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Abstract. This paper concerns the development of a semi-analytical model dedicated to the fast computation of the response of
a 3D Eddy Current (EC) probe scanning a planar conductor of complex shape. The workpiece is characterized by a finite number
of complex interfaces k, 1 ≤ k ≤ N, each one being defined by any 2D arbitrary surface ak(x, y). A previous semi-analytical model
based on the Curvilinear Coordinate Method (CCM) has been presented for the computation of quasi-static fields induced by
any 3D EC probe scanning a half-space of complex shape. This paper gives a natural extension of this preliminary work. CCM
consists in introducing a change of coordinates in order to be able to write analytically and easily boundary conditions separating
two media. No mesh is needed, nevertheless, the covariant form of Maxwell’s equations is required due to a novel generalized
metric space. Boundary conditions at multiple interfaces are efficiently implemented thanks to the S-matrix algorithm. Finally,
some numerical experiments show the validity of the numerical model by some comparison between simulated data obtained
by a FE commercial code and those provided by the proposed numerical model.

Keywords: Covariant form of Maxwell’s equations, eddy current simulation, Eddy current nondestructive testing

1. Introduction

In order to answer to industrial needs, the fast computation of a 3D eddy current (EC) probe scanning
a conductor of complex shape is often required. Though some efficient semi-analytical models, based on
the Green’s dyad formalism, have been developed and largely implemented notably into EC modules
themselves integrated into the CIVA platform, these numerical models can address only canonical
geometries such as planar stratified media or tubes of finite thickness. In order to avoid the use of purely
numerical methods for some complex geometries, the Curvilinear Coordinate Method (CCM) [1] which
is widely used in the optical society for solving rigorously some scattering problems for crossed gratings
and periodic structures has been evaluated and transferred from the high frequency range to the low
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frequency range. This efficient and original method based on the covariant form of Maxwell’s equations
has been applied recently for Eddy Current calculations in the planar case [2–4] for 2.5D configurations
characterized by a 3D eddy current probe scanning a 2D layered stratified conducting media. In this case,
the geometry of the workpiece is described by a set of 1D analytical profiles ak(x),1 ≤ k ≤N. The extension
to a 3D problem has been dealt with by applying the formalism to a 3D half-space conducting media [5]
characterized by a single arbitrary surface a(x, y) depending on the two directions X and Y. The main
advantage of this formalism comes from the fact that no mesh is required since all boundary conditions
which must be satisfied at each interface can be analytically written by some obvious equalies. Thanks
to a smart change of variables, by using the covariant form of Maxwell’s equations, it is possible to
compute efficiently a modal expansion of the tangential components of the electromagnetic fields taking
into account the complex geometry of the interface. In this paper, the properties of the stratified media are
included into the so called S-matrix algorithm [6,7] in order to compute efficiently the response of a 3D
eddy current probe scanning a 3D multilayered complex structures. Nevertheless, the main difficulty to
overcome comes from the numerical computation of eigenmodes characterizing the structure since the dis-
cretization of the problem requires some truncation of the fields into the Fourier domain, so a finite number
of modes can limit some kinds of analytical shapes of profiles. This paper is organized as follows: firstly, a
new curvilinear coordinate system is associated to each layer, a new tensor metric is therefore introduced.
A modal expansion of the tangential components of the field is obtained from the modal expansion of
the longitudinal components of the electromagnetic field. The S-Matrix algorithm is then described for
parallel interfaces and non-parallel interfaces implying in this case another transformations. To validate
the new numerical model, some numerical experiments are performed and some comparison to other sim-
ulated data confirm the validity of the model. In the last section, some discussion is carried on concerning
some limitations of the approach and some comments are given for new developments in the future.

2. A summary of the formalism

2.1. Principle of the change of coordinate system

In this section, the 3D formalism of the Curvilinear Coordinate Method (CCM) is recalled and
translated in our context of ECNDT, in the low frequency range. Lets us consider a stratified conducting
media characterized by a set of interfaces (see Fig. 1). Each interface separating two consecutive media
is described by an analytic function ap(x, y) depending on the two directions x and y. The air domain,
denoted by 0, contains an EC current probe. The subscript p stands for other interfaces so that 1 ≤ p ≤
N. The last media is assumed to be infinite. Each interface is associated to a non-orthogonal coordinates
system: x1 = x, x2 = y and 𝑥3

𝑝 = 𝑧 − 𝑎𝑝(𝑥, 𝑦). Therefore, boundary conditions at the interface becomes
easier to write since the covariant coordinate 𝑥3

𝑝 is equal to a constant. Due to a change of coordinates,
a new metric tensor must be introduced corresponding to a map between the initial cartesian coordinate
system {𝑥, 𝑦, 𝑧} and the new coordinates system {𝑥1, 𝑥2, 𝑥3

𝑝}. Since the partial derivative forms denoted
by ̇𝑎1 = 𝜕𝑥𝑎𝑝 and ̇𝑎2 = 𝜕𝑦𝑎𝑝 with respect to the analytical function ap(x, y) = ap(x1, x2) exist depending on
the two variables x and y, the tensor metric gij and the conjugate tensor metric gij = [gij]−1 are given by:

𝑔𝑖𝑗 =
⎡
⎢
⎢
⎣

1 + ̇𝑎2
1 ̇𝑎1 ̇𝑎2 ̇𝑎1

̇𝑎1 ̇𝑎2 1 + ̇𝑎2
2 ̇𝑎2

̇𝑎1 ̇𝑎2 1

⎤
⎥
⎥
⎦

, [𝑔𝑖𝑗] =
⎡
⎢
⎢
⎣

1 0 − ̇𝑎1

0 1 − ̇𝑎2

− ̇𝑎1 − ̇𝑎2 1 + ̇𝑎2
1 + ̇𝑎2

2

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

1 0 𝑔13

0 1 𝑔23

𝑔13 𝑔23 𝑔33

⎤
⎥
⎥
⎦

. (1)
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Fig. 1. A 3D air-core probe scanning a 3D stratified conductor media. Only a few smooth interfaces are represented.

The determinant g = |gij| = 1. The covariant components of the electrical (magnetic) field E1, E2 (H1, H2),
in this natural coordinate system, correspond to the tangential components of the electrical (magnetic)
field at the interface p.

2.2. Modal expansion of the tangential components

In what follows, let us assume some notations. let denoting by 𝑘 = 𝜔√𝜀0𝜇0 the wavenumber in vacuum
while in each layer l, the wavenumber is given by 𝑘2

𝑙 = 𝑘2𝜇𝑙𝜀𝑙 where 𝜀0 and 𝜇0 stand for the vacuum
magnetic permeability and the vacuum dielectric permittivity and 𝜀l and 𝜇l stand for the relative magnetic
permeability and the relative dielectric permittivity of the medium l. Denoting by 𝜎l the conductivity of
the medium, the relative permittivity is a complex number given by 𝜀𝑙 = 1 − 𝑖𝜎𝑙

𝜔𝜀0
(assuming the time

dependance ei𝜔t). Moreover the vacuum wave impedance is denoted by 𝑍0 = √
𝜇0
𝜀0

. Now, keeping in

mind that the contravariant metric tensor gij does not depend on the variable 𝑥3
𝑝, (i.e., 𝜕3gij ≡ 0), it is

possible [5,8], from the covariant form of Maxwell equations [9], to deduce, at any interface, the tangential
components of the electromagnetic field E1, E2, H1, H2 from two longitudinal components E3 and
Z0 H3. In summary, the application of the principle of separation of variables and the assumption that an
exponential dependance according to the covariant coordinate x3 can be applied so that Φ(𝑥1, 𝑥2, 𝑥3) =
𝜙(𝑥1, 𝑥2) 𝑒−𝑖𝛾𝑝𝑥3

𝑝 . The two longitudinal components E3 and H3 must satisfy the same Helmholtz’s equation
translated in the new coordinates system [8]:

[𝑔33𝜕2
3 + (𝜕1𝑔13 + 𝑔13𝜕1)𝜕3 + (𝜕2𝑔23 + 𝑔23𝜕2)𝜕3 + 𝜕2

1 + 𝜕2
2 + 𝑘2

𝑙 ] 𝜙𝑝 = 0 (2)

where 𝜙p ≡ E3 or H3 and the partial derivative operator 𝜕2
3 is substituted by −𝛾2

𝑝 . By using an auxiliary
variable 𝑖𝜙′

𝑝 = 𝛾𝑝𝜙𝑝, a differential system of first order is given by:

[ 𝑝] [
𝑖𝜙′

𝑝
𝜙𝑝 ] = 𝛾𝑝 [

𝑖𝜙′
𝑝

𝜙𝑝 ] . (3)

Finally, in order to obtain an algebraic version of this differential equation, a discrete version of a 2D-
Fourier transform along the covariant coordinates x1 and x2 is considered. The spatial frequencies are
denoted by 𝛼 and 𝛽 respectively. Therefore, the potential 𝜙𝑝(𝑥1, 𝑥2, 𝑥3) = −1[ ̂𝜙𝑝(𝛼, 𝛽, 𝑥3)] may be
reconstructed in the spatial domain from the potential ̂𝜙𝑝 defined in the spectral domain. Nevertheless, a
finite number of modes leads to a truncation of the spectral domain ([−M, …, +M] for 𝛼 and [−N, …, +N]
for 𝛽. Thus, the translation of the differential system (3) in the truncated Fourier domain can give a modal
expansion of the two longitudinal components. The longitudinal components of the fields are expressed
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as a linear combination of a TE field (E3 = 0) and a TM field (H3 = 0):

[
𝐸(𝑝)

3

𝑍0�̂� (𝑝)
3

]
=

[
𝝍𝑇 𝐸(+)

𝑝,𝑞 0

0 𝝍𝑇 𝑀(+)
𝑝,𝑞 ] [

𝒅+
𝑝 0

0 𝒅+
𝑝 ] [

𝑏𝑇 𝐸(+)
𝑝,𝑞

𝑏𝑇 𝑀(+)
𝑝,𝑞 ]

+
[

𝝍𝑇 𝐸(−)
𝑝,𝑞 0

0 𝝍𝑇 𝑀(−)
𝑝,𝑞 ] [

𝒅−
𝑝 0

0 𝒅−
𝑝 ] [

𝑏𝑇 𝐸(−)
𝑝,𝑞

𝑏𝑇 𝑀(−)
𝑝,𝑞 ]

(4)

where 𝝍±
𝑝,𝑞 denotes the eigenvectors associated to the eigenvalues 𝛾±

𝑝,𝑞 and 𝒅±
𝑝 is a diagonal matrix

diag[ei𝜆p, −M , …, ei𝜆p, +M ]. The coefficients 𝑏𝑇 𝐸±
𝑝,𝑞 and 𝑏𝑇 𝑀±

𝑝,𝑞 must be determined by applying boundary
conditions. The forward/backward contributions of the field differ from the sign ± of the exponents and
non-physical solutions (growing towards infinity) are suppressed. Let us consider 𝒃±

𝑝 = [𝑏𝑇 𝐸(±)
𝑝,𝑞 , 𝑏𝑇 𝑀(±)

𝑝,𝑞 ]𝑇 .
Finally a modal expansion of the tangential components of the fields is summarized as a global form:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Ê(𝑝)
2

𝑍0Ĥ(𝑝)
1

𝑍0Ĥ(𝑝)
2

Ê(𝑝)
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= [𝝍 (+)
𝑝,𝑞 𝝍 (−)

𝑝,𝑞 ] [
𝑫+

𝑝 0

0 𝑫−
𝑝 ] [

𝒃(+)
𝑝

𝒃(−)
𝑝 ]

. (5)

2.3. Multiple interfaces: the S-Matrix algorithm

The S-Matrix algorithm described in [3,7] can lead to a relationship between the amplitudes b+
1 and

b−
1 in the first conducting layer relatively to the amplitudes b+

𝑁 and b−
𝑁 in the last layer by using: [

b+
1

b−
𝑁 ] =

𝑆(𝑁, 1) [
b−

1

b+
𝑁 ] where S (N,1) results from a recursive scheme implying the S-interface matrix linking two

successive layers: [
b+

𝑗−1

b−
𝑗 ] = 𝑆(𝑗, 𝑗 − 1) [

b−
𝑗−1

b+
𝑗 ]. The amplitudes b+

1 and b−
1 must be combined to another

condition for taking into account the first interface air-conductor:

[
𝒃+

0

𝒃−
1

]
𝑥3

0=0
= [𝜳 +

0 , −𝜳 −
1 ]−1 𝜳 +

1 𝒃+
1 − [𝜳 +

0 , −𝜳 −
1 ]−1 𝜳𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (6)

where the reference field 𝛹 Reference is due to the presence of any 3D air-core eddy current probe over a
planar conducting slab. The reader can refer to [5]. This reference field is computed in the air region,
satisfying the condition 𝑥3

0 = 0 on the first surface z = a0(x, y). The planar interface of the conducting
slab concides with the lowest point of the first interface a0(x, y). At the end of the computations, the
unknown amplitude b+

0 is determined. Now, in order to take into account a more general geometry
where the interfaces are non necessary parallel, another transformation, the S-matrix layer must be
introduced since two non-orthogonal coordinates systems may coexist in some layer. The principle of
this transformation is described in [4] and it is extended here to the 3D case. In summary, considering
that two coordinates systems: the upper 𝑥3

𝑝 = 𝑧 − 𝑎𝑝(𝑥, 𝑦) and the lower 𝑥3
𝑞 = 𝑧 − 𝑎𝑞(𝑥, 𝑦) may coexist in

one layer, the amplitudes of the forward/backward waves are given by b+
𝑝 = 𝑆𝑞→𝑝 b+

𝑞 and b−
𝑞 = 𝑆𝑝→𝑞 b−

𝑝 .
These transformations are incorporated into the previous global algorithm in order to be able to compute
the global S-matrix S (N,1) for a general stratified media characterized by N layers. Then, after translating
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Fig. 2. A 3D air-core probe scanning a 3D mockup of finite thickness. The two interfaces are rather arbitrary smooth.

Fig. 3. Variations of the real part R and the imaginary part X of the probe impedance, compared to FE data.

the Auld’s formula in the new coordinates system, on the first interface, the change in the impedance of
the probe is deduced.

3. Numerical results

In order to show the numerical validity of the model, a test configuration has been chosen with two
smooth interfaces. The smoothness can drastically reduce the number of harmonics which are necessary
in the spectral domain. The two surfaces are characterized by some analytical function ap(x, y) = hp ap(x
− sp)ap(y), 𝑝 ∈ {0, 1} with 𝑎(𝑤) = 1

2
[1 + cos(2𝜋 𝑤

𝐿𝑤
)],∀w ∈ [−Lw∕2, Lw∕2], w = x or y. hp corresponds to

the height of the surface since the function a (⋅) is normalized to 1. sp represents some spatial shift along
the X direction. The height of the first surface is h0 = −0.75 mm while the length of the profile along X is
Lx = 10 mm. The profile is shifted on the left side with s0 = −2 mm. For the second interface, the lower
one, h1 = +0.25 mm and the profile is shifted on the right side with s1 = +2 mm. The functions a0(y) and
a1(y) remains symmetrical with respect to the Y axis in order to be able to carry on FE simulations with
only a half-geometry. Let us consider Ly = 10 mm too. In the other hand, the CCM numerical model does
not require any symmetry property to be able to perform some calculations. The thickness between the two
surfaces is fixed at 1 mm. Other parameters concerning the probe are described in [5] and the parameters
presented in Table 1 are not modified. The geometry is displayed in Fig. 2 while Fig. 3 shows the variations
of the real part and the imaginary part (given in 𝛺) of the impedance when the probe is scanning the
sample. FEM data have been obtained thanks to a commercial version of a Finite Element software.
The agreement between simulated data is quantified by the two separated errors [5] 𝜀R < 1.04% and 𝜀X
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Fig. 4. H3(z = a0(x, y)), the probe is fixed at x = 0.

Fig. 5. A sliceview of the H3 component.

< 0.05%. Moreover, the longitudinal component H3 which is a critical component in this configuration
is also represented in Fig. 4 while Fig. 5 displays two sliceviews. The agreement between simulated data
is quite satisfying since these results have been obtained with some parameters M = 23 and N = 21. The
convergence is this method is reached thanks to the smoothness of the profiles. An increasing number of
modes requires an improvement of the algorithms in order to be able to address other severe geometric
profiles.

4. Conclusions and future works

This contribution extends to the full 3D case previous significative works concerning the development
of a semi-analytical model for simulating some ECNDT configurations when a 3D EC probe is scanning
a 2D conducting stratified media. The numerical model can address now a set of multiples interfaces of
complex shape. Due to numerical and memory space limitations, the profile of the surfaces is rather
smooth in order to reduce the number of harmonics along the two covariant axis x1 and x2 for each
interface. First improvements concern the implementation of dedicated algorithms to enlarge the sizes
of the matrices to deal with and other works lie on the parallelization of the S-matrix algorithm. The time
computation is relatively reasonable (about a few minutes for all the probe positions) in comparison to
other simulating methods due to the complexity of the geometry but some attention must be payed to the
problem of solving the eigenvalue problem due to the size of the matrix. Moreover, the convergence of
the numerical method can be strongly difficult to reach for full 3D problems. On the other hand, there are
no really practical limitations for 2D workpieces on usual computers.
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