoise standarddeviationof
0.05. At the end of each generation, the networkweights with L0-norm
smaller than a fixed threshold are deterministically pruned. The agent
is trained for 1000 generations.

Calculation of memory footprint
We calculate the Mosaic architecture’s Memory Footprint (MF) in
comparison to a large crossbar array, in building small-world graphical
models.

To evaluate the MF for one large crossbar array, the total number
of devices required to implement any possible connections between
neurons can be counted - allowing for any Spiking Recurrent Neural
Networks (SRNN) to be mapped onto the system. Setting N to be the
number of neurons in the system, the total possible number of con-
nections in the graph is MFref =N2.

For the Mosaic architecture, the number of RRAM cells (i.e., the
MF) is equal to the number of devices in all the Neuron Tiles and
Routing Tiles: MFmosaic =MFNeuronTiles +MFRoutingTiles.

Considering each Neuron Tile with k neurons, each Neuron Tile
contributes to 5k2 devices (where the factor of 5 accounts for the four
possible directions each tile can connect to, plus the recurrent con-
nectionswithin the tile). Evenly dividing theN total number of neurons
in each Neuron Tile gives rise to T = ceil(N/k) required Neuron Tiles.
This brings the total number of devices attributed to the Neuron Tile
to T ⋅ 5k2.

The number of Routing Tiles that connects all the Neuron Tiles
depends on the geometry of the Mosaic systolic array. Here, we
assume Neuron Tiles assembled in a square, each with a Routing Tile
on each side. We consider R to be the number of Routing Tiles with
(4k)2 devices in each. This brings the total number of devices related to
Routing Tiles up to MFRoutingTiles =R ⋅ (4k)2.

The problem can then be re-written as a function of the geometry.
Considering Fig. 1g, let i be an integer and (2i+1)2 the total number of
tiles. The number of Neuron Tiles can be written as T = (i + 1)2, as we
consider the case where Neuron Tiles form the outer ring of tiles. As a
consequence, the number of Routing Tiles is R = (2i + 1)2 − (i + 1)2.
Substituting such values in the previous evaluations of
MFNeuronTiles +MFRoutingTiles and remembering that k <N ⋅ T, we can
impose that MFMosaic =MFNeuronTiles +MFRoutingTiles<MFMFref

.
This results in the following expression:

MFMosaic =MFNeuronTiles +MFRoutingTiles<MFref erence ð1Þ

ði+ 1Þ2 ð5k2Þ+ ½ð2i+ 1Þ2 � ði+ 1Þ2� ð4kÞ2 < ðkði+ 1Þ2Þ2 ð2Þ

This expression can then be evaluated for i, given a network size,
giving rise to the relationships as plotted in Fig. 1g in the main text.

Data availability
TheMIT-BIH ECGdataset52, the SpikingHeidelbergDatasets77, andhalf-
cheetah fromOpenAI gym56 are publicly accessible. All othermeasured
data are freely available upon request.

Code availability
The code is available on https://github.com/EIS-Hub/Mosaic.

References
1. Sterling, P. Design of neurons. In Principles of neural design,

155–194, https://doi.org/10.7551/mitpress/9780262028707.003.
0007 (The MIT Press, 2015).

2. Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’-
networks. Nature 393, 440–442 (1998).

3. Kawai, Y., Park, J. & Asada, M. A small-world topology enhances the
echo state property and signal propagation in reservoir computing.
Neural Netw. 112, 15–23 (2019).

4. Loeffler, A. et al. Topological properties of neuromorphic nanowire
networks. Front. Neurosci. 14, 184 (2020).

5. Park, H.-J. & Friston, K. Structural and functional brain networks:
from connections to cognition. Science 342, https://doi.org/10.
1126/science.1238411 (2013).

6. Gallos, L. K., Makse, H. A. & Sigman, M. A small world of weak ties
provides optimal global integration of self-similar modules in
functional brain networks. Proc. Natl Acad. Sci. 109,
2825–2830 (2012).

7. Sporns, O. & Zwi, J. D. The small world of the cerebral cortex.
Neuroinformatics 2, 145–162 (2004).

8. Bullmore, E. & Sporns, O. Complex brain networks: graph theore-
tical analysis of structural and functional systems. Nat. Rev. Neu-
rosci. 10, 186–198 (2009).

9. Hasler, J. Large-scale field-programmable analog arrays. Proc. IEEE
108, 1283–1302 (2019).

10. Jo, S. H. et al. Nanoscale memristor device as synapse in neuro-
morphic systems. Nano Lett. 10, 1297–1301 (2010).

11. Ielmini, D. & Waser, R. Resistive switching: from fundamentals of
nanoionic redox processes to memristive device applications (John
Wiley & Sons, 2015).

12. Serb, A. et al. Unsupervised learning in probabilistic neural net-
works with multi-state metal-oxide memristive synapses. Nat.
Commun. 7, 12611 (2016).

13. Li, C. et al. Efficient and self-adaptive in-situ learning in multilayer
memristor neural network. Nat. Commun. 9, 1–8 (2018).

14. Strukov, D., Indiveri, G., Grollier, J. & Fusi, S. Building brain-inspired
computing.Nat. Commun. 10, https://doi.org/10.1038/s41467-019-
12521-x (2019).

15. Kingra, S. K. et al. SLIM: Simultaneous Logic-In-Memory computing
exploiting bilayer analog OxRAM devices. Sci. Rep. 10, 1–14 (2020).

16. Ambrogio, S. et al. Equivalent-accuracy accelerated neural-
network training using analogue memory. Nature 558,
60–67 (2018).

17. Woźniak, S., Pantazi, A., Bohnstingl, T. & Eleftheriou, E. Deep
learning incorporatingbiologically inspiredneural dynamics and in-
memory computing. Nat. Mach. Intell. 2, 325–336 (2020).

18. Ambrogio, S. et al. An analog-ai chip for energy-efficient speech
recognition and transcription. Nature 620, 768–775 (2023).

19. Le Gallo, M. et al. A 64-core mixed-signal in-memory compute chip
based on phase-change memory for deep neural network infer-
ence. Nat. Electronics 6, 680–693 (2023).

20. Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E.
Memory devices and applications for in-memory computing. Nat.
Nanotechnol. 15, 529–544 (2020).

21. Chicca, E. & Indiveri, G. A recipe for creating ideal hybrid
memristive-CMOS neuromorphic processing systems. Appl. Phys.
Lett. 116, 120501 (2020).

Article https://doi.org/10.1038/s41467-023-44365-x

Nature Communications |          (2024) 15:142 10

https://github.com/EIS-Hub/Mosaic
https://doi.org/10.7551/mitpress/9780262028707.003.0007
https://doi.org/10.7551/mitpress/9780262028707.003.0007
https://doi.org/10.1126/science.1238411
https://doi.org/10.1126/science.1238411
https://doi.org/10.1038/s41467-019-12521-x
https://doi.org/10.1038/s41467-019-12521-x


22. Jouppi, N. P. et al. In-datacenter performance analysis of a Tensor
Processing Unit. In Proceedings of the 44th annual international
symposium on computer architecture, 1–12 (IEEE, 2017).

23. Yu, S., Sun, X., Peng, X. & Huang, S. Compute-in-memory with
emerging nonvolatile-memories: challenges and prospects. In
2020 IEEE Custom Integrated Circuits Conference (CICC), 1–4
(IEEE, 2020).

24. Joksas, D. et al. Committee machines—a universal method to deal
with non-idealities in memristor-based neural networks. Nat. Com-
mun. 11, 1–10 (2020).

25. Zidan, M. A., Strachan, J. P. & Lu, W. D. The future of electronics
based on memristive systems. Nat. Electronics 1, 22–29 (2018).

26. Prezioso, M. et al. Training and operation of an integrated neuro-
morphic network based on metal-oxide memristors. Nature 521,
61–64 (2015).

27. Yao, P. et al. Fully hardware-implementedmemristor convolutional
neural network. Nature 577, 641–646 (2020).

28. Chen, J., Yang, S.,Wu, H., Indiveri, G. & Payvand,M. Scaling limits of
memristor-based routers for asynchronous neuromorphic systems.
IEEE Transactions onCircuits and Systems II: Express Briefs, https://
doi.org/10.1109/TCSII.2023.3343292.

29. Mannocci, P. et al. In-memory computing with emerging memory
devices: status and outlook. APL Mach. Learn. 1 010902 (2023).

30. Duan, S., Hu, X., Dong, Z., Wang, L. & Mazumder, P. Memristor-
based cellular nonlinear/neural network: design, analysis, and
applications. IEEE Trans. Neural Netw. Learn. Syst. 26,
1202–1213 (2014).

31. Ascoli, A., Messaris, I., Tetzlaff, R. & Chua, L. O. Theoretical foun-
dations of memristor cellular nonlinear networks: Stability analysis
with dynamic memristors. IEEE Trans. Circ. Syst. I Regul. Pap. 67,
1389–1401 (2019).

32. Wang, R. et al. Implementing in-situ self-organizing maps with
memristor crossbar arrays for data mining and optimization. Nat.
Commun. 13, 1–10 (2022).

33. Likharev, K., Mayr, A., Muckra, I. & Türel, Ö. Crossnets: High-
performance neuromorphic architectures for cmol circuits. Ann. N.
Y. Acad. Sci. 1006, 146–163 (2003).

34. Betta, G., Graffi, S., Kovacs, Z. M. & Masetti, G. Cmos implementa-
tion of an analogically programmable cellular neural network. IEEE
Trans. Circ. Syst. II Analog Digital Signal Process. 40, 206–215
(1993).

35. Khacef, L., Rodriguez, L. & Miramond, B. Brain-inspired self-orga-
nization with cellular neuromorphic computing for multimodal
unsupervised learning. Electronics 9, 1605 (2020).

36. Lin, P., Pi, S. &Xia, Q. 3d integration of planar crossbarmemristive
devices with cmos substrate. Nanotechnology 25, 405202
(2014).

37. Moradi, S., Qiao, N., Stefanini, F. & Indiveri, G. A scalable multicore
architecture with heterogeneous memory structures for dynamic
neuromorphic asynchronous processors (DYNAPs). Biomed. Circ.
Syst. IEEE Trans. 12, 106–122 (2018).

38. Park, J., Yu, T., Joshi, S., Maier, C. & Cauwenberghs, G. Hierarchical
address event routing for reconfigurable large-scale neuromorphic
systems. IEEE Trans. Neural Netw. Learn. Syst. 28, 2408–2422
(2016).

39. Indiveri, G. et al. Neuromorphic silicon neuron circuits. Front.
Neurosci. 5, 1–23 (2011).

40. Dalgaty, T. et al. Hybrid neuromorphic circuits exploiting non-
conventional properties of RRAM for massively parallel local plas-
ticity mechanisms. APL Mater. 7, 081125 (2019).

41. Cai, F. et al. Power-efficient combinatorial optimization using
intrinsic noise in memristor hopfield neural networks. Nat. Electro-
nics 3, 409–418 (2020).

42. Bartolozzi, C. & Indiveri, G. Synaptic dynamics in analog vlsi.Neural
Comput. 19, 2581–2603 (2007).

43. Grossi, A. et al. Fundamental variability limits of filament-based
RRAM. In 2016 IEEE International Electron Devices Meeting (IEDM),
4.7.1–4.7.4, https://doi.org/10.1109/IEDM.2016.7838348 (2016).

44. Esmanhotto, E. et al. High-density 3D monolithically integrated
multiple 1T1R multi-level-cell for neural networks. In 2020 IEEE
International Electron Devices Meeting (IEDM), 36–5 (IEEE, 2020).

45. Payvand, M., Nair, M. V., Müller, L. K. & Indiveri, G. A neuromorphic
systems approach to in-memory computing with non-ideal mem-
ristive devices: frommitigation to exploitation. Faraday Discussions
213, 487–510 (2019).

46. Chen, J., Wu, C., Indiveri, G. & Payvand, M. Reliability analysis of
memristor crossbar routers: collisions and on/off ratio requirement.
In 2022 29th IEEE International Conference on Electronics, Circuits
and Systems (ICECS), 1–4 (IEEE, 2022).

47. Werbos, P. J. Backpropagation through time: what it does and how
to do it. Proc. IEEE 78, 1550–1560 (1990).

48. Neftci, E. O., Mostafa, H. & Zenke, F. Surrogate gradient learning in
spiking neural networks: bringing the power of gradient-based
optimization to spiking neural networks. IEEE Signal Processing
Mag. 36, 51–63 (2019).

49. Dalgaty, T. et al. In situ learning using intrinsic memristor variability
via Markov chain Monte Carlo sampling. Nat. Electronics 4,
151–161 (2021).

50. Zhao, M. et al. Investigation of statistical retention of filamentary
analog rram for neuromophic computing. In 2017 IEEE International
Electron Devices Meeting (IEDM), 39.4.1–39.4.4, https://doi.org/10.
1109/IEDM.2017.8268522 (2017).

51. Moro, F. et al. Hardware calibrated learning to compensate het-
erogeneity in analog rram-based spiking neural networks. In IEEE
International Symposium in Circuits and Systems (IEEE, 2022).

52. Moody, G. B. & Mark, R. G. The impact of the MIT-BIH arrhythmia
database. IEEE Eng. Med. Biol. Mag. 20, 45–50 (2001).

53. Lee, H.-Y., Hsu, C.-M., Huang, S.-C., Shih, Y.-W. & Luo, C.-H.
Designing low power of sigma delta modulator for biomedical
application. Biomed. Eng. Appl. Basis Commun. 17, 181–185 (2005).

54. Corradi, F. & Indiveri, G. A neuromorphic event-based neural
recording system for smart brain-machine-interfaces. IEEE Trans.
Biomed. Circ. Syst. 9, 699–709 (2015).

55. Cramer, B., Stradmann, Y., Schemmel, J. & Zenke, F. The heidelberg
spiking data sets for the systematic evaluation of spiking neural
networks. In IEEE Transactions on Neural Networks and Learning
Systems (IEEE, 2020).

56. Brockman, G. et al. OpenAI Gym. Preprint at https://arxiv.org/abs/
1606.01540 (2016). https://github.com/openai/gym.

57. Luo, W. et al. End-to-end active object tracking and its real-world
deployment via reinforcement learning. IEEE Trans. Pattern Anal.
Mach. Intell. 42, 1317–1332 (2020).

58. Lee, J., Hwangbo, J.,Wellhausen, L., Koltun, V. &Hutter,M. Learning
quadrupedal locomotion over challenging terrain. Sci. Robot. 5,
https://doi.org/10.1126/scirobotics.abc5986 (2020).

59. Salimans, T., Ho, J., Chen, X., Sidor, S. & Sutskever, I. Evolution
strategies as a scalable alternative to reinforcement learning. Pre-
print at https://arxiv.org/abs/1703.03864 (2017).

60. Vinyals, O. et al. Grandmaster level in StarCraft II usingmulti-agent
reinforcement learning. Nature 575, 350–354 (2019).

61. OpenAI et al. Learning dexterous in-hand manipulation. Preprint at
https://arxiv.org/abs/1808.00177 (2019).

62. Jordan, J., Schmidt, M., Senn, W. & Petrovici, M. A. Evolving inter-
pretable plasticity for spiking networks. eLife 10, e66273 (2021).

63. Rabaey, J. M., Chandrakasan, A. P. & Nikolić, B. Digital integrated
circuits: a design perspective, vol. 7 (Pearson education Upper
Saddle River, NJ, 2003).

64. Yik, J. et al. Neurobench: Advancing neuromorphic computing
through collaborative, fair and representative benchmarking. Pre-
print at https://arxiv.org/abs/2304.04640 (2023).

Article https://doi.org/10.1038/s41467-023-44365-x

Nature Communications |          (2024) 15:142 11

https://doi.org/10.1109/TCSII.2023.3343292
https://doi.org/10.1109/TCSII.2023.3343292
https://doi.org/10.1109/IEDM.2016.7838348
https://doi.org/10.1109/IEDM.2017.8268522
https://doi.org/10.1109/IEDM.2017.8268522
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1606.01540
https://github.com/openai/gym
https://doi.org/10.1126/scirobotics.abc5986
https://arxiv.org/abs/1703.03864
https://arxiv.org/abs/1808.00177
https://arxiv.org/abs/2304.04640


65. Pan, X., Ye, T., Xia, Z., Song, S. & Huang, G. Slide-transformer:
Hierarchical vision transformer with local self-attention. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, 2082–2091 (IEEE, 2023).

66. Yu, T., Li, X., Cai, Y., Sun, M. & Li, P. S2-mlp: Spatial-shift mlp
architecture for vision. In Proceedings of the IEEE/CVF winter con-
ference on applications of computer vision, 297–306 (IEEE, 2022).

67. Strother, J. A., Nern, A. & Reiser, M. B. Direct observation of on and
off pathways in the drosophila visual system. Curr. Biol. 24,
976–983 (2014).

68. Davies, M. et al. Advancing neuromorphic computing with Loihi: a
survey of results and outlook. Proc. IEEE 109, 911–934 (2021).

69. Dalgaty, T. et al. Hugnet: Hemi-spherical update graph neural net-
work applied to low-latency event-based optical flow. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 3952–3961 (IEEE, 2023).

70. Aimone, J. B. et al. A review of non-cognitive applications for neu-
romorphic computing. Neuromorphic Comput. Eng. 2,
032003 (2022).

71. Chicca, E., Stefanini, F., Bartolozzi, C. & Indiveri, G. Neuromorphic
electronic circuits for building autonomous cognitive systems.
Proc. IEEE 102, 1367–1388 (2014).

72. Dalgaty, T. et al. Hybrid CMOS-RRAM neurons with intrinsic plasti-
city. In IEEE ISCAS, 1–5 (IEEE, 2019).

73. Joshi, V. et al. Accurate deep neural network inference using
computational phase-change memory. Nat. Commun. 11, https://
doi.org/10.1038/s41467-020-16108-9 (2020).

74. Wan, W. et al. A compute-in-memory chip based on resistive
random-access memory. Nature 608, 504–512 (2022).

75. Corradi, F., Bontrager, D. & Indiveri, G. Toward neuromorphic
intelligent brain-machine interfaces: An event-based neural
recording and processing system. In Biomedical Circuits and Sys-
tems Conference (BioCAS), 584–587, https://doi.org/10.1109/
BioCAS.2014.6981793 (IEEE, 2014).

76. Freeman, C. D. et al. Brax - a differentiable physics engine for large
scale rigid body simulation (2021). http://github.com/google/brax.

77. Cramer, B., Stradmann, Y., Schemmel, J. & Zenke, F. The heidelberg
spiking data sets for the systematic evaluation of spiking neural
networks. IEEE Trans. Neural Netw. Learn. Syst. https://doi.org/10.
1109/TNNLS.2020.3044364 (2020).

78. Merolla, P., Arthur, J., Alvarez, R., Bussat, J.-M. & Boahen, K. A
multicast tree router for multichip neuromorphic systems. Circ.
Syst. I Regul. Pap. IEEE Trans. 61, 820–833 (2014).

79. Painkras, E. et al. SpiNNaker: a 1-W 18-core system-on-chip for
massively-parallel neural network simulation. IEEE J. Solid State
Circ. 48, 1943–1953 (2013).

80. Benjamin, B. V. et al. Neurogrid: a mixed-analog-digital multichip
system for large-scale neural simulations. Proc. IEEE 102,
699–716 (2014).

81. Davies,M. et al. Loihi: a neuromorphicmanycore processorwith on-
chip learning. IEEE Micro 38, 82–99 (2018).

82. Basu, A., Deng, L., Frenkel, C. & Zhang, X. Spiking neural network
integrated circuits: a review of trends and future directions. In 2022
IEEE Custom Integrated Circuits Conference (CICC), 1–8
(IEEE, 2022).

Acknowledgements
We acknowledge funding support from the H2020 MeM-Scales project
(871371) (F.M., G.I., E.V., M.P.), Swiss National Science Foundation
Starting Grant Project UNITE (TMSGI2-211461) (F.M., M.P.), Marie
Skłodowska-Curie grant agreement No 861153 (Y.D., G.I.), as well as
European Research Council consolidator grant DIVERSE (101043854)
(E.V.). We are grateful to Emre Neftci, Shyam Narayanan, Junren Chen
and Zhe Su for helpful discussions throughout the project.

Author contributions
T.D., G.I., E.V. and M.P. developed the Mosaic concept. T.D. and M.P.
designed and laid out the circuits for fabrication. The circuits were
fabricatedunder the supervisionof E.V.Characterization and verification
of the fabricated circuits were done by F.M. and A.P. Hardware-aware
training simulations and benchmarking was conducted by Y.D. and F.M.
All authors contributed towriting of themanuscript. M.P. supervised the
project.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-44365-x.

Correspondence and requests for materials should be addressed to
Melika Payvand.

Peer review information Nature Communications thanks Suhas Kumar,
Lei Wang and Yuchao Yang for their contribution to the peer review of
this work.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-023-44365-x

Nature Communications |          (2024) 15:142 12

https://doi.org/10.1038/s41467-020-16108-9
https://doi.org/10.1038/s41467-020-16108-9
https://doi.org/10.1109/BioCAS.2014.6981793
https://doi.org/10.1109/BioCAS.2014.6981793
http://github.com/google/brax
https://doi.org/10.1109/TNNLS.2020.3044364
https://doi.org/10.1109/TNNLS.2020.3044364
https://doi.org/10.1038/s41467-023-44365-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Mosaic: in-memory computing and routing for small-world spike-based neuromorphic systems
	Results
	Hardware measurements
	Neuron tile circuits: small-worlds
	Routing tile circuits: connecting small-worlds
	Hardware-aware simulations
	Application to real-time sensory-motor processing through hardware-aware simulations
	Electrocardiography (ECG) anomaly detection
	Keyword spotting�(KWS)
	Motor control by reinforcement learning
	Neuromorphic platform routing�energy

	Discussions
	Methods
	Design, fabrication of Mosaic circuits
	Neuron and routing column circuits
	Fabrication/integration
	RRAM characteristics
	Mosaic circuit measurement�setups
	Mosaic layout-aware training via regularizing the loss function
	RRAM-aware noise-resilient training
	ECG task description
	Keyword spotting task description
	Reinforcement learning task description
	Calculation of memory footprint

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




