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Abstract: This work presents a lightweight steering 
algorithm specifically designed for active perception 
sensors (Lidars, Radars or Sonars) that support 
online configurable scanning beam. The algorithm 
aims to improve the sensor capabilities in terms of 
frame rate and accuracy in some regions of interests 
(ROIs) with a limited power budget typically less than 
2 Watts. 
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1. Introduction 

Active perception sensors such as Lidars, Radars or 
Sonars scan the environment by sending out signals 
in the form of beam shots, and processing the 
reflected echoes in order to locate obstacles. 
Traditional scanning policy consists in sending 
preconfigured beams with constant properties 
toward predefined directions. This approach is well 
illustrated by the scanning mechanism of rotating 
Lidars, which send light beams with the same 
properties toward predefined azimuth and elevation 
angles at a constant rate. 
 
Sensors which have online configurable steering 
capabilities, for example with regards to beam 
direction and beam divergence, already exist on the 
market for some technologies – Multiple Input 
Multiple Output (MIMO) radars for instance – and are 
in development for other technologies (Sonar, Lidar). 
By allowing the beam parameters to be configured in 
real time, smart scanning policies, more complex 
compared to traditional ones, can be implemented in 
order to improve the sensor capabilities in terms of 
frame rate and energy consumption. 
 
A smart scanning policy aims to provide higher rate 
and higher precision measurements in some regions 
of interests (ROIs), while maintaining constant or 
reducing rates and precision elsewhere. In this work, 
ROIs are determined using a lightweight steering 
algorithm integrated into the device and which 
analyses the scan history. The algorithm can also 
take into account user-defined ROIs provided by 
external applications through an Application 
Programming Interface (API). 
 
Modern sensors are equipped with micro-controller 
units (MCUs) in order to perform advanced edge 
signal processing. Our smart scanning algorithm is 

designed to be integrated in such MCUs and is thus 
expected to have a low impact on the final bill of 
material (BOM) of the sensor device. 
 
The steering algorithm relies on innovative 
approaches [1, 2, 5] to build an environment model 
from successive sensor scans with a power budget 
typically less than 2 Watts. It subsequently 
generates a list of commands that controls the beam 
divergence and direction in order to optimize the 
amount of beam shots required for covering the 
ROIs [3], hence decreasing the number of beam 
shots necessary to cover the environment. This 
optimization translates into either a faster possible 
frame rate or a lower power consumption. It 
additionally allows for a higher accuracy in the 
detection and definition of obstacles within the ROIs. 
 

2. Principle of the steering algorithm 

We assume that the active perception sensor being 
used can be controlled with at least one of the 
following parameters: 

 The polar angle θ and elevation φ of the sensor 
beam 

 The angular opening α of the sensor beam 

Several modules are running together and 
communicate with each other in order to perform the 
real time steering process (Figure 1). 

 

 

 

Figure 1: Diagram describing the principle of the 
steering algorithm 

 

2.1 Building the environment model 

The first module receives the data produced by the 
sensor, and processes it in order to build the 
environment model of the scene. This is performed 
either in conjunction with another perception 
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sensor’s data – called companion sensor – or solely 
with the current sensors data. Either way, the 
environment model chosen is a probabilistic 
Occupancy Grid (OG). In a probabilistic OG, space 
is divided into squares in 2D or cubes in 3D, and 
each of these cells contains the probability of this 
space being occupied based on the sensors data 
and prior knowledge. The Bayesian fusion performed 
to build the OG utilizes a patented method that uses 
integer arithmetic in order to save computing power 
[4]. 

If the angular opening α of the sensor beam is 
controllable, it is modelled with the help of the patent 
[2] before being fused in the OG. In order to take into 
account the temporal aspect of the fusion between 
the previous knowledge of the environment and the 
new data, a forgetting factor is introduced. Indeed, 
before adding the new data to the OG, each cell 
receives a treatment that uniformly shifts the 
occupation probability of the cell towards 0.5. This 
gives more importance to the most recent data. 

2.2 ROI identification 

The second module uses the environment model 
built by the first one as an input in order to calculate 
ROIs. The ROIs are described as a list of positions 
and sizes weighted by the importance of each 
region. The way they are calculated can vary greatly 
based on the targeted application. They can for 
instance be based on identified specific objects, 
edges, least observed areas, moving targets, closest 
targets, etc… Since the form that this module can 
take is so diverse and this is not the focus of this 
article, the ROI module used as an example will only 
be briefly discussed in the result section. 

2.3 Targeting policy 

The next module uses the ROIs calculated by the 
previous one as inputs to determinate the list of 
commands to send to the controllable sensor for its 
next scan. Based on their size and importance, 
different profiles can be chosen: higher or lower 
density of shots, wider or narrower beam.  

2.4 Output format 

Depending on the needs of the user, this processing 
chain can provide several different outputs. First, an 
obvious choice is to keep the original output format 
of the sensor. It has the same format as what would 
the sensor provide without the steering algorithm, 
and it is thus transparent for the user. The only 
difference is the non-uniform distribution of shots, 
and the variation in the beam divergence between 
shots. If a more exhaustive understanding of the 
environment is expected, the whole model of the 
scene can be provided (OG), as well as the list of 
ROIs. Finally, virtual data can even be reconstructed 
from the OG in order to provide uniform pointclouds 
(PCL) even in areas where the sensor did not shoot, 
if such a data structure is required by the user. 

We will now describe with more details a specific 
implementation of the steering algorithm developed 
as a proof of concept. 

3. Experimental results 

The steering algorithm has been tested on an 
NVIDIA Jetson Nano with 4GB of RAM. It should be 
noted that the GPU is only used for the display of the 
data. The algorithm itself runs exclusively on the 
CPU. It runs at the same framerate as the sensor, 
which is 10Hz. The primary sensor in mind when this 
algorithm was developed was a solid state FMCW 
Lidar relying on OPA technology for the steering. 
Such sensors will hit the market of perception 
sensors in a few years, but are not yet available for 
testing. In order to test the capabilities of our 
steering algorithm with an experimental setup, we 
used a non-controllable Lidar (Ouster OS1-64). It is 
a rotating turret spinning at 10Hz with 64 vertical 
layers of laser, connected with an RJ45 cable to the 
Jetson Nano. To mimic the behaviour of a steerable 
Lidar, we replaced the module that gives commands 
to the sensor with a module that instead filters the 
data of the Lidar. The filtered data points represent 
where a controllable Lidar would have fired. This 
approach conveniently allows us to calculate how 
many shots would be saved compared to the 
traditional uniform targeting of the rotating turret 
Lidar. 

A webcam is used in the experiments uniquely to 
improve the understanding of the displayed data; it 
does not play any role in the steering algorithm. 
However, it could be utilized as a companion sensor 
with the help of AI algorithms to select ROIs from the 
images for instance. The ROIs chosen by the 
steering algorithm would then come from both the 
data of the camera and the Lidar. 

The ROI identification module chosen to 
demonstrate the capabilities of the steering algorithm 
in the experimental setup is based on the algorithm 
introduced in [5]. This algorithm uses OGs as inputs 
in order to estimate the motion of likely occupied 
cells and detect dynamic cells. Groups of cells likely 
moving together in the same direction are then 
clustered. The ROIs chosen are those clusters. 

The Lidar is kept immobile in the experiments 
conducted. Figure 2 shows a snapshot from the 
display of the experiment. A person is moving in the 
scene (towards the sensor in this specific example), 
and we can see the higher density of data points 
targeting the moving person compared to the 
surroundings. The targeting policy consists in using 
the full Lidar resolution in the ROI, and 1/8 of the 
points in the other areas. The ratio of the amount of 
points in the filtered PCL compared to the full 
resolution PCL thus varies between one 8

th
 and one 

depending on the area of the ROIs. Although this 
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data reduction does not save energy in the filtering 
setup, it would in the case of a steerable Lidar. This 
would thus lead to a lower power consumption of the 
Lidar, or a faster frame rate depending on the 
application targeted. 

 

 

Figure 2: Snapshot of the display of the experimental 
setup. The top panel shows the filtered PCL 

representing the data that a real steerable Lidar 
could provide. The bottom panel shows the filtered 

PCL superimposed with the image of a webcam for a 
better understanding of the scene. The difference in 

the density of points is clearly visible in this 
representation. 

 

4. Conclusion 

We presented in this article a versatile steering 
algorithm with a modular architecture that makes it 
adaptable to many use cases. Thanks to the use of 
OGs, the method is agnostic to the presence or 
absence of companion sensors as long as their data 
can be fused in an OG. Both the output format and 
the ROI calculation can be adapted for each 
situation. The lightweight approach of the algorithm 

coupled with the fact that it can work in closed loop 
only with the steerable sensor’s data makes it ideal 
to be integrated in the sensor MCU itself, enhancing 
its capabilities without increasing its BOM. 
The experimental results shown are encouraging 
and pave the way for when steerable Lidars will be 
available. The control of the beam divergence was 
not investigated with the current setup due to the 
nature of the available Lidar but will be in future 
experiments, as it is expected to bring even more 
flexibility to the system. 
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7. Glossary 

OG:   Occupancy Grid 

ROI:  Region Of Interest 

MIMO:  Multiple Input Multiple Output (Radar) 

API:  Application Programming Interface 

MCU:  Micro Controller Unit 

BOM:  Bill Of Material 

PCL:  Pointcloud 

GPU:  Graphics Processing Unit 

CPU:  Central Processing Unit 

RAM:  Random Access Memory 

FMCW: Frequency-Modulated Continuous-Wave 

OPA:  Optical Phased Array 

AI:   Artificial Intelligence 


