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Analytical understanding of the effect of 

shaping on confinement in TEM regime
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Numerical results

 Analytical dispersion relation for Trapped Electron Mode (TEM) instab.  solved numerically

 Retains shaping effects  evaluation of their impact on growth rate

 Beneficial role of negative triangularity results from finite orbit width effect

and/or ballooning of the mode
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Context
• Negative triangularity  <0  lower turbulence  better confinement [1,2,3]

• Recovered in GyroKinetic simulations provided enough physical ingredients are included [4,5]

• Beneficial role of k<0 depends particularly on aspect ratio [6] & magnetic shearing [7]

• Extensive parametric exploration remains to be done – numerically expensive with GK codes

• TEM modes = key players to explain the difference between positive/negative k

• This work: derivation of an analytical prediction of the TEM growth rate.

Inputs = magnetic topology (aspect ratio, elongation, triangularity, safety factor, magnetic shearing)

density & temperature gradients.
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 Necessity to include finite orbit width and/or ballooning of the mode

Finite Orbit Width (FOW)  modified definition of pitch-angle average

 new definition of trapped fraction, accordingly

FOW  more weight on deeply trapped particles that are stabilized by negative triangularity

Consequence: Negative triangularity becomes stabilizing when including FOW effects

Similar effect expected from mode ballooning (puts more weight on stabilized deeply trapped particles)

Conclusion & Perspectives
• Analytical dispersion relation for TEM instability

 enables fast estimate of growth rate as function of shaping parameters

• Stabilizing effect of negative triangularity recovered ONLY IF a physical mechanism puts more 

weight on deeply trapped electrons  FOW and/or ballooning

• More systematic parameter scan under way (PhD starting end of 2023)

• Quantitative comparison with GK simulations  upgrade of model (collisions, ions) if necessary

• If successful comparison model-simulations  derivation of quasi-linear estimate of transport
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C ε κ q s η α𝒎

scan 0,3 1,75 2,0 2,0 1000 0,0

<0 destabilizing

<0 stabilizing

 Large aspect ratio is stabilizing due to a reduction of trapped fraction

 Magnetic shear is stabilizing as expected

Complex pattern when mixing magnetic shear & triangularity observed in GENE [7] not recovered 

Possible reasons: different input parameters and/or missing physics

 Assumptions
• Adiabatic ions

• Collisionless

• Trapped electrons only (no passing)

 Dispersion relation

Analytical model

Thermal magnetic drift frequency

Thermal diamagnetic frequency

Normalized bounce frequency

Trapped fraction:

Average over pitch-angleAverage over energy

,

with

 Shaping modifies bounce & precession frequencies

Considered magnetic equilibrium = "Culham" [10]  parametrized shaping (ε,κ,)

Expression bounce & precession frequencies following refs. [8,9]

s=2, 𝛼𝑚=0, 𝜖=0.3 s=2, 𝛼𝑚=1, 𝜖=0.3 

<0 stabilizing

<0 destabilizing
<0 destabilizing

<0 destabilizing

Functions of (ε,κ,)

Guideline for analysis: In the fluid limit (i.e. far from threshold) :  

MHD pressure parameter

C ε κ q s η α𝒎

1,0 scan 1,75 2,0 2,0 1000 0,0

C ε κ q s η α𝒎

1,0 0,3 1,75 2,0 scan 1000 0,0


