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Abstract. Carbon fiber reinforced polymer (CFRP) plates and honeycomb composite sandwich 

structures (HCSS) are widely used in the aerospace industry as they exhibit excellent strength-

to-weight ratio, stiffness, toughness, corrosion resistance, etc. Nevertheless, defects, such as face 

sheet delamination or core-sheet debonding, may appear due to the impact forces or thermo-

mechanical aging and can degrade these properties. Structural health monitoring (SHM) based 

on the use of guided elastic waves (GW) is regarded as a promising solution to detect such 

defects, and consequently to reduce maintenance costs and to extend structure service time. GWs 

propagate over large distances while being sensitive to structural inhomogeneities. Here, a SHM 

system prototype is proposed. It relies on a sparse grid of piezoelectric transducers distributed 

over the structure, used for both actuating and sensing GWs. Defect imaging is performed by 

means of the correlation based algorithm, the so-called Excitelet. It computes correlation 

coefficients between the theoretical and experimental GW signals for each pixel on the image 

representing the region of interest of the structure. The theoretical signals for CFRP are computed 

using a model based on a 2D semi-analytical finite element formulation. Analytical prediction 

of theoretical signals for the HCSS being intractable, a homogenization model is applied to the 

honeycomb core to replace it by an equivalent orthotropic plate preserving the same modelling 

approach. Defect imaging results are presented for both structures, namely a CFRP plate and a 

HCSS. The resolution of the corresponding images can be related to the wavelength of the 

inspecting mode. 

1. Introduction 

The carbon fiber reinforced polymer (CFRP) plates and honeycomb composite sandwich structures 

(HCSS) have been largely employed in the aerospace industry since the 1950s. Their excellent 

mechanical properties, lightweight, and corrosion resistance make them very attractive for the use in the 

severe operational environment [1]. However, defects, such as woven composite plies delamination or 

core-sheet debonding, can appear due to the impact forces or thermo-mechanical aging so that stiffness 

properties may degrade [1-3]. This kind of defects often occurs within the structure. While being barely 

detectable on the composite surface to the naked eye, they can expand internally to large volumes up to 

the structure fails [4]. Moreover, such composite structures are often hardly accessible to maintenance 

teams performing the regular nondestructive examination. Manufacturers of composite structures 

introduce a safety margin design to resist accidental impacts and structure aging. This leads to the 

additional weight of the structure and to consequent economic shortcomings [5].  

Aforementioned reasons became a driving force for the development of structural health monitoring 

system (SHM). It envisages accurate location and quantification of damages in composite structures 
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while being robust to environmental effects, such as temperature and humidity variations, accumulated 

strains, etc. SHM system can potentially replace scheduled maintenance, reduce safety margin design, 

and hence introduce significant economic benefits.   

Guided elastic waves (GW) have been proven effective for inspecting industrial structure as they can 

propagate over large distances while being highly sensitive to structural inhomogeneities. Among other 

SHM methods, GWs can be easily actuated and sensed by a set of piezo-electric transducers attached to 

the surface while exciting the whole structure cross-section [2]. Numerous studies have been conducted 

on GWs propagation phenomenon. Theoretical and experimental works report on the relative simplicity 

of the GWs propagation in isotropic materials, whereas there is an additional complexity for composites 

structures. More specifically, there are effects of steering angle, energy focusing and even presence of 

energy band gaps for HCSS. Nevertheless, GWs ability for detecting cracks, delaminations, disbonding, 

and passing-through defects has been shown [2, 3].  

Various GW imaging (GWI) algorithms, such as Delay-And-Sum, MVDR imaging, RAPID, have 

been developed [6-8]. While being effective for imaging defects in isotropic structures, their detection 

ability decreases when applied to anisotropic structures. On the other hand, defect imaging algorithm 

Excitelet turns into advantage the dispersive behavior of the structure, but requires a comprehensive 

understanding of GWs propagation and transducers dynamics [9]. 

This paper is organized as follows. Firstly, a brief review of GWI algorithms is presented. Then, our 

approach for simulating GWs propagation in CFRP plates and HCSS is described. GWI algorithm, 

namely Excitelet, is then used to compute images representing integrity of the structure. The results are 

illustrated and discussed, conclusions are drawn. 

 

2. Defect imaging methodology 

Guided Wave Imaging (GWI) is one of the most effective 

approaches to evaluate ‘healthiness’ of a structure. It 

employs an imaging algorithm in order to construct a 

cartography, where each pixel is mapped to the 

corresponding elementary portion of the structure [8]. 

Flaw presence, localization, and severity are deduced by 

analyzing the spatial intensity distribution on the 

cartography. 

A schematic of the GWI process is represented in 

Figure 1. The grid of pixels discretizes the region of 

interest (ROI) of the studied specimen. In the current 

study, we use the demanding baseline algorithm Excitelet, 

which attributes a global Damage Index (DI) value to each 

pixel. Exploiting GWs propagation specificities, it 

processes residual signals measured by each pair of 

piezoelectric transducers (one emitter, one receiver) 

distributed over the structure [8, 9]. It is also assumed that 

the wavelength of excited GWs is of the same order of 

magnitude as the defect size in order to observe GWs 

scattering. Therefore, the residual signal, obtained as the 

difference between pristine and damaged states of the 

structure, contains echoes arising from the defect. 

The global DI value (1) is obtained as the sum of local  𝐷𝐼𝑗 (2) values computed for each PZT jth pair 

[9]. The latter is expressed as the modulus of a correlation coefficient between the experimental residual 

signal and the theoretical signal propagated from the emitter to the point of interest and from that point 

to the receiver.  

                   𝐷𝐼(𝑥𝑖 , 𝑦𝑖) =  ∑ 𝐷𝐼𝑗(𝑥𝑖, 𝑦𝑖)𝑗                                        (1) 

 
Figure 1: Illustration of the GWI 

methodology for defect cartography 

computation. GWs are excited and 

measured by the sparse set of the PZTs 

distributed over the structure. 
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𝐷𝐼𝑗(𝑥𝑖, 𝑦𝑖) =  ||
∫ 𝑆𝑒𝑚𝑖𝑡𝑗→𝑟𝑒𝑐𝑗

𝑒𝑥𝑝 (𝑡) 𝑆𝑒𝑚𝑖𝑡𝑗→𝑟𝑒𝑐𝑗

𝑡ℎ𝑒𝑜𝑟 (𝑡)
𝑡𝑚𝑎𝑥

𝑡0
𝑑𝑡

√∫ (𝑆𝑒𝑚𝑖𝑡𝑗→𝑟𝑒𝑐𝑗

𝑒𝑥𝑝 (𝑡))

2

𝑑𝑡 
𝑡𝑚𝑎𝑥

𝑡0
∫ (𝑆𝑒𝑚𝑖𝑡𝑗→𝑟𝑒𝑐𝑗

𝑡ℎ𝑒𝑜𝑟 (𝑡))
2

𝑑𝑡
𝑡𝑚𝑎𝑥

𝑡0
 

||,          (2) 

where 𝐷𝐼(𝑥𝑖, 𝑦𝑖) denotes damage index value for a (𝑥𝑖, 𝑦𝑖) pixel, 𝑆𝑒𝑚𝑖𝑡𝑗→𝑟𝑒𝑐𝑗

𝑒𝑥𝑝 (𝑡) denotes the measured 

residual signal, and 𝑆𝑒𝑚𝑖𝑡𝑗→𝑟𝑒𝑐𝑗

𝑡ℎ𝑒𝑜𝑟 (𝑡) denotes the theoretical signal for the corresponding PZT pair. 

The theoretical signal can be calculated as a convolution of an excitation function with the Green’s 

function (3) that describes GWs propagation in the structure of interest:  
 

𝑆𝑒𝑚𝑖𝑡→𝑟𝑒𝑐
𝑡ℎ𝑒𝑜𝑟 (𝑟, 𝑡) = 𝑢(𝑡) ∗ 𝐺𝑒𝑚𝑖𝑡→𝑜𝑏𝑠(𝐫𝟏, 𝑡) ∗ 𝐺𝑜𝑏𝑠→𝑟𝑒𝑐(𝐫𝟐, 𝑡),                     (3) 

 

where 𝑢(𝑡) denotes the excitation signal, 𝐺(𝐫, 𝑡) is the Green’s function, 𝐫𝟏 and 𝐫𝟐 denote the position 

of the observation point relatively to the emitter and the position of the receiver relatively to the 

observation point, respectively. 

3. Guided Waves simulation in CFRP and HCSS 

Poisson and Kirchhoff’s theories accurately describe extensional and flexural motions in the isotropic 

plate at low frequency [12]. For CFRP and HCSS plates, more sophisticated modelling tools are 

required. They must account for the angular dependency of phase and group velocities and energy 

focusing factor (i.e. Maris’ factor) caused by the anisotropy of the structure. Here, we apply the modal 

expansion method coupled with the semi-analytical finite element (SAFE) modelling. This method 

allows linear decomposition of the 3D wavefield on propagating modes so that each mode can be 

independently used for defect imaging in the structure [13-17]. 

 

3.1 Modelling framework for layered composite structure 

Assuming linearity, wave fields in the structure can be decomposed over guided modes (i.e. modal 

decomposition). The SAFE method is employed to compute modes in layered composite plates. This 

method imposes waveguide discretization in the transverse direction 𝑥3, while the GWs propagation in 

the direction 𝑥1 is expressed analytically, see Figure 2.  

 

 
Figure 2: Schematic representation of layered waveguide. The GW propagates in x1 direction while the 

waveguide discretized in x3 direction. 

 

More specifically, the two-dimensional Fourier transform according to the 𝑥1 and 𝑡 variables is applied 

to the equilibrium equation, while the 𝑥3 direction is discretized following the usual Finite Element (FE) 

method. It results in the following matrix eigenproblem (4) [13]: 

 

                                                 [𝑘2𝐴2 + 𝑖𝑘𝐴1 + 𝐴0 − 𝜔2𝑀]𝑈 = 0,                                     (4) 

 

where 𝐴0, 𝐴1, 𝐴2  are the decomposition of the global stiffness matrix in power of 𝑘, 𝑀 is the mass 

matrix, and 𝑈 is the nodal displacement vector. These matrices are constructed from elementary 

matrices, which are computed for each element during the FE discretization procedure. Owing to the 

introduction of an auxiliary variable, the quadratic eigenproblem (4) is transformed into the linear 

eigenproblem (5), which can be solved by standard solvers for sparse matrices: 



18th annual Anglo-French Physical Acoustics Conference (AFPAC)

IOP Conf. Series: Journal of Physics: Conf. Series 1184 (2019) 012001

IOP Publishing

doi:10.1088/1742-6596/1184/1/012001

4

 

 

 

 

 

 

 

                                                                         (𝐴 − 𝑘𝐵)𝑄 = 0                                             (5) 

𝑄 =  (
𝑈

𝑘𝑈
) 

where 

                                    𝐴 = (
0 𝐼

𝜔2𝑀 − 𝐴0 −𝑖𝐴1
)                   𝐵 = (

𝐼 0
0 𝐴2

). 

 

Eigenvalues and eigenvectors obtained by solving equation (5) correspond to the wavenumbers and the 

modal displacements of guided modes. Solutions are obtained for both directions of propagation 𝑥1 

and – 𝑥1, so the modes corresponding to the positive direction of propagation 𝑥1 have to be extracted. 

Further filtering has to be applied to eliminate evanescent modes, for which the wavenumber is purely 

imaginary (i.e. 𝑟𝑒𝑎𝑙(𝑘) = 0 𝑟𝑎𝑑/𝑚𝑚), and rapidly decaying ones, for which the wavenumber has a 

significant imaginary part (i.e. 𝑖𝑚𝑎𝑔(𝑘) > 1𝑒−3 𝑟𝑎𝑑/𝑚𝑚).  

Once modes in the current waveguide are known, the Poynting vector (6), and consequently 2D 

Excitability matrix (7) for one given mode 𝑚 can be computed from corresponding eigenvalues and 

eigenvectors for the angle 𝜓𝑚 [16]. 

 

𝑃𝑚() =
𝜔

2
∗  𝑖𝑚𝑎𝑔 (𝑈𝑚

∗()(𝑖𝑘𝐴2 + 𝐴4)𝑈𝑚())                         (6) 

𝐸𝑚
2𝐷() =

𝑖𝜔

4𝑃𝑚
𝑈𝑚() 𝑈𝑚

∗().                                                        (7) 

 

It has been shown [17] that far-field asymptotic expression of the 3D Green’s function of the composite 

plate can be written in terms of the modal expansion. It allows reconstructing the 3D theoretical signal 

using 2D modal solutions computed by SAFE. The relation between 2D and 3D formulations of the 

guided waves is the following: 

 

                                    𝐸𝑚
3𝐷(𝛼, 𝑧) = 𝐵𝑚(𝜓𝑚)𝐴−1(𝜓𝑚)𝐸𝑚

2𝐷
(𝜓𝑚)𝐴(𝜓𝑚),                          (8) 

 

where 𝐵𝑚(𝜓𝑚) is the propagation factor of the mode 𝑚 in the direction 𝜓𝑚, 𝐴(𝜓𝑚) is a rotation matrix, 

and 𝜓𝑚 is the steering angle of the guided mode 𝑚. Equation (8) shows that the far-field solution for 

the mode 𝑚 in the 𝛼 direction is related to the appropriate 2D modal solution for the same mode in the 

𝜓𝑚 direction. The 3D Green’s function for the structure of interest can be expressed as follows: 

 

                                    𝐺3𝐷(𝑟, 𝛼, 𝑧) =
1

√𝑟
∑ 𝐸𝑚

3𝐷(𝛼, 𝑧)𝑒𝑖𝑟𝑘𝑚(𝜓𝑚)𝐶𝑜𝑠(𝜓𝑚−𝛼)
𝑚                        (9) 

 

In order to compute each modal component of the 3D Green’s function, it is necessary to track each 

mode for the frequency range of interest. A useful property of guided modes is that they form an 

orthogonal basis of the solutions in the waveguide section for a given frequency (4). An efficient way 

to check this property is to use the following orthogonality matrix [18]: 

 

                                               𝑂𝑚 = (
𝐾1 − 𝜔2𝑀 0

0 −𝐾3
)                                                     (10) 

 

which represents a scalar product on a specific basis. Hence, the modal displacements obtained for the 

formulation (4) have to be expressed on this specific basis. The basis change is done through the unitary 

transformation matrix T (11). More specifically, the matrix T is eye-like, where all off-diagonal elements 

are equal to zero. The diagonal elements are equal to one, except for the elements corresponding to the 

particle displacements in 𝑥1the direction that are equal to the imaginary unit 𝑖. 
�̌� =  𝑇𝑄                                                    (11) 
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Orthogonality relation states that for frequency ω all existing modes are orthogonal, which yields (12): 

 

                                                           �̌�𝑛
∗ (ω)𝑂𝑚(ω)�̌�𝑚(ω) = 0                                          (12) 

 

Consequently, it can be assumed that orthogonality relation still approximately holds for the solutions 

that are quite close in the frequency domain, which gives: 

 

                                                      {
�̌�𝑛

∗ (ω)𝑂𝑚(ω)�̌�𝑚(ω + ∆ω) ≈ 0

�̌�𝑚
∗ (ω)𝑂𝑚(ω)�̌�𝑚(ω + ∆ω) ≠ 0

                                   (13) 

 

Orthogonality terms have to be calculated between the current eigenvector �̌�𝑚(ω) that corresponds 

to the mode 𝑚 at frequency ω and all other existing solutions for adjacent frequency �̌�𝑚(ω + ∆ω). The 

correct mode continuation is achieved by maximization of the orthogonality term while performing 

mode sorting procedure. More details on SAFE formulation used herein can be found in Refs. [13-15].  

 

3.2 Honeycomb core homogenization 

The honeycomb sandwich structure consists of the aluminum honeycomb core bonded with adhesives 

to the composite skins (see 

 
Figure 3). Such a complex structure cannot be straightforwardly modelled by SAFE formulation. To 

do this, the complex periodic structure of the HCSS core is homogenized and replaced in the SAFE 

computation by an equivalent orthotropic layer having the same thickness as that of the core. Such a 

procedure allows considering an HCSS structure as a multi-layered composite plate, and hence to 

compute modes by SAFE. It is worth noting that the accuracy of the computed results is only ensured 

at low frequencies, where the wavelength of the propagating mode is larger than honeycomb cell size 

[16]. 

(a) (b) 
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Figure 3:  (a) Schematic representation of a honeycomb sandwich structure. (b) Geometric parameters 

of the unit honeycomb cell. The side lengths of the cell are defined by 𝑎 and 𝑏, while the single wall 

and double wall thicknesses are defined by 𝑡 and 𝑡′, respectively. 

 

The Gibson and Ashby’s model is considered as a reference work for the honeycomb core 

homogenization [17, 18]. It permits computing nine elastic effective parameters (Young moduli, shear 

moduli and Poisson ratios) of an equivalent orthotropic plate. This analytical model requires the 

geometric parameters of the honeycomb cell, shown in 

 
Figure 3b, and elastic properties of the constituting material to be known. The model ignores vertices 

at the intersection of horizontal and inclined walls of the cell and neglects the double thickness of the 

walls in the 𝑋 direction. It does not predict well measurements for increasing value of the relative density 

of the core.  

 

(a) (b) 

(a) (b) 
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Figure 4: Wavenumber diagrams of A0 mode at 5 kHz, 15 kHz and 30 kHz. At 5 kHz the propagation 

is almost omnidirectional, though the anisotropy of GWs propagation increases with the frequency. 

 

In their recent work, Malek and Gibson overcame this problem by considering honeycomb cell 

vertices and by introducing an effective bending length of cell walls, which resulted in a more accurate 

analytical model [18]. Hence, this model has been agreed for this study. It has been shown that the 

effective shear moduli 𝐺𝑥𝑧 and 𝐺𝑦𝑧 of the core and the Young modulus of the skins have the highest 

impact on the HCSS dynamics.  

 

4. Imaging results 

The orthotropic CFRP plate (1000 mm x 600 mm x 5.775 mm) and the HCSS (1000 mm x 600 mm x 

20.7 mm) are selected for the study. Each woven-ply CFRP is oriented in the 0° direction. The HCSS 

top skin consists of two CFRP and one E-glass plies, while the bottom skin is made of four CFRP and 

one E-glass plies. Corresponding elastic parameters are tabulated in the table: 
 

Table 1: Elastic parameters of the orthotropic CFRP, E-glass plies, and effective elastic parameters the 

of honeycomb core obtained via a homogenization model. 
  

𝐄𝟏 = 𝐄𝟐 

(𝐌𝐏𝐚) 

𝐄𝟑 

(𝐌𝐏𝐚) 

𝛎𝟏𝟐 𝛎𝟏𝟑 = 𝛎𝟐𝟑 𝐆𝟏𝟐 

(𝐌𝐏𝐚) 

𝐆𝟏𝟑 = 𝐆𝟐𝟑 

(𝑴𝑷𝒂) 

𝝆 

(𝐊𝐠/𝐦𝟑) 

CFRP 65700 4500 0.03 0.3 5100 2500 1760 

Core 0.4 1131.3 0.8 0.00013 0.1 207.2 67 

E-glass 72400 0.255 28800 2100 

 

The model presented above has been used to build a dictionary of the 3D Green’s function for both the 

woven-ply CFRP plate and the HCSS. Polar plots of the wavenumber, phase and group velocities 

computed at 5 kHz, 15 kHz and 30 kHz for HCSS are shown in  

Figure 4. Note that the variation of the wavenumber is small, so the considered HCSS structure 

exhibits a quasi-isotropic behavior in the plate plane. Both structures are similarly instrumented with 

piezo-electric transducers for GWs actuating and sensing. The presence of a defect is simulated by an 

attached mass of 200 g, which is coupled to the surface using coupling gel. The woven-ply CFRP plate 

with eight attached PZT 13 mm in diameter forming a octagon 200 mm in diameter is first used in the 

experiments, and results are shown in Figure 5a. The Hanning modulated two cycles (at 40 kHz) burst 

is selected for the excitation of emitters function for the woven-ply CFRP plate inspection.  

A similar set-up is then used to perform guided waves imaging in the HCSS. Six PZT 13 mm in 

diameter are distributed over the surface, forming a hexagon 300 mm in diameter (see the schematic 

shown in Figure 6). The excitation function contains three Hanning modulated cycles set to 15 kHz. 

GWs are measured following the round-robin process for both pristine and damaged states. For example, 

in Figure 6 the pristine and damaged signals and corresponding residual signals are shown for the PZT1-

5 pair.  
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Our signal acquisition system suffers from electromagnetic coupling in the multiplexer (the part of 

the time series appearing before the red dashed line on the top image to the left), which is almost constant 

during the acquisition process. Once all the residual signals have been collected, the defect imaging is 

performed by means of Excitelet algorithm in the single-mode regime (𝐴0 mode being selected). The 

defect imaging result in the orthotropic CFRP plate is presented in Figure 5b, while Figure 7b shows the 

image obtained in the HCSS.  

The spatial intensity distribution of DI on the cartography is directly related to the wavelength of the 

propagating guided mode. In the present study, the HCSS was inspected by 𝐴0 mode at 15 𝑘𝐻𝑧 with the 

Figure 5: (a) 8 PZT sparse array serves for GWs actuation and sensing. (b) Virtual defect imaging on 

woven-ply CFRP in order to validate the imaging algorithm. 

Figure 6: Schematic representation of signal processing by defect imaging algorithm. Signals for the 

pristine and damage states, and corresponding residual signal are shown in the left column for the GWs 

propagating from the 1st to the 5th transducers. 

1 

2 

3 

4 

5 

6 

(b) (a) 
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wavelength 𝜆𝐴0
𝐻𝐶𝑆𝑆 = 63 𝑚𝑚, while the woven-ply CFRP plate was monitored at 40 kHz with the same 

mode and the corresponding wavelength 𝜆𝐴0
𝐶𝐹𝑅𝑃 = 32 𝑚𝑚. 

 

 

 

 

 

 

 

 

 

 

Doubling the wavelength leads to the decrease of the resolution capability of the defect imaging 

algorithm. To achieve higher resolution, it is thus necessary to inspect structures in a higher frequency 

range to decrease the wavelength of the mode chosen for imaging. Considering the imaging algorithm 

used in our study, this implies that the corresponding 3D Green’s function must be predicted with high 

accuracy in this frequency range.  

However, the honeycomb homogenization model, which substitutes a honeycomb core with an 

equivalent orthotropic plate, is no longer valid at frequencies where the wavelength is comparable to the 

size of the honeycomb cell. In this case, guided modes become sensitive to the inner periodicity of the 

structure and propagate in HCSS as Bloch’s waves in phononic crystals [19].  

 

5. Conclusions 

This paper reports on the guided wave defect imaging in woven-ply CFRP plate and HCSS. Defect 

image is obtained by means of a correlation-based algorithm, the so-called Excitelet. It requires to obtain 

the residual signal from the experimental and predicted signals of the inspected structure. While the first 

one is measured by the sparse set of piezo-electric transducers, the latter has to be modelled taking into 

account the dispersive nature of guided waves in plate-like structures. In the current work, we used the 

modal expansion method coupled with the 2D SAFE method to compute the 3D wavefield. Analytical 

homogenization for the honeycomb core was applied to replace the periodic core for an equivalent 

orthotropic layer. This allows us to compute modes in the HCSS using SAFE by treating it as a multi-

layered structure.  

By comparing results for defect cartographies in woven-ply CFRP plate and in HCSS, it can be 

deduced that image resolution highly depends on the excited wavelength. In the CFRP plate, the 

wavelength at the inspected frequency is about 32 mm, while that in the HCSS is about 63 mm. Hence, 

the image resolution in case of CFRP plate is higher than in case of HCSS. Unfortunately, analytical 

homogenization model is only valid in the low-frequency regime, and the quality of the elastodynamic 

predictions rapidly decreases while the frequency increases.  

For further studies, we will focus on the use of finite element modelling to compute effective elastic 

parameters in order to reach higher accuracy in defect localization. We will also focus on experimental 

approaches to measure the 3D Green’s function for the HCSS. Multi-mode defect imaging with Excitelet 

algorithm for woven-ply CFRP plates and HCSS is also in the scope of interest for further studies. 
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