
HAL Id: cea-04440597
https://cea.hal.science/cea-04440597

Submitted on 6 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

CO2 / 13CO2 Dynamic Exchange in the Formate
Complex [(2,9-(tBu) 2-phen)Cu(O2CH)] and Its

Catalytic Activity in the Dehydrogenation of Formic
Acid

Kieu Phung, Pierre Thuéry, Jean-Claude Berthet, Thibault Cantat

To cite this version:
Kieu Phung, Pierre Thuéry, Jean-Claude Berthet, Thibault Cantat. CO2 / 13CO2 Dynamic Exchange
in the Formate Complex [(2,9-(tBu) 2-phen)Cu(O2CH)] and Its Catalytic Activity in the Dehydrogena-
tion of Formic Acid. Organometallics, 2023, 42 (23), pp.3357-3365. �10.1021/acs.organomet.3c00302�.
�cea-04440597�

https://cea.hal.science/cea-04440597
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


 

 

 

CO2/13CO2 Dynamic Exchange in the Formate Complex [(2,9-(tBu)2-

phen)Cu(O2CH)] and its Catalytic Activity in the Dehydrogenation of Formic Acid  

 

Kieu Phung,† Pierre Thuéry,† Jean-Claude Berthet, †* and Thibault Cantat, †* 
† Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette Cedex, France 

*To whom correspondence should be addressed. E-mail: thibault.cantat@cea.fr 

 

Keywords : Copper, Copper formate, Phenanthroline, Copper hydride, CO2 insertion, Formic acid, Ca-

talysis, Crystal structure 

 

ABSTRACT: Formate complexes of copper(I) are rare. We report here the synthesis, characterization, 

and crystal structure of the simple tricoordinate [(phen*)CuI(1-O2CH)] (1) supported with the bulky 

phenanthroline ligand 2,9-di-terbutyl-1,10-phenanthroline (phen*). Complex 1 decarboxylates at 100°C 

to give H2 and Cu(0) deposit with free phen*. To ensure that the degradation process goes through the 

hypothetical hydride [(phen*)CuH], Lewis acidic boron BR3 compounds (R = C6F5, Et) or organic scav-

engers have been introduced to trap it. In most case degradation occurs except with B(C6F5)3 that give 

the cationic complex [{(phen*)Cu}2(-HCO2)][(HCO2)B(C6F5)3] (2) which has been crystallized. While 

1 does not react with CS2 when heated, it undergoes under 1 atm of 13CO2, a dynamic decarboxyla-

tion/carboxylation process that indicates transient formation of the hydride. The catalytic activity of 

complex 1 in the dehydrogenation of formic acid is revealed. 

 

INTRODUCTION 

In recent years, formate complexes have aroused considerable interest and a number of molecular species 

have been synthesized and isolated in the d- and f-transition metal as well as in non-metal series.1–9 Their 

interest lies in their particular chemical behavior and reactivity, which have found application in coordi-

nation chemistry, catalysis, and in a number of areas ranging from energy storage10–15 to reduction chem-

istry.16–19  

For example, in stark contrast to the stable carboxylate complexes [M](O2CR) (R = alkyl), decarboxyla-

tion of the [M](O2CH) species (Eq.1) is much easier and is a classical reaction in the catalytic decompo-

sition of formic acid (HCO2H) into H2 and CO2.
12,13,20 

 

 
 

These complexes also proved crucial intermediates in reductive chemistry by promoting hydrogen transfer 

reactions and CO2 release especially when using liquid hydrogen surrogates such as HCO2H, 
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HCO2H−NEt3, or solid sources containing the formate ion HCO2
−.21–27 At last, the utility of such com-

plexes has been highlighted in the redox transformation of CO2 and carbonyl molecules to methanol as 

well as in promoting the isomerization of methyl formate (HCO2Me) into acetic acid.28–30 Easily obtained 

from different routes, mainly substitution reaction from halide derivatives with formate ion, reaction of 

HCO2H with compounds involving hydrogen-sensitive [M]–R bonds (R = H, NR2, R) species, or insertion 

of CO2 into the [M]–H bond, formate complexes can be viewed as interesting synthons to generate tran-

sient or stable hydride complexes by decarboxylation,30–32 provided that the CO2 release is thermodynam-

ically driven. At last, metal formates such as those of Cu(I) and Cu(II), Ag(I) and Au(I), have gained 

interest as new synthons in the deposition of thin metal films by chemical vapor deposition (CVD), spin-

coating processes, etc.33–35  

Although well documented for Cu(II),36–40 copper(I) formate complexes are quite rare. Only a fistful have 

been reported with the Cu(I) ion coordinated with phosphine41,42, carbene (NHC type)43,44,  [(5-

C5H4SiMe3)2Ti](C≡CSiMe3)2
45 or nitrogenated molecules as ancillary ligands.31,32 In the latter case, only 

one has been reported, the mixed-N,P-phosphane complex [(P(C6H2CH2NMe2-2)3)Cu(O2CH)]31
 which 

has been structurally characterized. 

We report the synthesis and full characterization of the complex [(phen*)Cu(1-O2CH)] (1), with the 

phen* = 2,9-di-terbutyl-1,10-phenanthroline ligand, and some aspects of its reactivity. We also describe 

our attempts to synthesize or capture the bulky monomeric hydride [(phen*)CuH], especially by its re-

versible insertion of labelled 13CO2. 1 is also a rare example of a copper complex that catalyzes the dehy-

drogenation of formic acid. 

 

EXPERIMENTAL SECTION 

General considerations, unless otherwise stated, all reactions and manipulations were performed using 

standard Schlenk techniques under Ar atmosphere or using a recirculating mBraun LabMaster DP inert 

atmosphere (Ar) glovebox, where all chemicals purchased from commercial suppliers were stored. Phen* 

has been prepared from modified published procedures.46–48 

Commercial CuI was degassed and stored in the glove boxes. The yellow complex [Cu(OtBu)] was pre-

pared by addition of 1 equiv. tBuOK on a suspension of CuI in THF according to the literature procedure.49 
1H NMR (benzene-d6): δ 1.32 (s, tBu). 13C{1H} NMR (benzene-d6): δ 72.7 C-(Me), 35.8 (Me). Being 

thermally instable, [Cu(OtBu)] was stored in the fridge (-40°C) inside the glovebox. The 4 Å molecular 

sieves (Aldrich) were activated by drying under dynamic vacuum at 250 °C for 48 h prior to use. Mesit-

ylene (Aldrich) was stored over activated 4 Å molecular sieves and used directly without further purifi-

cation. Deuterated solvents (THF, benzene, acetonitrile) purchased from Eurisotop were dried over po-

tassium or KH, distilled under vacuum and stored over 4 Å molecular sieves. Catalytic dehydrogenation 

reaction were performed in high-pressure New-Era NMR tubes to avoid potential explosion. NMR spectra 

were obtained using a Bruker AVANCE Neo 400 MHz spectrometer. Chemical shifts for 1H NMR were 

referenced to solvent impurities and are given in ppm. All the spectra were recorded at 25 °C. 

 

Synthesis of [(phen*)Cu(1-O2CH)] (1) : [Cu(OtBu)] (84.5 mg, 0.62 mmol) and phen* (180.7 mg, 0.62 

mmol) were weighted in a 50 mL round bottom flask and dissolved in freshly distilled THF (20 mL). The 

resulted clear light brown mixture was stirred at room temperature for ~1 h and formic acid (27.6 µL, 0.62 

mmol) was added. The solution immediately turned clear red. After 1 h stirring at room temperature, the 

solvent and volatiles were removed under vacuum. The residual dark-orange solid was washed with pen-

tane (10 mL x 3) and dried under vacuum overnight. 1 was obtained as dark-orange solid (220.9 mg, 89 

%). Orange crystals of  [(phen*)Cu(O2CH)0.8I0.2].(THF)0.5 (1’) were obtained by slow diffusion of pentane 

to a THF solution of 1 (containing KI).{1H} NMR 400 MHz, THF-d8, δ/ppm): 8.41 (d, J = 8.4 Hz, 2H), 

8.34 – 8.07 (s, 1H, CO2H), 7.97 (d, J = 8.4 Hz, 2H), 7.81 (s, 2H), 1.76 (s, 18H).{13C} NMR (101 MHz, 

THF-d8, δ/ppm): 168.86, 144.20, 137.58, 127.08, 125.45, 120.95, 120.91, 38.32, 30.03. (carbon of CO2H 

not seen). IR data (cm‒1) : 2962 (w), 2783 (w), 2696 (w), 1620 (s, CO2), 1612 (m), 1583 (w), 1550 (m), 

1496 (s), 1477 (w), 1415 (w), 1392 (w), 1363 (m), 1327 (s), 1209 (w), 1136 (s), 923 (w), 860 (s), 754 (s), 
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650 (w), 615 (m). Elemental analysis for C20H24CuN2(HCO2)0.8I0.2, (M = 417.37 g/mol), found (theoreti-

cal) %: C, 59.43 (59.86); H, 6.02 (5.99); N, 6.92 (6.71). 

[{(phen*)Cu}2(-2-O2CH)][HCO2B(C6F5)3] (2) : A J. Young NMR tube was filled with 1 (7 mg, 

0.017 mmol), B(C6F5)3 (4.5 mg, 8.5 mol, 0.5 equiv.) and THF-d8 (0.5 ml) in the glovebox. The dark-

orange mixture has turned yellow after 15 h at room temperature and the 1H NMR spectra were carried 

out. {1H} NMR (400 MHz, THF-d8, δ/ppm) 8.60 (d, J = 8.6 Hz, 4H), 8.43 (s, 1H, HCO2B), 8.19 (s, 1H, 

[Cu]2(-O2CH), 8.10 (d, J = 8.6 Hz, 4H), 8.01 (s, 4H), 1.65 (s, 35H). Single crystals of 2 were grown by 

slow diffusion of pentane into a THF solution of 1 and B(C6F5)3 in the 1/1 ratio. 

Thermal treatment of 1 : A J. Young NMR tube was filled with 1 (5 mg, 0.012 mmol) in solution in 

THF-d8 (0.5 ml). The dark-orange suspension was heated at 50 °C for 5 h to result a clear orange solution 

and dark-red solid and continue at 60 °C for 7 h. At the end, the 1H NMR spectra of the clear light yellow 

solution indicated the release of free ligand with the formation of dark-red precipitate.  

Thermal reaction of 1 with BR3 (R = C6F5, Et3) and Et-NCO, and phenylacetylene : In a J. Young 

NMR tube, 1 (1 equiv.) was dissolved in THF-d8 (0.5 ml) and BR3 (1 equiv.) or Et-NCO (2 equiv.) or 

phenylacetlyene (1 equiv.) were added. The reaction mixture was heated at 60 °C and monitored at dif-

ferent times by 1H NMR (See SI).  

General procedure for the catalytic dehydrogenation of formic acid (FA) : To an orange suspension 

of the formate complex 1 (x mol%) (x = 1, 5 or 10) in THF (0.5 mL) containing mesitylene as an internal 

standard (6.7 μL, 10 mol%), was syringed HCO2H (18 μL, 0.48 mmol). At t = 0, the 1H NMR spectra was 

recorded before the tube was immersed in an aluminium heating tube-plate at 100°C. The reactions were 

then monitored by 1H NMR every 15 min to see the evolution of H2 (at 4.59 ppm in THF-d8) and the 

disappearance of HCO2H. When all the acid has disappeared, the gas phase was analyzed by GC analysis 

for detection of CO2 and H2 (see SI). 

 

Result and discussion 

Synthesis and characterization of [(phen*)Cu(1-O2CH)] (1) 

We recently considered the bulky phenanthroline ligand 2,9-di-terbutyl-1,10-phenanthroline (phen*) to 

prepare highly soluble copper mono-phenanthroline complexes that would be stable to ligand redistribu-

tion and prevent dimerization. With this ligand, synthesized by a modified procedure, we targeted to iso-

late the copper formate [(phen*)CuI(O2CH)] (1) species which we hoped could thermally decarboxylate 

to afford a stable copper monohydride derivative which is yet inaccessible. Indeed, recent reduction of a 

dicopper(II) formate has been reported to generate spontaneous formation of a stable hexanuclear hydride 

copper(I) derivative by releasing CO2
32 and such a decarboxylation process could be a promising entry to 

copper(I)-hydride complexes. We hypothesized this latter to be monomeric due to the congestion of the 
tBu groups and because all the [(phen*)CuX] (X = Cl, F, OTf) or [(phen*)Cu(L)]+ (L = CO, Me2CO) 

derivatives reported so far are monomeric in the solid state.46,50–52 

 

Scheme 1. Synthesis of the formate complex 1.  
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Complex [(phen*)CuI(O2CH)] (1) was readily obtained by addition of 1 equiv. of phen* to a THF solution 

of the yellow tetramer [Cu(OtBu)]4 (1 equiv.) and then by treatment with formic acid (1 equiv.) at room 

temperature. (Scheme 1) The change of color (yellow to orange) is immediate. After stirring 1 h at r.t. and 

then evaporation of the volatiles and washing of the residue with pentane, complex 1 was readily isolated 

in good yield (89 %) as a dark-orange solid. It has been characterized in solution by 1H and 13C{1H}spectra 

and in solid state by its infra-red spectrum and by elemental analysis. The 1H NMR signal of the CH 

hydrogen atom of the formate anion appears as a broad singlet at = 8.2, a values quite downfield com-

pared to the other [CuI(O2CH)] species (range 9.01‒8.40  ppm)31,41,43,44 and the signals of phen* are shifted 

downfield in comparison with those of the free ligand. The 13C{1H} NMR spectrum only evidences sig-

nals of phen* and the carbon atom of the formate is undetectable. The strong band at 1620 cm‒1 in the 

infra-red spectrum is assigned to theasym(CO2) stretching mode of the coordinated formate. This values 

is close to those reported for example in the complexes [(triphos)Cu2O2CH] (1620 cm‒1),41 

[Cu(PPh3)2O2CH].EtOH (1607 cm‒1),42 the phosphane [(P(C6H2CH2NMe2-2)3)CuO2CH] (1607 cm‒1),31 

and [LCu2(μ-HCO2)](ClO4)2 (L = (N,N’-Me2-C6H12N3)CH2(C3HN2)(N,N’-Me2-C6H12N3)) (1570 cm‒1)32 

(see SI). 

Single crystals of [(phen*)CuI(1-O2CH)0.8I0.2].(THF)0.5 (1ʹ) could be grown in an NMR tube by slow 

diffusion of pentane into a crude THF mixture of 1 prepared in situ. The iodine atom presence in the 

crystal likely results from residual KI impurity contained in [Cu(OtBu)], the latter being synthesized from 

treatment of CuI with KOtBu. Views of the structure of 1ʹ determined by X-ray diffraction are shown in 

Fig. 1 with selected bond lengths and angles.  

.  

Figure 1. Two views of the crystal structure of complex 1ʹ. Displacement ellipsoids are drawn at the 50% 

probability level and hydrogen atoms are omitted except for that of formate. The minor iodide component 

is not shown. Selected bond distances (Å) and angles (deg): Cu1−O1 1.883(3), Cu1−N1 2.029(3), 

Cu1−N2 2.080(3), O1−C21 1.248(5), O2−C21 1.242(4); N1−Cu1−N2 83.44(10), N1−Cu1−O1 

140.69(13); N2−Cu1−O1 135.23(12) 

1ʹ is a monomeric, three-coordinate complex with the Cu ion ligated to the N1, N2 and O1 atoms in a 

distorted trigonal geometry, with the minor iodide component being close to the formate carbon atom. As 

in other reported carbene-copper complexes43,44, the formate unit bonds to the copper center in an 1-

coordination mode through one of the oxygen atoms, with a Cu1–O1 bond length of 1.883(3) Å, which is 

longer than in the 2-coordinate  carbene species [(IPr)Cu(1-O2CH)] (IPr = 1,3-bis(2,6-diiso-

propylphenyl)imidazol-2-ylidene) (1.848(2) Å)43 and [(CAAC1)Cu(1-O2CH)] (CAAC1= cyclic(al-

kyl)(amino)carbene)) (1.863 Å),44 but smaller than that found in the tetracoordinate phosphane compound 

[(P(C6H2CH2NMe2-2)3)Cu(1-O2CH)] (2.041(2) Å).31 Unlike in the IPr-ligated copper formate43 where 

the two C–O distances are distinct by 0.085 Å, there is no significant difference between the C21–O1 and 
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C21–O2 distances (1.248(5) Å, 1.242(4) Å, respectively), indicating charge delocalization over the car-

boxylic moiety. However, the formate ligand is not coordinated in chelating 2-fashion as shown by the 

long Cu1···O2 distance of 3.112(4) Å. The Cu–N distances are in the range of values found in 

[(phen*)CuX] complexes. In addition, steric hindrance due to the bulky tert-butyl substituents caused the 

copper center to deviate from the mean plane of the phen* by 0.520(2) Å. This typical coordination mode 

can also be observed in other [(phen*)CuX] (X = halide) copper complexes.46,50,53 In the packing, centro-

symmetric dimers are formed through π-stacking interactions [centroidcentroid distances, 3.5660(19)–

4.1058(19) Å; dihedral angles, 0–7.40(15)°] and the distance between the phenanthroline mean planes 

reaches 3.412 Å]. 

Attempts to the copper monohydride [(phen*)Cu–H] 

We tried to detect the [(phen*)Cu–H] complex by heating a solution of 1 in THF at 50 °C, but 1 decom-

posed slowly and released CO2 and H2, leaving free phen* after 7 h at 60 °C (see SI). However, the CO2 

release suggested the presence of a transient Cu–H species, so we attempted to trap it with reactive groups 

such as BEt3, B(C6F5)3, Et-NCO, or phenylacetylene, following recent works.54  For instance, we recently 

trapped the transient [(P3N)CuH] hydride with B(C6F5)3 as the unusual but stable triethylborohydride 

copper complex [(P3N)Cu(-H-BEt3)] (P3N = N,N′-(2,4,6-C6H2Me3)2C3H6N2C).54 In contrast, in the car-

bene series, [(IPr)Cu(OtBu)] underwent hydrosilylation to give the stable dimer [(IPr)CuH]2, which easily 

converted to the monoformate derivative under 1 atm CO2 
43. Unfortunately, here, we did not obtain the 

expected hydride reaction products, but rather undetermined and intractable mixtures.  For example, with 

EtNCO (4 h at 50 oC), no formation of the expected [Cu]-NCHOEt complex could be identified55 and in 

the presence of phenylacetylene, we observed immediate greenish solution and phen* decoordination. 

With BEt3, 1 degraded instead of forming a copper borohydride. Only with B(C6F5)3, we isolated light 

orange crystals of the complex [{(phen*)Cu}2(-O2CH)][(HCO2-
1)B(C6F5)3] (2), indicating initial for-

mate abstraction by the Lewis acidic boron center.  A view of the structure of 2 determined by X-ray 

diffraction is represented in Fig. 2 with selected bond lengths and angles. The Cu–N distances are classical 

and similar to those found in 1’. Of interest are the C–O bond lengths in the bridging and monodentate 

formate ligands of 2. In the former entity, the two C–O distances are quite identical and similar to those 

found in the monodentate complex 1’ and suggest charge delocalization. In contrast, in the anionic moiety 

[(HCO2)B(C6F5)3]
– the difference of 0.1 Å between the two C–O bonds likely reflects single and double 

bond character as in the species [(IPr)Cu(1-O2CH)].53 The 1H NMR spectrum of 2 in THF-d8 revealed 

two broad 1H NMR signals at 8.19 ppm and 8.43 ppm56–58 for the copper and boron formate, respectively, 

along with up-field shifted signals for the C6F5 moiety and B center in 19F NMR and 11B NMR (see SI). 
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Figure 2. View of the crystal structure of complex 2. Displacement ellipsoids are drawn at the 50% prob-

ability level and hydrogen atoms are omitted except for that of formate. Selected bond distances (Å) and 

angles (deg): Cu1−O1 1.9116(13), Cu1−N1 2.0508(15), Cu1−N2 2.0458(15), Cu2−O2 1.9260(13), 

Cu2−N3 2.0584(15), Cu2−N4 2.0585(15), ⟨Cu−N⟩ 2.053(5), O1−C41 1.245(2), O2−C41 1.251(2), 

B1−O3 1.513(2), O3−C42 1.301(2), O4−C42 1.207(2); N1−Cu1−N2 83.20(6), O1−Cu1−N1 135.82(6), 

O1−Cu1−N2 135.17(6), N3−Cu2−N4 82.85(6), O2−Cu2−N3 136.43(6); O2−Cu2−N4 137.44(6). 

 

Stoichiometric reaction with 13CO2 

Guan et al reported in 2016 that decarboxylation of the nickel formate [(POCOP)Ni(1-O2CH)] (POCOP 

= {2,6-(R2PO)2C6H3}; R = tBu, iPr) in the presence of CS2 gave the stable dithioformate 

[(POCOP)Ni(S2CH)] derivative through the transient formation of the nickel hydride species.18 CS2 being 

more reactive than CO2 for the insertion reaction,59,60 and because these authors claimed that the method 

could be applied to a wide variety of formate complexes of d-transition metals, we, therefore, attempted 

a similar reaction. Disappointingly, treatment of 1 with excess CS2 in THF at room temperature did not 

afford the expected dithioformate (Scheme 2). The NMR spectra showed no evolution, and further warm-

ing at 50 oC for 3 h, only evidenced slow decomposition into free ligand and Cu black. 

We thus changed our strategy to detect a potential active copper hydride intermediate by considering a 

dynamic isotopic exchange procedure with labeled 13CO2 (Scheme 2). This method, recently developed 

with copper(I) catalysts to insert efficiently, in a single step, a carbon tag into carboxylate substrates 

without structural change, is based on reversible carboxylation and decarboxylation processes.61 If work-

ing, such a method would be useful to access labeled formate anion from the corresponding labeled CO2. 

A J-Young NMR tube containing a THF-d8 solution of 1 was pressurized with 1 atm 13CO2 and heated at 

60 oC for ca 4 h. 1H and 13C NMR monitoring did not show degradation of the starting complex, but 

evidenced slow replacement of the unlabeled HCO2 with H13CO2. Enrichment of the formate anion in 13C 

supports the initial decarboxylation of 1 into the putative hydride [(phen*)Cu–H] that would immediately 

trap 13CO2 to give the 13C-labeled formate derivative 1*. The evolution of 1 into 1* is confirmed by 13C 

NMR. Indeed, while the formate carbon atom of 1 is not detected, the {1H}13C NMR spectra showed a 

singlet at δ = 164.65 (in the expected range for a formate anion) that grew up continuously with time (Fig. 

3a). The signal appeared as a doublet with a coupling constant J = 198 Hz in the non-decoupled 13C NMR 

spectrum (20 % isotopic enrichment, IE, by 1H NMR integration after 4h30) (Fig. 3c). The 1H NMR signal 

for the formate unit of 1 appears as a broad singlet at 8.28 ppm (Fig. 3b) that split by coupling with the 
13C atom during the exchange process, and with a constant J = 198 Hz identical to that obtained for the C 

atom of the coordinated H13CO2 ion in the 13C spectrum (Fig. 3c, top). Continuous heating of the reaction 

for 3 more hours enhanced the 13C enrichment (30 % IE) along with the degradation of 1 observed by the 

formation of free phen*. 

Figure 3. 3a- {1H}13C NMR spectrum showing the increase with time of the H13CO2 signal at 164 ppm 

(the signal increases from top to down). 3b- 1H NMR signal of the H12CO2 ligand of 1 which is split in 

the labelled analogue 1*. 3c- Singlet signal (bottom) in 13C NMR spectrum and doublet signal (top) in 

{1H}13C NMR of H13CO2 in 1*.  

 

 

 

 

 

a) 
H13CO2 

phen* 

13CO2 
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The 1H-13C HSQC (heteronuclear single quantum coherence) analysis evidences the correlation between 

the labelled carbon of the formate ion (δ = 164.24) and its neighboring proton (δ = 8.28) (see SI). These 

observations provide solid proof for a successful 12CO2/
13CO2 exchange in [(phen*)Cu(O2CH)], and 

clearly suggest the involvement of a copper hydride as transient intermediate. In their investigations into 

the copper-catalyzed hydrosilylation of CO2 to silyl formate,62 Motokura et al. also reported the capture 

of CO2 by a tricoordinated copper diphosphine hydride to give the corresponding formate, but the origi-

nated hydride was regenerated by reaction of the formate complex with a hydrosilane.62 

Scheme 2. Reactions of 1 with CS2 and 13CO2 at 50 and 60 °C, respectively.  

 

 

Catalytic dehydrogenation of formic acid (FA) 

H2 is a clean and sustainable energy vector that can connect power generation plants and mobile end-

users. Formic acid is a convenient liquid source and carrier of H2, and its conversion to H2 and CO2 and 

back has been widely studied. Many soluble d-transition metal complexes can catalyze HCO2H dehydro-

genation (H2 and CO2 release) with high activity and selectivity12  since Coffey’s first report in 1967.63 

Most of the homogeneous catalysts are based on noble metals such as Ru, Rh, and Ir, but cheaper and 

more abundant metals are less explored, especially copper. The first Cu-catalyzed homogeneous systems 

for HCO2H decomposition were reported only in 2014:. The Cu(I) and Cu(II) precursors (Cu(OAc)2, 

Cu(acac)2, Cu(O2CH)2, Cu(NO3)2, CuCl2, CuO, CuCl, CuI, {CuH(PPh3)}6) in solution in HCO2H/Et3N 

displayed a very low catalytic activity64 which was found dependent on the nature of the amine as con-

firmed later by a DFT study.65 In  2019, the hexanuclear cationic copper hydride [Cu6(μ
3-

H)2(L)3(
tBNC)4][PF6]4, involving a linear tetradentate phosphine (L= meso-Ph2PCH2P(Ph)(CH2)4P(Ph)- 

CH2PPh2), showed low catalytic activity for H2 release from HCO2H at 70°C in acetonitrile solution with 
tBuNC and NEt3 additives.66 At last, in 2023, O’Hair et al revealed that the mononuclear cuprate hydride 

anions [(X)CuH]− (X = H−, O2CH−, BH4
− and CN−) reacted in the gas-phase with formic acid to release 

H2 with formation of the formate [(X)Cu(O2CH)]− compound. The latter decarboxylates readily via col-

lision-induced dissociation to regenerate the initial copper hydride.67 

b) 
c) 
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Scheme 3. The dehydrogenation of formic acid with 1. 

 

The dynamic exchange process of 1 under CO2 suggested that it could be a rare copper catalyst for the 

dehydrogenation of formic acid. We reasoned that if the hydride intermediate could trap gaseous CO2, it 

should also react quickly with the liquid acid HCO2H, which was more abundant in the reaction medium 

(Scheme 3)..  

Table 1 summarizes the catalytic activity of 1 under different reaction conditions. Gas evolution was 

measured by 1H NMR spectra and GC analysis (gas chromatography analysis) and the consumption of 

HCO2H was followed by 1H NMR with mesitylene as internal standard. The appearance and evolution of 

H2 was detected at δ = 4.59 ppm in 1H NMR, along with the diminution of the signals of HCO2H (Fig. 4 

and 5). 

 

Table 1. Optimization of the reaction conditions for the dehydrogenation of formic acid with complex 1. 

 

En-
try 

x 
(mol
%) 

Solvent 
 

T 
(oC) 

Time  
(h) 

Conv. 
(%) 

1 0 THF-d8 100 16 0 
2 10 THF-d8 100 2,5 100 b,c 

3 5  THF-d8 100 3 
8 

27 
90 c 

4 1  THF-d8 100 15 40 c 
5 5 THF-d8 80 4 4 
6 5 THF-d8 60 15 0 
7 14 MeCN-

d3 
60 15 0 

8 5  MeCN-
d3 

100 8 0  

a Conversions measured by 1H NMR against 

mesitylene (10 mol%) as internal standard.b 

TOF = 4 h−1; c 1 is degraded 

 

When heated to 100°C, which is a temperature favoring decarboxylation of 1 (see above), the 1H NMR 

spectra of a THF-d8 solution of 1 (10 mol%) containing 18 L of HCO2H evidenced the selective release 

of H2 and no trace of CO was detected by GC analysis. In the absence of 1, HCO2H was not degraded 

(Entries 1-2). NMR monitoring of the dehydrogenation of formic acid and of the behavior of the catalyst 

1 was recorded by following the aromatic signals of the phen* ligand concomitantly with the degradation 

of HCO2H (Fig. 4). At first (t = 0), the phen* signals of 1 in the HCO2H-THF-d8 solution are shifted 

downfield (by 0.08–0.1 ppm) by comparison to those of pure 1 in THF-d8, suggesting a possible interac-

tion between 1 and the acid. During the course of the reaction, these signals slowly moved to lower fre-

quencies (upfield shifted) and broadened. By the end of the reaction when almost all of the formic acid 
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has been consumed, the signal of free phen* emerged, reflecting decomposition of the catalyst 1. Catalyst 

degradation was confirmed by further addition of HCO2H, which was not dehydrogenated (see SI).  

Decomposition of HCO2H with a 10 mol% charge in 1 is complete after 2.5 h at 100 °C (Fig. 5). Decreas-

ing the catalyst loading to 5 mol% increased the reaction time (total conversion after 8 h) whereas for a 

charge of 1 mol%, the catalyst is totally degraded after 15 h when only 40 % of the acid has been dehy-

drogenated (Entries 3-4). 

The thermal input is of importance (Entries 3, 5‒6). By reducing the temperature to 80 °C, a low conver-

sion of HCO2H (4 %) can be measured after 4 h, and below the boiling point of THF (66 °C), no reaction 

occurred. The influence of the solvent is also important and is highlighted by the distinct reactivity in 

THF and acetonitrile. The latter seems to completely prevent the dehydrogenation process at 0 °C or 100 

°C (Entries 7–8). 

Overall, these results underlined that complex 1 is reactive in the catalytic decomposition of HCO2H into 

CO2 and H2 without the requirement of any base or additives. No additive is needed to promote the catal-

ysis, because 1 spontaneously releases CO2 under heating with formation of a transient hydride [Cu]‒H 

that has sufficient hydride character to deprotonate formic acid and regenerate 1 with evolution of H2. 

With a TOF of 4 h−1 (Entry 2) at 100 °C for a catalyst loading of 10 mol%, it is not very active. This 

activity is however superior to that reported for a variety of simple Cu(0), Cu(I) and Cu(II) precursors in 

presence of NEt3 and which displayed TOFs lower than 1 h‒1 at 95°C.13,64,65 The species 

[Cu(NCMe)4][PF6] in acetonitrile and in the presence of various phosphine ligands and  additives (tBuNC-

NEt3) at 70°C, showed greater activities in the decomposition of HCO2H with reported TOFs in the range 

10‒240 h‒1.66 

However, all these copper catalysts exhibit activities significantly lower than the TOF values of 5 000 – 

10 000 h−1 required for an economically viable process.12 Iron catalytic systems have TOFs of ca 10 000 

h−1 and TONs of 105,68 and the most efficient complexes are currently based on noble metals (Ru and Ir), 

with TON values exceeding 106.12,69 For example, Williams and coworkers in 2016 and Li et al in 2015, 

reported a binuclear iridium(III) and two organometallic mononuclear (C5Me5)Ir(III) catalysts exhibiting, 

at 90 °C, TOF of  2.28 × 105 h−1 (TON = 2.16 106) and 4.88 × 105 h−1 (TON = 2.4 106 at 80°C), respec-

tively.70,71 

Conclusion 

In conclusion, we synthesized a novel monoligated copper(I)-formate with a bulky substituted phenan-

throline ligand (phen*), which provides solubility and stability. Such Cu(I)-formate species with simple 

nitrogen ligands are rare. We tested the catalytic activity of [(phen*)Cu(O2CH)] (1) in the decomposition 

of formic acid, and it generated H2 and CO2. We could not detect or trap the hydride [(phen*)CuH] inter-

mediate from decarboxylation of 1 with organic scavengers. However, we showed the transient formation 

of this hydride by 13C NMR, which revealed the steady increase of the 13CO2H signal during dynamic 

isotopic exchange with 13CO2. 
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Figure 4. 1H NMR spectrum showing the aromatic signals of the phen* moiety of 1 (10 mol%) in the 

formic acid dehydrogenation  catalysis. Spectrum were recorded every 15 min (total reaction time, 2h30). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 1H NMR spectrum showing disappearance of the acidic signal of formic acid and concomitant 

release of H2. Spectrum were recorded every 15 min (total reaction time, 2h30). 
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