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Abstract. We present an approximation of the Euler equations by the
means of an explicit finite volume method on a staggered grid scheme.
The discretization strategy relies on a two-step algorithm that accounts
separately for the acoustic and material transport effects in a similar way
to the Lagrange-Projection methods.
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1 Introduction

Staggered grid discretizations have been originally designed for the approxima-
tion of incompressible flows. Since the seminal work [6], this approach has been
extended to compressible models, the main objective being to simulate flows
which may be both in highly compressible (large Mach number) and nearly
incompressible (low Mach number) regimes. The staggered location of the un-
known over the mesh provides for Cartesian meshes a natural mean of evaluation
of fluxes and gradients. However, as the original method is not conservative, the
computation of shocks can be difficult.

Over the past years many contributions have suggested means to restore
conservativity, enhance the stability of the method as well as extensions to un-
structured meshes (see [5, 7, 8, 4, 3] and the references therein).

In this study, we present a fully conservative explicit staggered discretization
for approximating one-dimensional compressible flows. The method relies on a
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separate treatment of acoustic and transport phenomena by means of an operator
splitting that shares similarities with the Lagrange-Projection method as in [4],
for instance. However one of the main difference of our scheme compared to the
latter is the use of a relaxation approach for the linearization of the pressure
gradient (see [1] for details). Thus this new scheme follows the ideas developed
for the colocated method of [2], our final goal being the simulation of multiphase
flows near the incompressible regime on general meshes.

2 Flow equations and acoustic/transport operator
splitting approximation

We consider in this work a one-dimensional flow that is governed by the classic
compressible Euler equations. We note ρ, u and e respectively the density, ve-
locity and specific internal energy of the fluid. We suppose that the pressure P
is given by an Equation Of State (EOS) of the form P = Peos(ρ, e). The sound
velocity c is classically defined by c2 = ∂ρPeos + (P/ρ2)∂ePeos and is supposed
to be real-valued. If E = e+u2/2 denotes the specific total energy, the equation
of motion reads in a one-dimensional setting

ρt+ (ρu)x=0, (ρu)t+(ρu2+P )x=0, (ρE)t+ (ρEu+Pu)x=0. (1)

Following [2], we remark that smooth solutions of (1) verify

ρt + ρux + uρx = 0, (2a)
(ρu)t + ρuux + Px + u(ρu)x = 0, (2b)
(ρE)t + ρEux + (Pu)x + u(ρE)x = 0. (2c)

This suggests to consider the subsystems

ρt + ρux = 0, (ρu)t + ρuux + Px = 0, (ρE)t + ρEux + (Pu)x = 0 (3)

and

ρt + uρx = 0, (ρu)t + u(ρu)x = 0 (ρE)t + u(ρE)x = 0. (4)

As in [2], we propose to approximate the solutions of (1) by successively ap-
proximating the solution of (3) and (4). Before going any further, let us briefly
recall properties of the subsystems (3) and (4). The acoustic system (3) reads
equivalently

ρ (1/ρ)t − ux = 0, ρut + Px = 0, ρEt + (Pu)x = 0, (5)

and its associated Jacobian matrix possesses three eigenvalues (−c, 0, c), so that
it is strictly hyperbolic. The waves associated with the characteristic velocities
±c are genuinely nonlinear while the stationary wave is linearly degenerate.
The transport system (4) is hyperbolic as it has diagonal form with u as triple
characteristic velocity.
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3 Staggered discretization

We consider a discretization of the real line into (primal) cellsKi = (xi−1/2, xi+1/2)
with i ∈ Z and a series of instant tn+1 = tn + δtn for n ∈ N, where ∆xi =
xi+1/2 − xi−1/2 > 0 is a space step and δtn > 0 is the time step. The intervals
Di+1/2 = (xi, xi+1) are referred to as dual cells, with xi = (xi+1/2+xi−1/2)/2 and
∆xi+1/2 = xi+1−xi. For any fluid parameter b, we note bni and bni+1/2 respective

approximations of 1
∆xi

∫
Ki

b(x, tn)dx and 1
∆xi+1/2

∫
Di+1/2

b(x, tn)dx. If the vector

Un =
(
ρni , (ρu)

n
i+1/2, (ρE)ni

)T
denotes a discrete approximate solution of (1) at

instant tn, the overall numerical scheme will first yield an updated value Ũ by
integrating the acoustic system (3). Then by approximating the solution of the
transport system (4) we will obtain the updated fluid parameters Un+1 at tn+1.
In the following, we will note λn

k = δtn/∆xk, for n > 0 and k ∈ Z/2.

3.1 Approximation of the acoustic subsystem

Using a similar strategy as in [2], we consider a Suliciu-type relaxation approxi-
mation of (5) that reads

r (1/ρ)t − ux = 0, rut + πx = 0, rEt + (πu)x = 0, (6aν)

rt = ν(ρ− r), rπt + a2ux = ν(P − π), (6bν)

where a > 0 is an approximation of ρc that needs to be chosen large enough
in order to ensure stability. More precisely, a must satisfy Whitham’s condition
which reads a2 > (ρc)2 in order for system (6) to be a viscous approximation of
system (3). Formally by considering system (6) in the limit ν → ∞, one retrieves
the acoustic system (5). In practice, the regime ν → ∞ is obtained at each time
step tn by classically enforcing rni = ρni and πn

i = Peos(ρni , e
n
i ). Therefore, the

equation on r just expresses the fact that the density is constant over the acoustic
step while the equation on π is used as a linearization of the pressure gradient
in the momentum equation. We discretize (6) with the following update formula

ρni (1/ρ̃i − 1/ρni )− λn
i

(
u∗
i+1/2 − u∗

i−1/2

)
= 0, (7a)

ρni+1/2

(
ũi+1/2 − un

i+1/2

)
+ λn

i+1/2 (π̃i+1 − π̃i) = 0, (7b)

ρni

(
Ẽi − En

i

)
+ λn

i

(
π̃∗
i+1/2u

∗
i+1/2 − π̃∗

i−1/2u
∗
i−1/2

)
= 0, (7c)

ρni (π̃i − πn
i ) + a2iλ

n
i

(
u∗
i+1/2 − u∗

i−1/2

)
= 0, (7d)

where ai = ρni c
n
i and

u∗
i+1/2 = un

i+1/2 −
1

2ai+1/2

(
πn
i+1 − πn

i

)
with ai+1/2 = ρni+1/2c

n
i+1/2, (8a)

π̃∗
i+1/2 = θi+1/2π̃i +

(
1− θi+1/2

)
π̃i+1 with θi+1/2 =

1

1 +
ρn
i ∆xi

ρn
i+1∆xi+1

. (8b)
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One can notice that 0 < θi+1/2 < 1, ∀i ∈ Z, so that the pressure at face π̃∗
i+1/2

is a convex combination of the corresponding left and right relaxation pressures.
The variables ρni+1/2, c

n
i+1/2 and En

i are defined as follow :

φn
i+1/2 =

∆xiφ
n
i +∆xi+1φ

n
i+1

2∆xi+1/2
, for φ ∈ {ρ, c} , (9a)

En
i = eni +

1

2

[(
un
i−1/2

)2
/2 +

(
un
i+1/2

)2
/2

]
. (9b)

3.2 Approximation of the transport subsystem

For more convenience, we will note in the following ∆φ∗
i = φ∗

i+1/2 − φ∗
i−1/2, for

φ ∈ {u, πu} and∆φ∗
i+1/2 = φ∗

i+1−φ∗
i for φ ∈ {π, u} and i ∈ Z. The discretization

of the transport system (4) is performed following [2], more precisely we use the
fact that uφx = (uφ)x − φux for φ ∈ {ρ, ρu, ρE}. Thus, by writting δUn+1 =

Un+1 − Ũ , the update during the transport step writes

δρn+1
i + λn

i

(
Fi+1/2 − Fi−1/2 − ρ̃i∆u∗

i

)
= 0, (10a)

δ(ρu)n+1
i+1/2 + λn

i+1/2

(
Fi+1ũ

up
i+1 − Fiũ

up
i − (̃ρu)i+1/2∆u∗

i+1/2

)
= 0, (10b)

δ (ρE)
n+1
i + λn

i

(
Fi+1/2Ẽ

up
i+1/2 − Fi−1/2Ẽ

up
i−1/2 − (̃ρE)i∆u∗

i

)
= 0. (10c)

The numerical mass flux Fi+1/2 and total energy Ẽup
i+1/2 are evaluated thanks

to the classical upwind flux, more precisely

Fi+1/2 = ρ̃upi+1/2u
∗
i+1/2, with (ρ̃, Ẽ)upi+1/2 =

{
(ρ̃, Ẽ)i, if u∗

i+1/2 > 0,

(ρ̃, Ẽ)i+1, otherwise.

In (10b), the momentum fluxes Fi are evaluated using an upwind procedure
proposed in [8] that can be expressed as follow :

ũup
i =

{
ũi−1/2, if Fi > 0

ũi+1/2, otherwise.
with Fi =

∆xi−1/2Fi−1/2 +∆xi+1/2Fi+1/2

2∆xi
.

3.3 Overall scheme

If we set ρ̃i+1/2 = ρni+1/2/
(
1 + λn

i+1/2∆u∗
i+1/2

)
, the overall update of the con-

servative variable by the Staggered-Lagrange-Projection (SLP) takes the form
of the following conservative scheme

ρn+1
i = ρni − λn

i

(
Fi+1/2 − Fi−1/2

)
, (11a)

(ρu)n+1
i+1/2 = (ρu)

n
i+1/2 − λn

i+1/2

(
Fi+1ũ

up
i+1 − Fiũ

up
i +∆π̃i+1/2

)
, (11b)

(ρE)
n+1
i = (ρE)

n
i − λn

i

(
Fi+1/2Ẽ

up
i+1/2 − Fi−1/2Ẽ

up
i−1/2 +∆ (π̃∗u∗)i

)
. (11c)
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Given the update value of En+1
i and un+1

i+1/2 obtained by (11), the updated

value en+1
i of the internal energy is obtained thanks to (9b). The time step is

set according to the relation

δt = Kmin (δtac, δttr) , K ∈ (0, 1) , (12)

where δtac and δttr are given by

δtac = min
i∈Z

(
∆xi

(∆u∗
i )

−

)
and δttr = min

i∈Z

 ∆xi(
u∗
i+1/2

)+
+
(
−u∗

i−1/2

)+


with b− = −min (b, 0) and b+ = max (b, 0). The time step δtac ensures the
positivity of ρ̃i in (7a) while δttr ensures the positivity of ρn+1

i in (11a). One
can show the following proposition.

Proposition 1. The SLP scheme (11) is conservative with respect to the den-
sity, momentum, total energy and under the condition (12) it preserves the pos-
itivity of the density.

A proof of this proposition can be obtained following similar lines as in [2].

4 Numerical Results

We now test our numerical SLP scheme against classical tests of the literature
and also display comparison with the MAC scheme presented in [8]. In the fol-
lowing, the fluid is supposed to be governed by the Perfect Gas EOS defined by
Peos(ρ, e) = (γ − 1)ρe, with γ = 1.4. All tests have been running with constant
value K = 0.1 in the stability condition (12). Initial conditions of the first two
tests are detailed in [10] and the third one in [9, problem case 3].

Toro test 4 We propose to test the new SLP scheme against a first classical
Riemann problem. This test represents the collision of two strong right and left
shocks and consists of a left facing shock, a right travelling contact discontinuity
and a right travelling shock wave. The computation was performed using a 500-
cell mesh. We can see in Figure 1 that the SLP scheme succeeds in capturing the
right discontinuities while the MAC scheme suffers an overshoot near the shock.

Toro test 5 We now turn to a second classical Riemann problem. For this test,
we also used a 500-cell grid. The test consists in a left rarefaction wave, a contact
discontinuity and a strong right shock. Figure 2 displays a comparison between
the SLP scheme and the MAC scheme. One can observe spurious oscillations
in the MAC scheme in the intermediate state where the velocity vanishes and
of maximal amplitude near the right shock. This behavior of the explicit MAC
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Fig. 1. Results obtained for Toro test 4 at instant t = 0.035.

scheme is already known and is due to a lack of numerical dissipation in the
momemtum equation when the velocity vanishes, as already pointed out in [8].
The SLP scheme does not suffer of such oscillations, mostly thanks to the extra
diffusive term in the face velocity (8a).

Two-dimensional Riemann problem Using a directional splitting, the SLP
scheme can be extended to multi-dimensional problems approximated over a
Cartesian grid. We consider the two-dimensional Riemann problem of case 3
studied in [9] and performed using a 400 × 400-cell regular mesh. Results for
both schemes are displayed in Figure 3. Spurious oscillations appear for the
MAC scheme mostly in the zero-velocity region of the test, which is caused by
a lack of numerical dissipation as previously discussed. On the other hand, the
new SLP scheme does not exhibit such behavior and presents good agreement
with results shown in [9].

5 Conclusion

We proposed a fully conservative discretization of the compressible Euler equa-
tions over a staggered mesh using an explicit acoustic/transport operator split-
ting approach. The method shows promising results on both one-dimensional
and two-dimensional tests. Further works also include a more thorough study of
the stability properties of the scheme and the extension to unstructured meshes.
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Fig. 2. Results obtained for the Toro test 5 at instant t = 0.012.
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Fig. 3. Two-dimensional Riemann problem: results for the MAC (above) and the SLP
schemes (below) at instant t = 0.3


