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Abstract—A general formulation for electromagnetic analy-
sis of multilayer structures with arbitrarily shaped interfaces
is presented. The formulation belongs to modal methods. Its
originality lies in the use of coordinates systems attached to the
profile shape of the interfaces that separate the layers and to
Maxwell’s equations written under the covariant form. Each
interface coincides with a coordinate surface which makes it
elementary to enforce boundary conditions.
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I. INTRODUCTION

Many applications rely on the interaction of an electro-

magnetic field with multilayer structures. For instance, radar

remote sensing of soils content requires an accurate model of

soils which often involves multilayer rough surfaces and di-

electric profiles. In an other frequency range, the performance

of solar cells highly depend on light trapping which may be

optimized by front and back gratings. At low frequencies,

non-destructive testing of stratified conductors characterized

by a set of arbitrary interfaces of complex shape may rely on

the computation of the response of a 3D Eddy Current probe

[1]. From the electromagnetic point of view, all three cited

examples are similar. They represent problems of diffraction

by layers with non-parallel faces, the case of parallel faces

being a particular case. This paper is aimed at presenting a

general method based on curvilinear coordinates for solving

such problems.

II. FORMULATION

A. New Coordinates

Let us consider a stratified media characterized by a set

of interfaces as is shown in Fig.1. Each interface separating

two consecutive media with optical indexes νp−1 and νp is

described by an analytic function ap(x, y) depending on two

directions x and y. The air domain, denoted by 0, contains the

source. The last media is assumed to be infinite.

Each interface is associated with a non-orthogonal coordi-

nate system such as:

x = x1, y = x2, z = x3p + ap(x
1, x2). (1)

Fig. 1. Illustration of a multilayer structure. The pth layer is between ap−1

and ap .

Therefore, boundary conditions at the interface of two ad-

jacent layers becomes elementary since the latter is now a co-

ordinate surface characterized by x3p = constante.. Due to the

change of coordinates, a new metric tensor must be introduced

[2]. Denoting (x, y, z) by (x1
′

, x2
′

, x3
′

), the components of the

metric tensor gij are given by
∑

i′j′ (∂x
i′∂xj

′

/(∂xi∂xj)δi′j′

where δi′j′ is the Kronecker symbol. The inverse of the matrix

formed by the gij gives the components of the conjugate

metric tensor gij :

[gij ] = [gij ]
−1 =





1 0 −ȧ1
0 1 −ȧ2

−ȧ1 −ȧ2 1 + ȧ21 + ȧ22



 , (2)

where ȧi, i = 1, 2 are the partial derivative of ap(x
i) with

respect to xi. Here, the determinant g of [gij ] is equal to

one. Since the coordinate system is non-orthogonal, it is

convenient to write Maxwell’s equations under the covariant

form. Assuming a time dependence of the form exp(iωt), we

have:

ξlmn∂mEn = −ik√gglmZ0Hm,
ξlmn∂mZ0Hn = ikν2

√
gglmEm,

(3)

where l,m, n ∈ {1, 2, 3}, k is the wave number, Z0 is the

vacuum wave impedance, ∂j , j ∈ {1, 2, 3} stands for ∂/∂xj ,

ξlmn is the Levi-Civita indicator.
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B. Method of Solution

Since the components of the metric tensor do not depend

on the x3 variable, it is possible to express the four tangential

components E1, E2, H1 and H2 in terms of the two longi-

tudinal components E3 and H3 which satisfy the same scalar

propagation equation [3]:

(

∂mg
mn∂n + k2ν2

)

ψ = 0 ψ = E3 or ψ = H3. (4)

Moreover any of the six components takes the form :

Ψ(x1, x2, x3) = ψ(x1, x2) exp(−iγx3). (5)

Taking into account (5), (4) can be recast as a first order

differential system of the form:

[Lq
p]

[

ψq
p

ψ′
p
q

]

= γqp

[

ψq
p

ψ′
p
q

]

ψ′

p

q
= −iγqpψq

p. (6)

In equation (6), the subscript p refers to the interface whereas

the superscript q refers to the media. According to the nota-

tions illustrated on Fig.1, we see that q = p or q = p − 1.

Equation (6) is transformed into an algebraic eigenvalue

system by using the method of moments after a suitable basis

is chosen. The numerical solution is then obtained thanks to

standard linear algebra libraries. It can be shown that there

are two sets of modes which correspond to forward waves and

backward waves respectively. Finally the solution is a linear

combination of eigen-modes depending on both the media and

the coordinate system. Hence, inside a layer whose faces are

not identical, the field is represented by two different sets of

eigenvectors:

ψ±

p

q
=

L
∑

l=1

(

A± q
e l,pψ

± q
e l p +A± q

h l pψ
± q
h l p

)

exp(−iγ±q

p(x
3
p)),

(7)

with q = p− 1 or q = p. Vector ψ is the concatenation of the

four tangential components. The subscript e, (respectively h)

designates a vector generated by E3, (respectively H3). L is

the number of numerically computed eigen-modes.

C. Boundary Conditions

The unknown constant coefficients depend on two physical

phenomena of different nature. On the one hand, crossing an

interface, the total tangential field components are continuous

which implies that forward and backward waves are coupled.

On the other hand, the propagation from one interface to the

next one in the same media, creates only a phase shift or an

attenuation without coupling the two kind of waves. Boundary

conditions are enforced thanks to the the S-matrix formalism.

At the pth interface which separates media p − 1 and media

p, that is at x3p = 0, we have an interface Sp−1,p
p matrix such

that:










A
+(p−1)
e l p

A
+(p−1)
h l p

A−p
e l,p

A−p
h l p











= Sp−1,p
p











[A
− (p−1)
e l p

A
− (p−1)
h l p

A+p
e l p

A+p
h l p











. (8)

Between interface p− 1 and interface p, we have derived two

modal expansions for the field: one is attached to ap−1 and

the other one to ap. The corresponding coordinate systems are

linked by

x3p−1 = x3p+ap−1(x
1, x2)−ap(x1, x2) = x3p+tp(x

1, x2). (9)

In the case of layers with parallel faces, function tp(x
1, x2)

reduces to a constant. We consider the pth layer as a gen-

eralized transmission line which connects input field ψ− p−1
p−1

and ψ+ p−1
p to output fields ψ+ p−1

p−1 and ψ− p−1
p . As already

mentioned, no coupling occurs between forward waves and

backward waves. Hence the definition of the bloc anti-diagonal

layer Sp−1
p−1 p matrix:











A
+ (p−1)
e l (p−1)

A
+(p−1)
h l (p−1)

[A−,p
e l,p

A−,p
h l p











= Sp−1
p−1 p











[A
− (p−1)
e l p−1

A
− (p−1)
h l p−1

[A+p
e l p

A+p
h l p











. (10)

At the input of the pth layer that is at z3p−1 = 0, the outgoing

waves correspond to the incoming waves of the output plane.

Similarly, at the output of the same layer, that is at z3p = 0,

the outgoing waves correspond to the incoming waves of the

input. Hence the two relations from which the coefficients of

the layer S matrix are computed:

ψ
+(p−1)
p−1 (x3p−1 = 0) = ψ

+(p−1)
p (x3p = tp),

ψ
− (p−1)
p (x3p = 0) = ψ

− (p−1)
p−1 (x3p = −tp).

(11)

D. Excitation

The structure is exited from air with a known field which is

expanded onto the eigenvectors associated to the first interface

which determine input amplitude coefficients A−0
e l,1,A−0

h l,1.

All other coefficients are obtained from the usual recursion

formulas of the S matrix algorithm.

III. CONCLUSION

We have described an efficient and versatile algorithm for

modeling arbitrarily shaped faces multilayer structures. Its

advantage over pure numerical methods like Finite Elements

Methods is that no mesh is needed in the z direction which

makes it competitive in terms of computational speed espe-

cially for layers with rather large thickness. In the presentation,

we will focus on the numerical implementation and give some

examples of applications.
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