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Abstract. In this paper we address the issue of a creeping wave by investigating a two-
dimensional configuration which involves a surface-braking crack in a traction free planar back-
wall. We assume that this back-wall is irradiated by a shear Gaussian beam which is incident
at a critical angle and hits the wall away from the crack edge. We show that the generated
wave - known in the engineering literature as ”creeping”, because it propagates near the surface -
consists of non-geometrical waves, the longitudinal and transverse components of the head wave
and a longitudinal Goodier-Bishop type wave whose amplitude grows linearly with the distance
to its propagation path. The ”creeping” wave interacts with the crack edge but the resulting
field cannot be simulated using the Kirchhoff Approximation, because this does not embrace the
higher order effects. We show that the diffracted field can be simulated using a modification of the
Uniform Geometrical Theory of Diffraction which involves a relatively simple limiting procedure.

1. Introduction
Interaction of an ultrasonic beam with a surface-breaking planar faces crack is a well known
problem in NDE (Non-Destructive Evaluation). Two-dimensional configurations in which a beam
irradiates the whole crack can be modelled using the UGDT as developed for diffraction by half-
planes and wedges [1], [2], [3]. In this paper we study an even more challenging problem of scatter
of a high frequency Gaussian beam by a crack whose edge lies outside the beam - see Fig. 1.
In the engineering literature this situation is usually referred to as interaction between a crack
and ”creeping wave” that the beam generates. There are several high-frequency approximations
which offer effective computational algorithms for many scattering problems. The simplest and
most versatile among those is the Kirchhoff Approximation which is based on the Geometrical
Elastodynamics. However the Geometrical Elastodynamics is correct only to the leading order
and cannot be used to describe the next order effects. For this reason the Kirchhoff approximation
fails when the incident transversal beam hits the inspection surface at an angle close to critical. In
this paper we show how to conduct efficient simulations of the above configuration using a simple
modification of another well-known high-frequency approximation, the Geometrical Theory of
Diffraction (GTD). First we develop approximations to the field generated by the incident beam
near the wall - the ”creeping” wave - because it is only this field that interacts with the crack
edge. The paper is organised as follows: In Section 2 we introduce the problem, first assuming
the incident field to be a cylindrical wave and then generalising that to a Gaussian beam, which
is a good approximation to a realistic transducer beam. In Section 3, we use a near boundary
approximation to show that the scattered ”creeping” wave can be described as a combination of
the T (transverse) portion of the head wave, its L (longitudinal) portion propagating along the
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surface and a somewhat unusual L wave whose amplitude grows proportionally to the distance
to the path of propagation The latter is known in the literature as a Goodier-Bishop wave [4]. In
Section 4 we justify a limiting procedure that allows us to use a canonical GTD problem of plane
wave diffraction by a wedge to simulate wedge diffraction of the ”creeping” wave. In Section 5 we
present numerical results and in Section 6, discussion of some controversial issues. We finish by
describing what has been achieved and issues that require further consideration.

Figure 1. A back-wall crack (solid black line) irradiated by a Gaussian beam.

2. The problem statement
We consider an isotropic and homogeneous elastic medium occupying a half-space and assume a
two-dimensional configuration, with the associated Cartesian basis {e1, e2} such that e1 runs along
the boundary, e2 is its inner normal and the third axis is implied but omitted everywhere below.
Therefore all points x referred to below lie in the same plane and are characterised only by two
coordinates x1 and x2. If the circular frequency is ω, then whatever time harmonic displacement
field uexp(iωt) is excited inside this medium, its amplitude u = u(x) can be written in terms of
the longitudinal potential φ = φ(x) and transverse potential ψ = ψ(x),

u = ∇φ+ ∇⊥ψ, (1)

where the nabla operators are ∇ = (∂1, ∂2), ∇⊥ = (∂2,−∂1) and ∂i is a symbol of partial
differentiation with respect to the spatial coordinate xi, i = 1, 2. Everywhere below we use
the following nomenclature: a field is designated by superscript creep, GB, H, inc, ref, scat or tot to
indicate whether it is creeping, Goodier-Bishop type, head, incident, reflected, scattered or total
wave, respectively. Note that the words ”scattered field” are used to describe a combination of
diffracted and reflected fields. One section below introduces a concept of a remainder field and
utilises the subscript rem explained there. The accompanying subscript describes the nature of the
incidence cyl, plane and Gauss for cylindrical wave, plane wave and Gaussian beam, respectively. In
addition, when describing displacement fields this subscript also includes letters L, T and C for
longitudinal, transverse and creeping waves, respectively. In the absence of body forces, the total
potentials satisfy the following Helmholtz equations

∆φtot + k2
Lφ

tot = 0, ∆ψtot + k2
Tψ

tot = 0, (2)

where the Laplacian ∆ = ∂2
1+∂2

2 , kα = ω/cα, α = L, T , with kL,kT ,cL and cT - the wave numbers
and speeds of the longitudinal (L) and transverse (T ) waves, respectively. Let σtot = {σtot

ij } be
the amplitude of the related stress tensor,

σtot
ij (u) = λδij∇ · utot + µ

(
utot

i,j + utot
j,i

)
, i, j = 1, 2, (3)
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where λ and µ are the Lamé constants, and the comma before an index denotes differentiation
with respect to the corresponding spatial coordinate, so that e.g. ui,j = ∂jui. Then the traction
free boundary condition can be written as

σtot
12 |x2=0 = σtot

22 |x2=0 = 0. (4)

We impose the usual radiation condition at infinity and assume that a line source −Ck−2
T δ(x1 −

a1)δ(x2 − a2) running through a point a = (a1, a2) excites transverse potential ψinc
cyl(x). It is well

known that the above incident potential is proportional to the outward propagating cylindrical
function, Hankel function of the first kind,

ψinc
cyl(x) =

iC

4k2
T

H
(1)
0 (kT r) , (5)

where r =
√

(x1 − a1)2 + (x2 − a2)2 is the distance from observation point to excitation source.
Let us now present the coordinates a1 and a2 in the form

a1 = a cosϕinc, a2 = a sinϕinc, (6)

where ϕ is the polar angle associated with the Cartesian coordinates (x1, x2). Let us allow
the distance a from the source to the coordinate origin to be complex, with Im a ≥ 0.
Let us further introduce an auxiliary Cartesian coordinate system (x′1, x

′
2) with the origin at

(Re a cosϕinc,Re a sinϕinc) and the axis x′1 running in the direction of vector (cosϕinc, sinϕinc).
Then the incident cylindrical wave turns into a Gaussian beam,

ψinc
Gauss(x) =

iC

4k2
T

H
(1)
0 (kT r) ≈

iC

4k2
T

√
2

iπkT r
e
kT

[
Im a−

(x′2)2

2ω2

]

e
ikT

[
x′

1+
(x′2)2

2ρ

]

, |kT r| ≫ 1, (7)

where the beam radius of curvature ̺ and beam spot size w are given, respectively, by

̺ = x′1

[
1 +

(
Im a

x′1

)2
]
, w2 = Im a

[
1 +

(
x′1

Ima

)2
]
. (8)

Below we impose the condition

C = e−Im akT (9)

and assume that the incident field is a Gaussian beam. We choose this type of incidence, because
it is a good approximation to a realistic transducer beam and because it allows for an analytical
treatment. To simplify our calculations, we introduce the double Fourier transform

f̃(ξ) =

∫ +∞

−∞

∫ +∞

−∞

fe−i(ξ1x1+ξ2x2)dx1dx2, (10)

where ξ = (ξ1, ξ2) is an arbitrary wave vector, and also the single Fourier transform in x1

f̂(ξ1, x2) =

∫ +∞

−∞

fe−iξ1x1dx1. (11)

Introducing the line source into the right hand side of the second equation in (2) and applying to

it the double Fourier transform, ψ̃inc
cyl(ξ) satisfies the following algebraic equation:

(k2
T − ξ21 − ξ22)ψ̃(ξ) = −Ck−2

T e−iξ1a1e−iξ2a2 (12)
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and therefore its inverse Fourier transform in ξ2 is

ψ̂inc
cyl(ξ1, x2) =

Ce−iξ1a1

2πk2
T

∫ +∞

−∞

eiξ2(x2−a2)

ξ22 − η2
T

dξ2. (13)

Above and below we use the notation

ηα =
√
k2

α − ξ21 , α = L, T. (14)

As explained in the Introduction, we are interested only in the total field near the traction-free
boundary. Imposing the corresponding condition, the integral in (13) can be evaluated on the
basis of the Cauchy Residue Theorem, provided the contour of integration is distorted to pass the
pole ξ2 = ηT from below and ξ2 = −ηT from above. It can be shown that provided Im a2 = 0 or
the Gaussian beam is not grazing the back-wall, under the source (Re a1,Re a2)

ψ̂inc
Gauss(ξ1, x2) =

iC

2ηT k2
T

e−i[ξ1a1+ηT (x2−a2)], x2 < Re a2. (15)

3. Interaction of the shear Gaussian beam with the traction-free planar surface
The Helmholtz equations (1) are satisfied, respectively, by both the total potentials φtot

T (Gauss) =

φscat
T (Gauss), ψ

tot
T (Gauss) = ψinc

Gauss+ψ
scat
T (Gauss) and incident potential ψinc

Gauss. Therefore they are satisfied

by the potential φscat
T (Gauss) which is scattered by the medium boundary. Applying the Fourier

transform in x1 to (1) we obtain ordinary differential equations of the second order. This means
that the Fourier transforms in x1 of the scattered (outgoing) potentials that satisfy the radiation
condition at infinity have the form

φ̂scat
T (Gauss)(ξ1, x2) = RTLψ̂

inc
Gauss(ξ1, 0)e

iηLx2 , ψ̂scat
T (Gauss)(ξ1, x2) = RTT ψ̂

inc
Gauss(ξ1, 0)e

iηT x2 . (16)

Substituting (16) into the boundary condition (4) which is first re-formulated for the scattered
potentials and is then Fourier transformed in x1 gives us the reflection coefficients RTL and RTT ,

RTL = −2η̄2
T ηT ξ1
R(ξ1)

, RTT = −R̄(ξ1)

R(ξ1)
, (17)

where η̄T =
√
k2

T /2 − ξ21 and the Rayleigh function R and its conjugate R̄ are given by

R(ξ1) = η̄4
T + ξ21ηLηT , R̄(ξ1) = η̄4

T − ξ21ηLηT . (18)

The expressions for scattered elastodynamic potentials φ̂scat
T and ψ̂scat

T which are valid near the
traction-free planar surface can be found by applying the inverse Fourier transform in ξ1 to (15)
and (16), respectively. We perform this operation in the next subsections.

3.1. The scattered T component of the head wave - a near surface approximation

It is well known that a ray incident on the plane at a critical angle gives rise to a head wave (see
[5] and references therein). The T portion of the head wave can be described by a contribution
to the T component of the inverse Fourier transform in ξ1 of a branch point in ηL. Let us start
this calculation by rewriting RTT as

RTT = − iC

2k2
T ηT

(
η̄8

T + ξ41η
2
Lη

2
T

η̄8
T − ξ41η

2
Lη

2
T

− ηL
2ξ21 η̄

4
T ηT

η̄8
T − ξ41η

2
Lη

2
T

)
ei(−ξ1a1+ηT a2). (19)
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Only the second term contains a branch point at ηL = 0. The corresponding part of the inverse
Fourier transform is

ψH
T (Gauss) =

iC

k2
T

∫
∞

−∞

ηL
ξ21 η̄

4
T

η̄8
T − ξ41η

2
Lη

2
T

ei[ξ1(x1−a1)+ηT (a2+x2)]dξ1. (20)

Provided the distance to the boundary is small, kTx2 ≈ 0, this potential can be shown to be

ψH
T (Gauss) =

Ec

(kLd1)3/2
ψ0, ψ0 =

4iγei(kLx1+kT sin ϕheadx2)

kT (2γ2 − 1)
, (21)

where the critical angle ϕhead = cos−1 γ, the distance d1 is defined graphically in Fig. 2 and the
constant Ec is given by

Ec =

√
2πiCγ3

kT (2γ2 − 1)
ei(−kLa1+kT

√
1−γ2a2). (22)

O

O∗

(x1, x2)

θ

ρ

ϕheadP1 P2

P3

Figure 2. Geometry associated with the scattered T wave. O = (Re a1,Re a2) - the point source,
O∗ = (Re a1,−Re a2) the imaginary source, (x1, x2) - the observation point. d0 = O∗P3, d1 =
P1P2.

3.2. The scattered L waves - a near surface approximation

Combining (16) and (17) and applying the inverse Fourier transform in ξ1, the scattered
longitudinal potential is

φscat
T (Gauss) = − iC

k2
T

∫
∞

−∞

ξ1η̄
2
T

R(ξ1)
ei[ξ1(x1−a1)+ηT a2+ηLx2]dξ1. (23)

Let us assume that the observation point lies far from the point where the axis of the incident
Gaussian beam hits the boundary kLd̃≫ 1, where the distance d̃ is defined graphically in Fig. 3).
It can be shown that in this approximation, we have

φcreep
T (Gauss) =

√
2πiCγ2eiΦ(ϑ̃)

k2
T

[
A(ϑ̃)

(kLd̃)1/2
− iA′′(ϑ̃)

2(kLd̃)3/2

]
+O

(
(kLd̃)

−5/2
)
, (24)

where

A(ϑ̃) =
2ϑ̃

1 − 2γ2
+O(ϑ̃2), A′′(ϑ̃) = −16γ3

√
1 − γ2

(1 − 2γ2)3
+O(ϑ̃) (25)
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and the angle ϑ̃ is defined graphically in Fig. 3. Then near the boundary d̃ϑ̃ ≈ x2 and we obtain

φcreep
T (Gauss) =

Ec

(kLd̃)3/2
φ0, φ0 = −

[
8iγ3

√
1 − γ2

kL(1 − 2γ2)2
+ 2x2

]
eikLx1, (26)

where the coefficient Ec is defined by (22). It follows that the longitudinal component is a sum
of two waves, one ordinary and another - the Goodier-Bishop type wave whose amplitude grows
linearly with the distance to its propagation path [4].

O

Õ

(x1, x2)

θ̃d̃

Figure 3. Geometry associated with the scattered L wave. O = (Re a1,Re a2) - the point source,

Õ = (Re ã1,Re ã2) - an imaginary L source. Dashed line - locus of imaginary sources for the

observation angles ϑ̃ that vary between 0 to π/2.

4. Interaction of the ”creeping” wave with a planar faces crack
Let us now assume that the back-wall contains an infinite planar surface-breaking crack. Formulae
(21) and (26) show that near the boundary the field generated by an incident shear Gaussian beam
and known as the ”creeping” wave consists of one T wave and two L waves. If this combination
reaches a crack before its amplitude becomes negligible the interference between resulting reflected
and diffracted waves creates patches of significant amplitude. In this paper we concentrate on
diffraction of the ”creeping” wave and in order to calculate its amplitude we first investigate an
auxiliary problem of diffraction of a plane L wave.

Let the incident L wave

uinc
L(plane) =

1

ikL
∇eikL(x1 cos ϑL−x2 sinϑL), (27)

irradiate the crack and let the angle it forms with the face (x2 = 0+, x1 < 0) be near grazing,
ϑL ≈ 0. In the second quadrant (x1 ≤ 0, x2 ≥ 0) the resulting total field can be written as

utot
L(plane) = uinc

L(plane) + uref
L(plane) + urem

L(plane). (28)

where uref
L(plane) is the sum of the first reflected L and T waves and urem(aux) is the remainder. The

reflected term is

uref
L(plane) =

RLL

ikL
∇eikL(x1 cos ϑL+x2 sinϑL) +

RLT

ikT
∇⊥eikT (x1 cos ϑT +x2 sinϑT ), (29)

where RLL and RLT are the respective reflection coefficients [8] and the angle ϑT is determined by
the Snell’s law, kL cos ϑL = kT cos ϑT . For ϑL ≪ 1 these reflection coefficients, can be expanded
in ϑL ≪ 1 to give

RLL = −1 +
8γ3

√
1 − γ2

(1 − 2γ2)2
ϑL +O(ϑ2

L), RLT =
4γ

(1 − 2γ2)
ϑL +O(ϑ2

L). (30)
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As ϑL → 0, RLL → −1 and RLT → 0 and the sum of the first two terms in (28) - which in the
grazing limit becomes the field incident on the crack - vanishes,

lim
ϑL→0

(
uinc

L(plane) + uref
L(plane)

)
= 0. (31)

Since the wedge diffraction problem has an unique solution this implies

lim
ϑL→0

urem
L(plane) = 0. (32)

It follows that as ϑL → 0 diffraction coefficients DLβ(ϑL;ϑ), β = L, T vanish too, that is, we have

lim
ϑL→0

DLβ(ϑL;ϑ) = 0, β = L, T. (33)

for all observation angles ϑ.
To proceed, we note that there is a simple relation between the normalised creeping waves

described in the previous section

uinc
0 ≡ ∇φ0 + ∇⊥ψ0 (34)

and the first two terms in (28):

uinc
0 =

∂
(
uinc

L(plane) + uref
L(plane)

)

∂ϑL

∣∣∣∣∣∣
ϑL=0

. (35)

Differentiating (28) with respect to ϑL and using (35) we obtain

∂utot
L(plane)

∂ϑL

∣∣∣∣∣
ϑL=0

= uinc
0 +

∂urem
L(plane)

∂ϑL

∣∣∣∣∣
ϑL=0

. (36)

Since the differentiation symbols commute the left-hand side of (36) satisfies the equations of
motion and the boundary conditions. Also, if an outgoing wave is differentiated with respect to
ϑL the result is another outgoing wave. This differentiation does not change the nature of the
corresponding tip condition either. It follows that ∂utot

L(plane)/∂ϑL is the solution of the same wedge

diffraction problem as utot
L(plane) but under another incidence. Since the waves in ∂urem

L(plane)/∂ϑL are

outgoing, this incident field is uinc
0 and the left-hand side of (36) is utot

0 , the total field generated
by the ”creeping” wave incident on the wedge. We can now write

utot
0 =

∂utot
L(plane)

∂ϑL

∣∣∣∣∣
ϑL=0

= lim
ϑL→0

utot
L(plane)

ϑL
. (37)

Eq. (37) suggests the following formula for calculation of the diffraction coefficients for the
normalised ”creeping” wave,

D0,β(ϑ) =
∂DLβ(0;ϑ)

∂ϑL
= lim

ϑL→0

DLβ(ϑL;ϑ)

ϑL
. (38)

Formulae (21) and (26) show that near the wedge tip the ”creeping wave” has the amplitude
Ec(kLd0)

−3/2, with d0 defined graphically in Fig. 2. Therefore in order to calculate the diffraction

coefficients Dβ
T (Gauss)(ϑ), β = L, T which are due to the transverse Gaussian beam incident at the

critical angle we need to multiply (38) by this additional coefficient to get

Dβ
T (Gauss)(ϑ) =

Ec

(kLd0)3/2
D0,β(ϑ), β = L, T (39)
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where we used the fact that in the far field d0 ≈ d̃.
The last formula suggests a limiting procedure that allows us to utilise the standard GTD

to evaluate non-uniform asymptotics for the ”creeping” wave diffracted off a planar faces crack.
All we need to do given a wedge angle is to evaluate the standard diffraction coefficients using
the existing numerical codes for a sequence of small incidence angles ϑL, each time dividing the
result by the corresponding angle and multiplying by a constant and terminate the procedure on
reaching a specified accuracy.

The resulting diffraction coefficients have singularities at the shadow boundaries associated
with reflected waves as well as critical rays, where the non-uniform asymptotics are inapplicable.
Similarly to the case of plane incidence [15] it is possible to introduce the uniform asymptotics
that are valid inside penumbra associated with the Goodier-Bishop type waves as well as standard
body waves. Moreover, the above considerations can be used to evaluate scattered head waves.
We will discuss both topics in future publications.

5. Numerical results

a) b)

c) d)

Figure 4. ATHENA simulations with a shear beam incident on the wall at the supercritical
angle of 550. The crack angle is 1000. The incident beam irradiates whole crack. a) and b) are
consecutive snapshots of incident field. c) and d) are consecutive snapshots of scattered field.

Some features of the above models have been simulated numerically using ATHENA, a finite
element commercial code. The simulation parameters are cL = 5890 km/s, cT = 3210 km/s and
the frequency is 2MHz. We restrict all discussions to the surface-breaking crack which forms a
100o angle with the back-wall and to the beam that is incident at 550 to this wall. In Figs. 4 - 6 we
consider three different positions of the transducer as it moves away from the crack and study the
changes in the respective scattered fields. Note that in ATHENA simulations it is assumed that
the medium below the wall is air or water. For this reason non-zero displacements are indicated
in Figs. 5 - 7 underneath the wall. The two consecutive screen shots presented in Fig. 4 a) and
b) have been obtained for a transducer positioned so that when the beam hits the back-wall it
irradiates the whole crack. The two consecutive screen shots presented in Fig. 6 a) and b) have
been taken for a transducer moved so far from the crack that the beam hits the back-wall in front
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a) b)

c) d)

Figure 5. ATHENA simulations with a shear beam incident on the wall at the supercritical angle
of 550. The crack angle is 1000. A portion of the incident beam irradiates the crack. a) and b)
are consecutive snapshots of incident field. c) and d) are consecutive snapshots of scattered field.

a) b)

c) d)

Figure 6. ATHENA simulations with a shear beam incident on the wall at the supercritical angle
of 550. The crack angle is 1000. The incident beam hits the wall in front of crack. a) and b) are
consecutive snapshots of incident field. c) and d) are consecutive snapshots of scattered field.

of the crack and generates a ”creeping” wave, which is the only wave that reaches the crack tip.
Fig. 5 is an intermediate case and the two consecutive screen shots presented in a) and b) show
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Figure 7. ATHENA simulations of the incidence of a shear beam at the supercritical angle of 550.
The crack angle is 1000. The incident beam irradiates the whole crack. Solid blue line - theoretical
critical ray, solid green line - corresponding head wave front, Dashed green line - simulated head
wave front, dahed blue line - corresponding critical ray.

a) b)

Figure 8. Geometry of two double reflected T waves.

a) b)

Figure 9. A Gaussian beam incident at the critical angle on a traction free surface. a) The
transverse components of the incident and scattered fields. The black arrows indicate the direction
of propagation. b) The longitudinal component of the scattered field. Black line - the direction of
the scattered longitudinal beam ≈ 300 to the back-wall. Red line - the direction of the scattered
longitudinal lobe in [13]. Red line makes 160 with the back-wall.

that in this transducer position the crack is irradiated by both the ”creeping” wave and a portion
of the incident beam.
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Figure 10. Diffraction coefficients vs the observation angle ϑ. The wedge angle - 1000. The
incident wave - the plane T wave incident at 560 to the wall (supercritical configuration). a) D0,L

b) D0,T . Dashed line - GTD coefficients, solid line - corrected coefficients as defined in [15].
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Figure 11. Diffraction coefficients vs the observation angle ϑ. The wedge angle - 1000. The
incident wave - the plane T wave incident at 580 to the wall (subcritical configuration). a) D0,L

b) D0,T . Dashed line - GTD coefficients, solid line - corrected coefficients as defined in [15].
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Figure 12. Diffraction coefficients vs the observation angle ϑ. The wedge angle - 1000. The
incident wave - the normalised creeping wave propagating along the wall. a) D0,L b) D0,T .
Dashed line - GTD coefficients, solid line - corrected coefficients as defined in [15].

Let us first discuss geometry of the resulting scattered fields presented in c) and d) portions of
Figs. 4 - 6. They all feature two circular wave fronts, T and L, centered at the crack corner as
well as the corresponding head wave fronts as well as the following T rays,
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• T0 (at 150 to the wall) - the T reflection of the L component of the wall creeping wave,

• T1 (at 350 to the wall) - the shadow boundary associated with the twice reflected T wave,

• H1 (at 260 to the wall) - the critical ray associated with the diffracted head wave,

• H2 (at 570 to the wall) - the critical ray associated with the diffracted head wave,

• T2 (at 750 to the wall) - the shadow boundary associated with the twice reflected T wave.

The angles of propagation of the waves T1 and T2 are justified by reference to Figs. 8 a) and
b), respectively. The angle of propagation of T0, the T reflection of the L portion of the creeping
wave is found using the Snell’s law. The situation with the head waves is more complicated: had
the vertical crack face been of infinite extent the critical rays would each form cos−1(γ) ≈ 570 with
the corresponding crack face. In the ATHENA simulations presented in Figs. 4 - 6, the critical ray
H2 corresponding to the lower head wave front indeed appears to run at ≈ 570 to the back-wall.
However, the upper head wave front in these simulations is inclined at such an angle that the
corresponding critical ray H1 runs at 260 to the back-wall rather than 430 - see Fig. 7. This might
be due to the fact simulations have been carried out for a finite crack. Indeed, the problem is
less pronounced in simulations involving larger cracks. To indicate the tentative nature of the ray
H1 it is depicted in Figs. 4 - 6 using the dashed line. Let us proceed with our comparisons. In
accordance with Fig. 8, both T1 and T2 singularities at about 350 and 750, respectively, are present
in Figs. 10b) and 11b). When the incident beam hits the back-wall before the crack, the creeping
diffraction coefficient in Fig. 12b) lacks the T1 singularity, because in this configuration there can
be no rays shown in Fig. 8a). Moving on to the T0 wave, when the incident beam irradiates the
whole crack, we can apply the canonical model of diffraction of plane incident wave. If the angle
of incidence is smaller (greater) than cos−1(γ), the configuration is supercritical (subcritical) and
we do not have (have) a body L wave incident on the vertical crack face. This explains why there
is a singularity at about 180 in the standard T GTD diffraction coefficients presented in Fig. 11b)
but there is no such singularity in Fig. 10b). When the incident beam hits the back-wall before
the crack, the creeping diffraction coefficient in Fig. 12b) has the corresponding singularity at
about 150. There is a difference between the nature of these singularities: it has been established
numerically that in Fig. 10b) we have a single pole at 200 and in Fig. 12, the T0 singularity at
150 is a double pole. The latter behaviour is characteristic of the Goodier-Bishop wave. For
similar reasons, there a single pole at about 200 in the standard L GTD diffraction coefficients
presented in Fig. 11a), there is no such singularity in Fig. 10a) and in Fig. 12a) the singularity
at 200 is a double pole. Note that the corrected diffraction coefficients presented in Figs. 10) - 11
are calculated using the standard recipe described e.g. in [15].

Let us now study the energy variation in the scattered fields as presented in c) and d) parts
of Figs. 4 - 6. The comparison is complicated by the difference in amplitude scaling, since in
Fig. 5 the incident amplitude appears to be much stronger than in other configurations. It is
important to keep in mind that in the ATHENA simulations supercritical incidence was used
and thus the situation corresponds to Fig. 10 rather than Fig. 11. To start with, all scattered
fields contain the Rayleigh wave travelling along the back-wall. According to Figs. 10a) and 12a),
the diffracted L waves are supposed to be very weak. The fact that we see high intensity patches
superimposed on the L fronts in Figs. 5c) and d) and Figs. 6c) and d) must be due to the reflection
at the vertical crack face of the L component of the creeping wave. Note that there is no high
intensity region superimposed on the L front in Figs. 4. This is consistent with the fact that in
this supercritical configuration no L wave is incident on the vertical crack face. We now turn
attention to the lowest bright spot seen on the T fronts in Figs. 4c) and d). It is natural to assume
that it is due to T1. Indeed, in accordance with Fig. 8b) it appears beneath the shadow boundary
running from the crack corner at 350 to the back-wall. In Figs. 5c) and d) the corresponding
spot is much weaker, which is consistent with the fact that in this configuration the crack is only
partially irradiated by the incident beam. However, there are many problems associated with this
hypothesis. The ATHENA simulations are more consistent with the idea that the spot is due to
interference between T0 and T1. This would explain why the spot is not touching the 350 ray in
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Fig. 4c) and why it is closer to it in Figs. 4d). Furthermore, the new hypothesis would explain why
the shift is even stronger in Fig. 5 and why it is accompanied by increase in amplitude. Indeed,
in this case the contribution of the T1 wave is much weaker than when the whole of the crack is
irradiated and T0 has a Goodier-Bishop component whose amplitude increases in a linear fashion
in the direction normal to the direction of propagation. The hypothesis also accounts for the weak
spot associated with the corresponding ray in Fig. 6c): in this case the T1 wave is particularly
weak, because it is generated by the weak outer beam margin hitting the crack’s vertical face.
Again, the intensity of the spot grows with time from Fig. 6c) to Fig. 6d), which is hard to explain
for any wave other than the Goodier-Bishop type. The fact that this spot is so much brighter in
Fig. 5c) than in Fig. 6c) must be partly due to the difference in the incident amplitude.

Moving in the clockwise direction along the circular T front, the other two bright spots in
the scattered fields, which sometimes coalesce and which are present in all three figures, must be
due to two head waves, H1 and H2. The spots lie inside the intersection of both corresponding
irradiated zones. The third bright spot present in all figures is easily assigned to the T2 wave,
since it lies just above the 750-ray which is, according to Fig. 8b), the T2 irradiated zone. Other
bright regions above this spot are due partly to waves diffracted by the top crack tip and mainly
to the single reflection at the back-wall of the incident beam.

We finish this section by the stationary simulation of scatter of a Gaussian beam incident at
the critical angle by the traction free interface. It is obtained by applying the inverse Fourier
transform to (16) and numerical evaluation of the resulting integrals (Fig. 9). The black arrowed
lines in Fig. 9a) indicate the axis of the incident beam and its geometrical optics (GO) reflection.
The reflected beam itself demonstrates a well-known lateral shift from the GO path [10]. Fig. 9b)
presents the reflected L component. The black line in Fig. 9b) indicates the direction of the main
beam propagation, which makes approximately 300 with the back-wall.

6. Discussions
There are many controversies surrounding grazing incidence and creeping wave. To start with,
because in this limit the incident and reflected L waves coalesce, neither Kirchhoff approximation
nor uniform asymptotics of incident and scattered fields taken when in isolation extend to grazing
incidence. The solution lies in decomposing the total field into a sum of the grazing waves (incident
and reflected plane waves - in the regions where they exist) and the waves diffracted by the crack
edge - see in [11], [9] and references therein. When seeking asymptotics, the procedure should
be carried out for the incidence angles which are close to grazing and then utilising a limiting
procedure. When the limiting incident wave is of the Goodier-Bishop type this should be based
on (37). Otherwise, one should just employ continuity considerations [9]. Though arising from
mathematical considerations the Goodier-Bishop waves vex many physicists (e.g. [8]). A particular
problem arises when the incident wave is plane and transversal, propagating at a critical angle
to the surface. In this case the problem is ill-posed. However, no issue surrounds the Goodier-
Bishop type waves arising in the problem considered in this paper, because they only figure only
in a near boundary approximation. Finally, the term ”creeping” wave as used in engineering
literature deviates from the accepted usage in applied mathematics. In applied mathematics a
creeping wave is a single wave gliding along a curved surface and decaying exponentially (see [12]
and references therein). For this reason, some authors - see e.g. [13] - question the existence of
a creeping wave in the configuration considered above. In principle, their conclusion is similar to
ours: under a critical incidence there arises a disturbance near the boundary which looks like a
creeping wave, but is in fact a combination of well known body waves which decays away from its
source as (kLR)−3/2. With reference to Fig. 9, the illusion of a surface wave arises at distances from
the specular point (0, 0) which are smaller than 10 mm. This corresponds to distances observed
in Figs. 4 - 6. Note that when the ”creeping” wave hits the crack, apart from exciting diffracted
waves each of its components reflects according to the Snell’s law. However it is possible to say
that the incident ”creeping” wave generates reflected and transmitted ”creeping” waves [14]. The
situation is not identical to the Rayleigh wave incidence, because unlike in the latter case, the
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interaction between the ”creeping” wave and the crack leads to reflected T and L waves as well.

7. Conclusions
In this paper we have studied interaction of a shear Gaussian beam with a back-wall crack. It has
been shown that when the incidence is near critical the Gaussian beam excites a strong ”creeping”
wave which soon attenuates. This ”creeping” wave has a T component (the head wave) and L
component which - in the near boundary approximation - comprises the plane surface wave and a
Goodier-Bishop type wave. We have presented a method for evaluating the diffracted field when
the wedge is irradiated by the ”creeping” wave and calculated the resulting diffraction coefficients.
The full uniform description of the scattered field will be the subject of future investigation.
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