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3 Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
4 Department of Physics of Complex Systems, Weizmann Institute of Science, 76100 Rehovot, Israel
5 Lasers, Interactions and Dynamics Laboratory (LIDyL), CEA, CNRS, Université Paris-Saclay, CEA
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Abstract
Since 2001 and the first demonstrations of the feasibility of generating and measuring
attosecond light pulses, attosecond science has developed into a very active and quickly
evolving research field. Its ultimate goal is the real-time tracking of electron dynamics in all
forms of matter, ranging from atoms and large molecules to the condensed phase and plasmas.
The accomplishment of this goal has required and still calls for developments in ultrafast laser
technology, ultrafast metrology, extreme ultra-violet (XUV) optics, pump–probe measurement
schemes and non-linear laser-matter interaction. Moreover, the interpretation of the
experimental results in attosecond experiments has stimulated and guided major developments
in theoretical descriptions of ultrafast electronic processes in matter. Motivated by these two
decades of development, several large-scale facilities, including extreme light
infrastructure—attosecond light pulse source (ELI-ALPS) and several free electron laser
facilities (the linac coherent light source (LCLS) at Stanford and the European XFEL in
Hamburg) are now pushing the development of a new generation of attosecond sources. This
considerable technological effort opens new and important perspectives in the field of ultrafast
science with potential applications in photochemistry, photobiology and advanced electronics.
In this context, the joint focus issue on Attosecond technology(/ies) and science of J. Phys.
Photon. and J. Phys. B: At. Mol. Opt. Phys. aims to provide an overview of the state-of-the-art
in attosecond science, from the basic science involved in the generation and in applications of
attosecond pulses to the technologies that are required.

Keywords: attosecond, technology, pump–probe spectroscopy

1. Historical development of attosecond science

While work on the development of attosecond sources contin-
ues to the present day, and includes novel approaches such as
plasma mirrors and the generation of attosecond pulses at free
electron lasers, the attosecond pulses that are used nowadays

∗ Author to whom any correspondence should be addressed.

in an ever-increasing number of laser laboratories around the
world are produced by means of the process of high-harmonic
generation (HHG) in atomic and molecular gases [1]. In HHG,
strong field ionization (SFI) of an atomic or molecular gas
launches free electrons that are accelerated under the influ-
ence of the oscillatory laser electric field. Upon re-collision
with their parent ion, extreme ultra-violet (XUV) or soft x-ray
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photons are formed by electron–ion recombination [2, 3].
Given that the initial ionization occurs during a short time
interval around a maximum of the laser electric field, the dura-
tion of the XUV emission is a small fraction of the duration
of the optical period of the driving laser, i.e. in the attosecond
domain.

The first attosecond pulses were demonstrated in 2001
[4, 5]. The main advance in these papers was that they reported
a temporal characterization of the XUV radiation formed in the
HHG process, demonstrating that it could lead to the forma-
tion of attosecond pulse trains (APTs) or isolated attosecond
pulses (IAPs). Ever since, pulse characterization has been a
persistent challenge in attosecond science. Attosecond pulse
characterization serves as the initial step in the application
of these pulses as the pump or probe of a fast-evolving
process. Moreover, the temporal shape of attosecond pulses
encodes valuable information regarding the generation mech-
anism itself, reflecting the sub-cycle evolution of electronic
wave functions during their interaction with the strong laser
field.

Well-established approaches for the temporal characteriza-
tion of femtosecond pulses, applied in the visible and infrared
(IR) spectral ranges, exploit nonlinear light–matter interac-
tions in techniques such as frequency-resolved optical gat-
ing (FROG) [6], and spectral phase interferometry for direct
electric-field reconstruction (SPIDER) [7]. However, their
direct application to the attosecond XUV regime is challeng-
ing due to the large spectral bandwidth of these pulses, the
high photon energies and the low photon flux. Entirely new
approaches to diagnose bursts of XUV to soft x-ray light there-
fore had to be devised. Successful schemes typically involve a
nonlinear interaction of a target with both the attosecond pulse
and a co-propagating IR fundamental field. These schemes
have been applied both in the weak IR field regime, in APT
reconstruction by RABBITT (‘reconstruction of attosecond
harmonic beating by interference of two-photon transitions’
[8]), and in the strong field regime, in streaking [9] schemes. In
a streaking measurement, changes to the momentum distribu-
tion of photoelectrons are measured as a function of the delay
between the XUV pulse and a co-propagating IR field [10,
11], while in a RABBITT measurement, interferences between
two-color ionization pathways involving different harmonics
are used to determine the relative phase of these harmon-
ics [8]. Both schemes can be considered as extreme cases of
a more general measurement approach called FROG-CRAB
[12] (frequency-resolved optical gating for complete recon-
struction of attosecond bursts). In the strong field regime,
the attosecond pulse retrieval relies on a proper description
of the strong field light–matter interaction. The commonly
used strong-field approximation (SFA) [13, 14] neglects the
Coulomb force and may lead to inaccuracies in the retrieved
pulses.

Most current methods for pulse retrieval involve long inte-
gration times, and therefore require pulse-to-pulse repeatabil-
ity. However, in many experimental scenarios pulse-to-pulse
fluctuations and carrier envelope phase (CEP) instabilities are
a major challenge. Reference [15] addresses this challenge and
introduces a new retrieval algorithm, based on time-domain

ptychography. In the spirit of the work presented in [16],
this algorithm allows the reconstruction of distributions of
attosecond pulses and fundamental laser fields, enabling the
application of the streaking scheme in the presence of pulse-to-
pulse fluctuations. Finally, reference [17] addresses a method
to overcome the low signal limitation in streaking experiments,
by integrating the streaked electrons over a large angular range.
The paper presents a theoretical scheme that allows the recon-
struction of IAPs via the streaking approach from angular
integrated spectra.

With the first attosecond pulses having been demonstrated
in 2001, the first pump–probe experiments where attosecond
pulses were applied to investigate time-dependent electron
dynamics followed soon thereafter in 2002, with an investi-
gation of the lifetime towards Auger decay of core-ionized
Kr atoms [18]. These early experiments confirmed the ability
of attosecond pump–probe spectroscopy to determine atomic
properties such as excited state lifetimes by means of measure-
ments in the time domain, and in agreement with results that
had previously been obtained in the frequency domain. Sub-
sequently, attosecond pump–probe spectroscopy was applied
to explore questions that cannot be answered in the frequency
domain, such as the nature of ionization processes in the strong
field regime [19], and the question whether or not single-
photon ionization from different atomic or molecular orbitals
occurs simultaneously or with a small relative delay [20, 21].
Among other things, these experiment have led to a better
understanding of what it means to talk about ‘ionization time’
in quantum mechanics [22].

In these, and many other early applications of attosecond
pump–probe spectroscopy, the experimental approaches that
were used were essentially the same as those first applied to
prove the existence of attosecond pulses and to characterize
their pulse duration. The outcome of RABBITT and streak-
ing experiments depends on (i) the properties of the attosecond
pulse(s), (ii) the properties of the co-propagating IR field and
(iii) the properties of the sample. Hence, if two of these three
properties are known, one can learn about the third one. Fol-
lowing this logic, the attosecond streak camera technique [9]
was used in order to characterize the IR field [23], and both
streaking and RABBITT were used to measure ionization time
delays [20, 21]. Among other things, the RABBITT technique
and related two-color ionization techniques have furthermore
been used to measure both the real and the imaginary part
of the ionization time of photoelectron wavepackets that are
formed via multi-photon, strong-field tunnel-ionization [24],
and to fully characterize photoelectron wavepackets that are
formed when atoms are ionized by single photons from an
attosecond pulse [25]. In the current special issue, Loriot et al
present an extension of the RABBITT method to measure-
ments of photoionization time delays in the N2 molecule, inter-
preting an observed delay between ionization into the X and A
molecular cationic states in terms of a shape resonance in the
former channel [26].

Over time, the RABBITT and streaking methods have been
complemented by additional measurement schemes, such as
attosecond chronoscopy [19], attosecond transient absorption
(ATAS) [27, 28] and attosecond quantum state holography [29,
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30]. Among these, ATAS has proven to be particularly pow-
erful, since it combines the exquisite time-resolution that is
inherent in the use of attosecond pulses with an opportunity to
perform experiments with element-specificity, exploiting the
fact that attosecond XUV and soft x-ray pulses are preferably
absorbed by core-electrons. This enables experiments where
the dynamics under investigation is observed from the point-
of-view of specific spectator atoms within the sample, and has
been used to great effect in studies on both atoms [31, 32],
molecules [33–35] and condensed phase samples [36–38].
Current efforts to extend ATAS aim particularly at the water
window (282–533 eV) [39, 40], where transient absorption
around the C-, N- and O-edge can be exploited in experiments
on organic molecules [41, 42] and organic semiconductors
[38].

The development of attosecond science as a pump–probe
spectroscopy has been complemented by the development of
high harmonic spectroscopy (HHS), which aims at extracting
information about a target from the analysis of its high har-
monic spectrum. The appeal of HHS stems from the simplicity
of its implementation, independent of whether the target is an
atom, molecule, liquid [43, 44] or solid [45–47]. HHS carries
the potential of combining sub-Ångstrom spatial and attosec-
ond temporal resolution of electronic structures and dynamics.
The spatial resolution originates from the Ångstrom scale of
the de Broglie wavelength of the recombining electron [48],
while the attosecond temporal resolution is provided by the
sub-cycle nature of the re-collision process itself. HHS can be
applied as a pump–probe measurement scheme: field-induced
tunneling can serve as a ‘pump’ preparing a hole wave func-
tion in the sample, while the re-collision serves as a ‘probe’,
mapping the evolved wave function into the HHG spectrum
[49]. This idea underlies a large number of experiments in both
atomic and molecular systems that resolve the structure of the
contributing orbitals [50–52], hole wave function dynamics
[53–56], nuclear dynamics [57–60], quantum path interfer-
ences in atomic media [61], mapping of electronic coherences
[62], charge migration in molecules [60, 63], scaling laws in
liquids and solids [64, 65], and recently the identification of
singular points in the band structure of solids [66]. A compli-
cating factor for the interpretation of the HHS measurement is
the strong field interaction during the HHG. The understand-
ing of the interaction has improved dramatically during the last
decade and advanced theoretical and measurement methods
[66–69] are nowadays able to extract a wealth of information
from HHS experiments [70–74].

In addition to recombination with the molecular ion, the re-
colliding electron can also scatter off its parent ion [75–77].
This scattering process encodes the molecular structure in the
angular distribution of the re-scattered electron. The technique
has become known under the name laser-induced electron
diffraction (LIED) [78–83] and has been used to determine
static molecular structures [84, 85] and the deformation of
C60 [86] with few-picometer spatial resolution. The method
was developed to image isolated molecules with a single elec-
tron [87], and it has provided accurate imaging of aligned
molecules [83], first snapshots of bond-breakage and depro-

tonation [88], and stretching and bending of a molecule [89].
Moreover, the method was recently used to reveal dissociation
of a diatomic molecule [90].

2. Laser sources

The development of advanced laser sources was an essential
prerequisite for the emergence of attosecond science, and con-
tinues to be a decisive factor for the advance of the field and
the emergence of entirely new classes of experiments. This is
easy to understand when considering that electron re-collision
in a strong laser field is at the core of most attosecond inves-
tigations and technologies. Thus, the degree of control over
the electric field waveform from a laser, its wavelength, polar-
ization, peak amplitude and spatio-temporal shape directly
impacts the range of possible investigations and their outcomes
[91].

The early development of attosecond science was entirely
based on chirped-pulse amplification-based Ti:Sapphire tech-
nology and received a major impetus with the ability to gen-
erate few-cycle pulses with carrier-to-envelope phase (CEP)
stability [92, 93] at high peak intensity. It is interesting to recall
that while the ultrafast optics community pursued the goal of
producing ultrashort pulse waveforms, the metrology commu-
nity aimed at producing optical frequency combs—both are
just two sides of the same coin. The ability to generate such
CEP-stable and intense few-cycle pulses [94] immediately led
to the advent of IAPs in the XUV region [11, 95]. The ability to
control the number of laser cycles and the CEP moreover led
to an improved understanding of the electron’s continuum and
re-collision dynamics [96] and the underlying quantum trajec-
tories [97]. CEP-controlled few-cycles pulses were also used
in first experiments controlling molecular electron dynamics
on attosecond timescales [98].

A second breakthrough came with the ability to generate
CEP-stable few-cycle pulses at mid-infrared wavelengths [99,
100]. Such long wavelengths enable a ponderomotive scal-
ing of the strong field interaction due to the much longer
excursion of the tunnel-ionized electron [76, 101] and corre-
spondingly higher kinetic energies upon re-collision, directly
impacting the range of photon energies produced in HHG.
For long wavelengths, the variation of the laser cycle is slow
compared to the bound wave packet dynamics. This places
the strong-field interaction in the quasi-static regime [87, 102]
for which theories provide accurate predictions [103–105],
thus allowing to unambiguously probe fundamental tunneling
physics [106–108]. HHG results in a spectrum with a cut-off
that scales with λ2 and hence HHG with longer wavelength
lasers provides a route towards tabletop coherent x-rays in
the keV range [38, 109, 110]. More advanced schemes based
on the synthesis of fields in the IR have also been developed
for the optimization of the attosecond pulse generation pro-
cess [111]. Nowadays, IAPs in the soft x-ray water-window
[112–114] can be generated, and LIED [82, 83] constitutes a
powerful probe to study molecular structure with attosecond
temporal and Angstroem-scale spatial resolution. Moreover,
the availability to generate low photon energies in the
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mid-IR has opened up the field of HHG in solids, allowing to
probe complex dynamics in the solid state, as will be discussed
below [64].

A third breakthrough came with the development of solid-
state-, fiber- and OPCPA-based systems that combine high
peak power with high average power [115–118]. These sys-
tems nowadays permit to conduct experiments at 1–3 orders
of magnitude higher repetition rates than the first generation,
1 kHz Ti:Sapphire systems. The high repetition rate creates
the ability to achieve unprecedented signal-to-noise ratios in
a plethora of investigations, as well as the implementation of
attosecond experiments with coincident detection of all elec-
trons and ions [15, 119]. In addition, OPCPA enables the
generation of attosecond pulses and pulse trains that are suf-
ficiently intense to permit XUV pump–XUV probe experi-
ments [120, 121]. Moreover, the increased reliability of these
systems enables scientists from other communities to benefit
from attosecond technologies without themselves needing to
be specialists of laser technology.

3. Strong-field ionization (SFI)

One of the most fundamental nonlinear phenomena encoun-
tered in attosecond science is strong field tunnel ionization.
Field-induced tunneling is the starting point of attosecond
science, initiating a broad range of strong field phenom-
ena—from HHG to electron holography or LIED. In the pres-
ence of a strong laser field, the Coulomb barrier of a bound
electron is suppressed, leading to tunnel ionization within a
fraction of the optical cycle [122]. Tunneling dynamics as
determined by the rapid sub-cycle modification of the elec-
tromagnetic field has a natural time scale in the attosecond
regime. We can classify this dynamics by the well-known
Keldysh parameter, γ =ω

√√
2IP/E, (with the laser frequency

ω, the ionization potential IP, and the laser field amplitude E).
The quasi-static regime corresponds to γ � 1, where the elec-
tron tunnels through a static barrier, having a temporal shape
dictated by the instantaneous amplitude of the electric field.
As γ approaches 1, the rapid oscillations of the laser field
excite the electronic wave function as it propagates under the
tunneling barrier via non-adiabatic dynamics [123].

Quantum tunneling raises fundamental questions such as
the ability to measure, or simply define, the tunneling time.
These questions have been the subject of numerous discus-
sions since the early days of quantum mechanics [124–127].
Attosecond metrology enables to re-address these concepts,
probing the temporal evolution of field-induced tunneling on
its natural time scale [19, 128]. One of the most successful
schemes is the attoclock technique [129–134], in which an
elliptically polarized laser pulse acts as the rotating hand of
a clock, which maps the instant of birth of the electron onto its
momentum distribution. Within this special issue, references
[135, 136] present a broad review focused on the different
definitions of the tunneling times, the historical debate con-
cerning their measurements as well as the experimental obser-
vations performed by attoclock experiments. High harmonic
spectroscopy (HHS), initiated by the tunneling mechanism,

serves as an alternative accurate probe of its basic properties.
HHG two-color metrology has been applied to resolve the time
at which the electron exits the tunneling barrier [137] and the
evolution of the instantaneous tunneling probability within the
optical cycle [24].

While attosecond metrology re-opened the study of quan-
tum tunneling, most of the measurements were focused on the
simple case of a single active electron that tunnels through
an atomic barrier. Many fundamental questions have remained
open: what is the role of multi-electron effects? How does the
structure of the original orbital influence the spatio-temporal
properties of the tunneled electron? Can we resolve relativis-
tic effects? When tunneling evolves from a molecular system,
the structure of the molecular orbital can play an important
role, dictating the angular distribution of the ionized electronic
wave function [138–140]. Furthermore, the tunneling process
may occur from several molecular orbitals simultaneously via
multi-channel ionization [141]. These ionization pathways can
be strongly correlated as they interact with the strong laser field
[52, 54, 56].

Within the current special issue, reference [142] shows
that the simultaneous measurement of field-induced tunneling
and HHS isolates both the structural dependence of the tun-
neling process and its multi-channel nature. Reference [143]
presents a theoretical study of anisotropic tunnel ionization
in polar molecules and analyzes the multi-electron dynamics
induced by the laser field. Field-induced tunneling in molec-
ular systems can be strongly influenced by nuclear dynam-
ics. For example, in small molecular systems the internuclear
distance may change substantially on a sub-cycle time scale
[144]. Reference [145] studies the role of nuclear move-
ment in the tunneling ionization of hydrogen molecular ions
and its influence on the ionized electron’s momentum dis-
tribution. In addition, competition between several strong
field channels can be observed. Reference [146] shows that
when tunneling is induced by a two-color field a control
over two channels, field-induced tunneling and dissociation, is
achieved.

Upon increase of the intensity of the laser field, relativis-
tic effects play an important role, and the description of the
underlying dynamics needs to go beyond the dipole approx-
imation [147–149]. Reference [150] presents a review of
the combined influence of non-dipole and Coulomb focusing
effects observed via experimental and theoretical investiga-
tions. Finally, strong field light–matter interactions may lead
to multiple ionization, commonly via sequential tunnel ion-
ization of charge states with increasing ionization potential.
While in most atomic and molecular systems this process is
assumed to evolve by means of a sequence of one-electron
processes, in complex systems such as clusters and nano-tips,
multi-electron phenomena can play an important role. Ref-
erence [151] describes a theoretical analysis that reveals the
basic mechanism in such systems. The paper shows that when
ionization potentials of subsequent charge states are close to
each other, multiple tunneling events can evolve on a sub-cycle
timescale, so that the tunneling of one electron can block the
next tunneling electron.
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4. Atomic photoionization

Attosecond science reveals dynamics over a broad range
of laser intensities—from strong field phenomena, such as
field-induced tunneling, to weak field processes. Single-
photon ionization is one of the most fundamental light–matter
interactions in nature, projecting bound wave functions onto
ionized electronic wave functions, which can then be experi-
mentally resolved. By probing the emitted electron, one can
decode the full dynamics of the photoionization process.
Attosecond science revolutionized our ability to measure pho-
toionization dynamics in a large range of systems, provid-
ing direct insight into the basic properties of the mechanism.
One fundamental question, extensively studied over the past
decade is: how long does it take for an electron to photoionize?
The photoionization delay—also known as the Wigner delay
[152], is determined by the phase shift of the wave function
associated with the photoelectron emerging from the binding
potential, compared with the wave function of a freely propa-
gating electron. First experiments resolved the relative photoe-
mission time delay between photoelectrons originating from
two distinct energy levels by applying the streaking [20] and
the RABBITT [21] techniques. Performing an angle-resolved
RABBITT measurement [153] reveals diverse fingerprints of
the attosecond photoionization dynamics [154, 155]. Within
this special issue, reference [156] reports angle-resolved stud-
ies of XUV-IR ionization in a RABBITT scheme using a
COLTRIMS apparatus and resolves the ionization dynamics
of valence orbitals in atomic systems. Extending this mea-
surement from atoms to molecules encodes rich information
associated with the anisotropic nature of the molecular poten-
tial. Such measurements have revealed delays associated with
different vibrational states of a molecular ion [157] or delays
in chiral photoionization [158].

When photoionization evolves in the presence of a low fre-
quency laser field, its basic properties can be altered, leading
to the appearance of new interference features. This laser-
assisted photoelectric effect encodes rich dynamical and struc-
tural information. Early on, Johnsson et al demonstrated that
a two-color XUV-IR field can be used to manipulate the ion-
ization yield of helium on a sub-cycle timescale [159]. In a
frequency domain picture, these oscillations may be under-
stood as the result of an interference between ionization path-
ways via different intermediate states dressed by the IR field
[160]. Reference [161] describes a combined experimental and
theoretical study of XUV ionization of atomic argon in the
presence of an IR laser field, leading to the appearance of
photoelectron sidebands that originate from intra-cycle inter-
ference. The paper demonstrates the ability to recover these
interferences, which cannot be commonly resolved due to
focal volume averaging, via a velocity map imaging measure-
ment. Reference [162] performs a systematic study of IR-
assisted XUV photoionization of atomic helium and resolves
population transfer to high angular momentum states. Chang-
ing the IR intensity and fundamental wavelength, while
performing energy and angle-resolved photoelectron measure-
ments, enabled a determination of residual populations of
Rydberg states created by the two-color field.

As mentioned, the instantaneous response of a system
dressed by the IR field can be resolved via attosecond tran-
sient absorption spectroscopy (ATAS). This scheme has been
applied to resolve fundamental attosecond timescale phenom-
ena in a wide range of systems, such as the dynamics of valence
shells [27], core shells [33], excited states [163, 164], autoion-
izing resonances [32] and light-induced states [165] in both
atoms, molecules and solids [37, 166].

Within this special issue, reference [167] applies ATAS to
investigate the laser field-modified dipole response of the con-
tinuum threshold of helium. The paper resolves light-induced
time-dependent structures in the absorption spectrum, below
and above the ionization threshold, and isolates the contri-
butions of the unbound electron to these structures. As this
experimental scheme evolves beyond atomic systems, new
aspects appear, reflecting the anisotropic nature of more com-
plex structures such as molecules. [168] studies ATAS in sys-
tems without inversion symmetry. Performing a numerical and
analytical analysis, the paper shows that the lack of parity
conservation leads to new spectral absorption features, which
reveal the symmetry properties of both the system under inves-
tigation and the laser field itself, as dictated by the carrier
envelope phase.

5. Attosecond molecular physics

Compared to atoms, the application of attosecond techniques
to molecular systems significantly increases the number of
degrees of freedom and the range of timescales that need to
be considered. Whereas in atomic experiments with attosec-
ond pulses, the relevant timescales are either optical (the
duration of the laser pulses used, or the duration of the
optical cycle of these pulses) or electronic (i.e. related to elec-
tronic energy level spacings in the atom), molecules have
vibration and rotation as additional degrees of freedom, with
associated timescales. Although these timescales are gener-
ally longer than the attosecond timescale, interesting situations
nevertheless arise when molecules containing light atoms are
investigated, where electronic and nuclear motion can become
strongly coupled. The same is true, on longer timescales, for
molecular dynamics involving conical intersections.

The development of attosecond science has prompted novel
ideas towards realization of the longstanding dream of laser-
controlled chemistry [169]. The duration of attosecond pulses
is so short that during an attosecond pulse the position of
even the lightest atoms may be considered ‘frozen’. The ini-
tial response of molecules to attosecond pulses is therefore a
purely electronic charge migration process [170, 171], poten-
tially leading to so-called ‘charge-directed reactivity’ [172].
While ideas on attosecond charge migration and attosecond
to few-femtosecond coupled electronic and nuclear dynam-
ics were formulated in theoretical papers soon after the first
laboratory demonstration of attosecond pulses [173], the first
experimental investigations of charge migration and ultrafast
coupled electronic and nuclear dynamics in molecules have
been made in recent years. Selected highlights have been
the observation of electron localization in dissociating H2

+

molecules [174] and the observation of coherent electronic
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dynamics in photo-ionized phenylanaline [175] and trypto-
phane [176].

In the current special issue, in an example of attosecond
XUV pump–XUV probe spectroscopy, Fukahori et al [120]
report experiments on electron-nuclear wave packet dynam-
ics in O2, using two time-delayed APTs. They measure the
O+ fragment kinetic energy distribution as a function of the
delay between the two pulses, and observe out-of-phase 2ω-
oscillations at high and low fragment kinetic energy, which
are interpreted in terms of probing (by the XUV probe laser)
of an electron-nuclear wave packet consisting of the coher-
ent superposition of two cationic electronic states (both pro-
duced by the XUV pump laser). Among several theoretical
studies in this special issue, Komarova et al [177] report on
the coupled electron-nuclear dynamics of LiH, LiD and LiT
under the influence of an intense, CEP-stable, few-cycle near-
IR (720 nm wavelength) laser field. The CEP controls the
initial population of excited states, which in turn controls the
ionization and the effect that two regions where non-adiabatic
coupling is important have on the final excited state popula-
tions. Arnold et al consider the role of the photoelectron that
is ejected in the course of ionization by an attosecond pulse
on the coherence properties of superpositions of cationic elec-
tronic states [178]. They include the photoelectron as a point
charge in a quantum–classical simulation of the attosecond
ionization process and observe that the photoelectron causes
a partial decoherence within the first 50 attoseconds, with this
timescale being independent of the spectral range of the ioniz-
ing pulse. Finally, while most studies have so far focused on the
single electron response, correlated electron–electron dynam-
ics can play an important role. Reference [179] performs a
theoretical study of electron–electron correlation as well as
non-adiabatic effects in post-ionization dynamics of molecular
systems. Applying a charge-transfer molecular model system,
the paper distinguishes different pathways leading to ioniza-
tion, both direct ionization and ionization involving elastic and
inelastic electron scattering processes.

While these research works targeting ‘atto-chemistry’ are
all examples of attosecond pump–probe spectroscopy, with
attosecond pulses initiating (pump) and/or observing (probe)
attosecond time-scale dynamics, molecular electronic and/or
nuclear dynamics have also been extracted by means of HHS
[50] or from the angular distributions of re-scattered photo-
electrons in SFI and LIED experiments [80]. For example,
measurements of high-harmonic spectra as a function of the
orientation of a molecular sample with respect to the polariza-
tion axis of the driving laser have demonstrated that ionization
of molecules by a strong laser field can lead to the forma-
tion of a coherent superposition of electronic states, which is
probed by the re-colliding electron within the HHG process
[55]. And, as mentioned, the re-colliding electron can scat-
ter off the molecular ion, providing the basis for LIED as a
method to determine static molecular structures and molecu-
lar dynamics in the short time interval between ionization and
re-collision [82, 86, 88, 89]. Another recent topic in attosecond
science is the investigation of chiral molecules. Whereas pho-
toionization of chiral molecules by circularly polarized light is

characterized by different probabilities for forward and back-
ward emission along the laser propagation axis, it was deter-
mined using an approach similar to RABBITT that delays of
a few tens of attoseconds exist between these two emission
directions [158].

Presently, molecular HHS and SFI are active fields of
research. Correspondingly, several representative examples
are found within this special issue. In a topical review, Zhang
et al give an overview of comprehensive research that has been
carried on strong-field dissociative ionization and Coulomb
explosion of the hydrogen molecule, using coincident elec-
tron–ion detection to obtain detailed and photon-number
resolved insight into energy-sharing between the electrons and
the nuclei, directional bond-breaking and the formation of
Rydberg states [180].

6. HHG control

Within recent years, a superb control over the fundamental
properties of high harmonics has been demonstrated. One of
the main challenges that has recently drawn significant atten-
tion is the ability to manipulate the polarization state of the
harmonics, which are naturally produced with linear polar-
ization. An additional challenge is high-resolution spectral
manipulation over the harmonic spectrum, which spans over
a large spectral range. In addition, the lack of optical com-
ponents in the XUV or x-ray regime [181], calls for control
schemes to manipulate the spatial profile of the HHG beam.
High harmonic generation with two-color bi-circular fields
[182] opened a range of opportunities from the first demonstra-
tion of three-foil symmetric XUV generation [183] to today’s
intricate control over the spin orbital momentum (polariza-
tion) and orbital angular momentum of the XUV waveform
[69]. More elaborate schemes such as the combination of two
non-collinearly interacting beams with counter-rotating ellip-
tical fields are shown to provide a spatially varying polariza-
tion grating which may permit to interrogate spin properties of
materials in space and time, all at once [184].

A persistent challenge in attosecond science is the effi-
ciency of the high harmonic generation process, which can
be manipulated on the microscopic single-atom-level [61] and
through macroscopic phase matching [185]. To this end, a
plethora of schemes have been implemented to control phase
matching (see for example [186–188]) with the common dif-
ficulty to engineer schemes to the short coherence length of
the HHG process. Making use of tailored micro-machined
chips, improved phase matching has recently resulted in a 20
times increased yield for XUV harmonics [189]. Despite these
achievements, one of the challenges associated with the use of
gas-phase HHG as a source of attosecond pulses remains the
relatively low efficiency, with typical conversion efficiencies
rarely higher than 10−4 and often much lower.

7. Plasma dynamics

Because of the low efficiency of gas phase HHG, alterna-
tive strategies for the production of attosecond pulses have

6



J. Phys. B: At. Mol. Opt. Phys. 54 (2021) 070201 Editorial

targeted plasmas and bulk media. The production of a plasma
upon irradiation of a surface by a laser pulse with near or
beyond relativistic intensity produces harmonic radiation by
coherent wake emission (CWE) [190]—a mechanism that
presents some analogy with the re-collision process of HHG
in gases—and the relativistic oscillating mirror (ROM) mecha-
nism [191]. In the CWE regime, both attosecond phase-locking
[192] and the production of IAPs by means of the attosecond
lighthouse effect [193] have been demonstrated. Beyond the
development of attosecond sources, and in analogy to HHS in
atoms or molecules, the harmonic signal generated from plas-
mas carries rich information on the plasma properties and its
dynamics in intense laser fields, down to the attosecond time
scale.

While most experiments on HHG in plasmas have so far
been based on the use of multi-TW Ti–Sapphire lasers, this
research is now also being pursued with few-cycle OPCPA
systems and/or laser pulses that are post-compressed in a hol-
low core fiber. In [194] Böhle et al report progress on the
development of an intense IAP source using a CEP-stabilized,
TW-level, 3.5 fs laser to drive the ROM mechanism. Near-
continuous XUV spectra are reported that are indicative of IAP
production for most values of the CEP, with a theoretically pre-
dicted percent-level generation efficiency. In addition to being
of interest as a possible source of attosecond laser pulses, plas-
mas are also of great interest in attosecond science in and of
themselves. In [195] Kruse et al report a novel computational
scheme that permits the calculation of coherent diffraction
images for the scattering of intense, few-femtosecond XUV
pulses from sub-micron He droplets that are converted into
plasmas under the influence of the incoming radiation [196].
The required XUV pulses have recently become available in
the laboratory [121]. While propagating through the droplet,
the XUV pulses induce Rabi-cycling on a few-femtosecond
timescale, which leaves its mark in the calculated diffraction
images that can be measured.

8. High harmonic generation in solids

Whereas HHG in plasmas that are formed on surfaces as
described above has a relatively long history, a major, more
recent discovery, with far-reaching implications, has been the
discovery of HHG in the bulk of solid materials [64]. While
in the gas phase the strong field dynamics is described in a
universal manner, where electron trajectories propagate in the
continuum, in solids the dynamics is strongly dominated by
the structural properties of the target itself during all steps of
the interaction.

As discussed, the recent success of HHG in solids was made
possible by the availability of mid-infrared light sources, since
they permit generating harmonic emission below the corre-
spondingly lower ionization threshold of solid-state materi-
als (compared to gaseous media). Due to the availability of
this technology, we are nowadays able to study attosecond
dynamics and strong field effects in solids without the need
for expensive ultrahigh vacuum setups. Since the first obser-
vation of HHG in solids [64], solid-state HHS has opened a
window into the electronic structure and dynamics in crystals

[45, 46, 66, 197–204], resolving complex many-body [205]
or topological phenomena [206]. Still, despite the spectacu-
lar progress, many of the underlying generation mechanisms
are still hotly debated. Several possible mechanisms have been
introduced, describing the process as originating from intra-
band currents [64], or as stemming from inter-band currents
[197]. In the intra-band picture, the nonlinear harmonic emis-
sion results from the nonlinearity of the band itself. The inter-
band model can be described in close analogy to the three-step
mechanism in a gas phase system. Around the peak of the laser
field, an electron tunnels from the valence to the conduction
band, forming an electron–hole pair. The laser field subse-
quently accelerates the pair, leading to their recombination
and the emission of extreme ultraviolet (XUV) radiation. As
demonstrated in a recent paper [207], the electron-tunneling
process that transfers the electron from the valence to the con-
duction band itself may also be a dominant source of harmonic
emission.

Within this special issue, reference [208] performs a the-
oretical study, based on semiconductor-Bloch equations, to
describe ultrashort pulse propagation in a three-band solid
state system. This model captures the sub-cycle inter-band
polarization and intra-band current, showing the important
role of virtual currents and dynamic Bloch oscillations. Refer-
ence [209] studies the underlying recombination mechanism
in MgO, by applying a two-color probing scheme. This mea-
surement reveals that harmonics emitted from the input surface
can be associated with re-colliding electron–hole pair trajecto-
ries. In contrast, harmonics emitted from the exit surface of the
crystal are strongly distorted due to nonlinear propagation of
the strong laser field within the sample. [210] presents an alter-
native approach to measure the underlying HHG dynamics in
solids. When the HHG process is generated by a few-cycle
pulse, the narrow envelope of the pulse can serve as a gat-
ing function. Resolving the CEP dependence of the harmon-
ics then enables the reconstruction of the attosecond pulse’s
temporal shape. Applying this approach to measure harmonic
emission in MgO resolves a group delay shift in a region of
strong absorption, associated with the quantum interference
between the continuum and bound states that participate in the
generation process.

These achievements are occurring during a time in which
material science has made a tremendous leap that has made
2D materials available and that has led to the existence of
technologies where these materials can be assembled in a con-
trolled fashion much alike Lego stones. It is very likely that the
combined availability of an ultrafast probe of electronic and
nuclear dynamics in combination with advanced materials will
provide a tremendous boost to material science. At the present
time, we have already seen hallmark experimental investiga-
tions such as the elucidation of quasi-particle collisions in tran-
sition metal dichalcogenides (TMDCs) [211], measurement
of Dirac currents in graphene [204, 212, 213], and theoreti-
cal predictions on the nonlinear response [214], phase transi-
tions and topological effects [206, 215–217] in 2D materials.
Clearly, the carrier dynamics in the 2D material graphene [204]
provides a rich ground for investigations since it combines
control over the existence of a bandgap with control over
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pathway interferences of Dirac carriers [218]. Carrier trans-
port is of major importance for the development of real-world
devices which are limited by heat dissipation due to scattering
and ballistic transport distances [219]. To address such prob-
lems, the combination of the high temporal resolution of high
harmonic-based VUV and XUV sources with photoemission
spectroscopies [220] provide novel insight into the scattering
and screening dynamics in solids.

9. Outlook

As we have tried to indicate in this introductory overview, and
as may be recognized from the impressive number of papers
that were submitted to this special issue on attosecond tech-
nologies, the field of attosecond science has—in the last two
decades—rapidly developed from a specialized research activ-
ity that could only be pursued in a very limited number of spe-
cialized laser laboratories, into a powerful new research area
capable of addressing important research questions in the four
fundamental states of matter: gas, liquid, solid and plasma.
It is tempting to try to foresee how attosecond technologies
and attosecond science will continue to develop in the coming
years.

In terms of technology, we anticipate that further develop-
ment of solid state, fiber- and OPCPA-based systems will allow
attosecond sources to become cheaper and more reliable, while
at the same time improving the source characteristics in terms
of repetition rate and available photon fluxes. At the same
time, advances in the technology of free electron lasers will
certainly lead to the generation of intense attosecond bursts
accessible for non-specialists [221, 222]. Additionally, if the
fluxes that are achieved in solid state HHG can be brought to
the level that is achieved in gas phase HHG, then this would
allow significant simplification of the experimental setups that
are needed for attosecond science experiments, with accompa-
nying advantages in terms of cost, reliability and accessibility.
Finally, attosecond pulses generated from plasmas using the
emerging generation of femtosecond PW lasers could provide
the light intensities required for the experimental investigation
of quantum electrodynamics in the strong field regime [223,
224].

Another key aspect of the future development of attosec-
ond technology will certainly be the pursuit of attosecond
pulse generation at higher photon energies than has thus far
been the case. Attosecond-resolvedcore-level x-ray absorption
spectroscopy is a powerful spectroscopic technique, which is
based on the x-ray-initiated transition of a core-level elec-
tron to an unoccupied bound or continuum state. This method
is ideally suited to fully exploit the large spectral bandwidth
of the attosecond pulse, since the energy resolution of the
measurement is determined by the spectrometer resolution.
However, an important aspect for the interpretation of such
measurements is the fact that the x-ray-initiated core hole can
strongly alter the distribution of measured valence states, thus
changing the absorption spectrum and complicating its inter-
pretation. Core-level x-ray absorption spectroscopy [225–227]
is well established (mainly) at synchrotron light sources in
which hard x-rays access 1s (K), 2s (L1) or 2p (L2, 3)

core-transitions to interrogate a wide variety of gases, liquids
or solids. X-ray absorption near-edge spectroscopy (XANES),
also called near-edge x-ray absorption spectroscopy (NEX-
AFS), interprets the immediate energetic vicinity of the
absorption edge and, thus, provides information about elec-
tronic bound states. The unambiguous interpretation of spec-
tra necessitates using K or L transitions, which translates into
x-ray photon energies in the soft and hard x-ray domain.
Higher-lying states (M, N) may be used as well, but the inter-
pretation needs advanced theory to address final state multiplet
effects, which otherwise quickly obscure the analysis [228].
A challenge for attosecond technology has therefore been the
ponderomotive scaling of the photon energies to the soft x-
ray regime to reach K and L shell absorption edges of inter-
est. This technology is nowadays available [38, 39, 41, 113,
114], which makes x-ray absorption spectroscopy an ideal tool
to benefit from the incredible time resolution on the attosec-
ond scale. Provided the attosecond pulse’s spectrum is broad-
band enough, it may even probe an extended spectral region
beyond the absorption edge, which is known as extended x-
ray absorption spectroscopy (EXAFS) [229]. EXAFS arises
from the scattering of the continuum electron on nearest-
neighbor atoms, and can thus provide molecular, or lattice,
distances in addition to the electronic structure from XANES.
Both, XANES and EXAFS benefit from the incredible tem-
poral resolution provided by attosecond technology. After the
first demonstration of the viability for high resolution soft x-
ray spectroscopy [37, 38], a range of experiments showed its
capabilities with investigations in solids [165, 230–234] and
molecules [41, 235], and the possibility to combine XANES
with EXAFS [229].

Besides considering the future development of attosecond
technologies, it is an intriguing question to consider in which
research fields attosecond science may—in future—have a
significant impact. Here, admittedly strongly influenced by our
subjective view of the attosecond science research field, we
offer the following suggestions:

In the coming years, attosecond science may develop into
a platform for studies of quantum information. Though per-
haps surprising at first, the reasons for this assertion are in fact
rather simple. The short wavelength and short optical period
of attosecond pulses place attosecond radiation in the XUV
and soft x-ray regime. This means that attosecond pulses are
by definition ionizing radiation. A peculiar aspect of ioniza-
tion is that it splits a quantum system (e.g. an initially neutral
atom or molecule) into a composite quantum system, consist-
ing of an ion and an electron. More often than not the ion and
the photoelectron will be entangled, meaning that they cannot
be described by a single product wave function and meaning
that measurements on the ion will influence what is measur-
able in the photoelectron, and vice versa [236]. Similarly, two
entangled electrons ejected from the same ion can carry sig-
natures of their entanglement in the photoemission signal. In
this case attosecond technology can be used to study the inter-
ference resulting from this entanglement and the influence
of the inter-electronic Coulomb interaction on the coherence
of the entangled electron. The role of entanglement is well-
established in quantum information, and arguably underpins
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its rapid development in recent years. However, in attosec-
ond science, the role of entanglement, and its influence on the
coherences that can be observed in pump–probe experiments,
has thus far hardly received any attention. We may anticipate
that this is going to change substantially in the coming years.

-As mentioned in the introductory text, preliminary steps
have been done in the direction of investigating processes of
interest for photochemistry and photobiology. Nevertheless,
the molecules studied so far only constitute small building
blocks of more complex molecules of biological relevance.
We anticipate that advances in attosecond technology will
allow for more complex targets such as DNA and proteins to
be investigated in their natural environment (i.e. solvated in
water). In this context, methods such as XANES and NEX-
AFS (see above) will be extended to the attosecond domain to
identify how mechanisms related to electronic correlations (i.e.
charge migration, shake-up, Auger and interatomic Coulom-
bic decay (ICD) [237]) may affect the final functionality of
the macro-molecule. Similarly, control over the electronic time
scale could be exerted to optimize photocatalytic reactions for
instance using transition-metal complexes. Attosecond pulses
can be used not only to map changes of the electron densi-
ties in the metal center and the surrounding atoms, but also to
directly determine the rate of the intersystem crossing (ISC).
ISC is an extremely fast process in which a singlet excited elec-
tronic state makes a transition to a triplet excited state due to
spin–orbit interaction. There is still a lot of debate on how ISC
relates to the structural change around the metal center and
gaining direct access to it will allow for a better optimization
of the photocatalytic process.

Based on all of the above, we conclude that the success
story of attosecond science has really only just begun, and
that the field has a bright future ahead, where existing and
newly developed attosecond methods will be used in an ever-
increasing number of laboratories. Like the individual frames
of the movies that are recorded in attosecond pump–probe
experiments, the current collection of articles in the joint focus
issue on attosecond technology(/ies) and science of J. Phys.
Photon. and J. Phys. B: At. Mol. Opt. Phys. should be consid-
ered as a snapshot in time, and we anticipate with great interest
how the movie continues from hereon.
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