Développement de schémas numériques pour la résolution d'écoulements multiphases sur maillages généraux
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Applications Conclusion p → fully implicit (Q k ) → all scalar variables explicit, only local terms (F ki ) implicit (M k ), (E k ) → local terms explicit, transport terms implicit CEA | 14/06/2022 | 4 / 25 3 all other terms are easy, except for the momentum convection/diffusion terms → use tricks for these! CEA | 14/06/2022 | 7 / 25

system in → saddle-point! but still solvable by iterative solvers (BCGS here) 2 correction → elliptic system on p + to obtain ∇.

(M k ) 

∂α k ρ k ∂t + ∇.(α k ρ k # v k ) = Γ k (Q k ) ∂α k ρ k $ v k ∂t + ∇.(α k ρ k # v k ⊗ # v k ) = -α k ∇p + # F ki + Γ k # v ki + ∇.α k µ k (∇# v k + t ∇# v k ) (E k ) ∂α k ρ k e k ∂t + ∇.(α k ρ k e k # v k ) = q ki + Γ k h ki + ∇.(α k λ k ∇T k

Cartesian meshes

An industrial solution method 1 spatial discretisation → use MAC scheme (finite-volume) : 

scalar variables (α k , p, T k ) → cell averages : [p]c = 1 |c| ! c p(x)dV vector variables (v k ) → normal component averages: [v k ] f = 1 |f | ! f " v k ḋ" S 2 time discretisation → semi-implicit: (M k ) α + k ρ + k -α - k ρ - k ∆t + ∇.(α - k ρ - k v + k ) = Γ + k (Q k ) α - k ρ - k v + k -v - k ∆t + ∇.(α - k ρ - k v - k ⊗ v - k ) = -α - k ∇p + + F + ki + D[v - k ] + ... (E k ) α + k ρ + k e + k -α - k ρ - k e - k ∆t + ∇.(α - k ρ - k e - k v + k ) = q + ki + q + kp + D[T - k ] + ...

Cartesian meshes

An industrial solution method 1 semi-implicit: time discretisation → why? → gives a block-diagonal Jacobian when solving Newton iterations: 

" # ∂M ∂α ∂M ∂T ∂M ∂$ v ∂E ∂α ∂E ∂T ∂E ∂$ v 0 0 ∂Q ∂$ v $ % . " # δα δT δ# v $ % = " # δM δE δQ $ % - " & # ∂M ∂p ∂E ∂p ∂Q ∂p $ ' % .δp

Search

General recipe 1 choose a numerical scheme for scalar diffusion -∇.(Λ∇u) = s with a finite-volume interpretation :

- 

( f ∨c |f |F cf ([u] C ) = ) c sdV , ( c∨f F cf ([u] C ) =
-∇.(Λ∇u) = f ⇒ * # ϕ = -λ∇u ∇.# ϕ = s ⇒ * M 2 (λ)[ϕ] f = [ϕ]f = |f |([u] am(f ) -[u] av (f ) ) ! f ∨c |f |[ϕ] cf = |c|[s] c with M 2 (λ) a SPD matrix relating [ϕ] f to the dual face integral [ϕ]f = + av (f ) am(f ) # ϕ.d # l CEA | 14/
∆# v = -∇ ∧ # ω with # ω = ∇ ∧ # v the vorticity: * ∂$ v ∂t = -∇p + ν∆# v ∇.# v = 0 ⇒ , - . ∂$ v ∂t + ∇ ∧ # ω + ∇p = # 0 -1 ν # ω + ∇ ∧ # v = # 0 ∇.# v = 0 ⇒ , - . M 2 ∂ t [v ] F + M 2 R F [ω] E + G [p] C = 0 -M 1 (ν -1 )[ω] A + R A M 2 [v ] F = 0 D[v ] F = 0
with M 1 another matrix relating edge dual to edge integrals of # ω and R A , R F discrete curl operators around faces and edges:

CEA | 14/06/2022 | 9 / 25 Introduction Search Recipe First scheme PolyMAC P0 PolyMAC P0P1nc Applications Conclusion Search First scheme , - . M 2 ∂ t [v ] F + M 2 R F [ω] E + G [p] C = 0 -M 1 (ν -1 )[ω] A + R A M 2 [v ] F = 0 D[v ] F = 0
can this be solved by pressure reduction?

1 compute [ω -] E from [v -] F by solving M 1 (ν -1 )[ω] A = R A M 2 [v -] F = 0
not block-diagonal but only needed once per time-step x 1 x 2 

2 compute [v + ] F from M 2 [v + ] F -[v -] F ∆t + M 2 R F [ω -] E + G [p + ] C = 0 → not possible locally! Instead, must solve the saddle-point / M2 ∆t G -D 0 0 / [v + ] F [p + ] C 0 = / M2 ∆t [v -] F -M 2 R F [ω -] E 0 
x 4 x 3 x 1 x 2 x 4 x 3 • • • • x1 x4 x2 x3 start from [u]c (value at cell) for each (face, vertex) pair (f , v ), introduce a variable u fv in each cell, (uc , u f 1 v , u f 2 v ) define a gradient [∇u]cv at each face around v , impose " n f .Λ[∇u]cv = " n f .[∇u] c ′ v solve the local linear system on the (u fv ) around each vertex v → flux F f = -|f |" n f .Λ∇u = F f ([u] C )!
convective term : |c|[∇.α k ρ k " v k ]c = " f ∨c |f |[α k ρ k ] f [v k ] cf with [α k ρ k ] f chosen
1 interpolate [# v ] c from [v ] f :
at 1 st order → using "magical identity":

[" vc ] = 1 |c| # f ∨c |f |[v ] cf (" x f -" xc )
at 2 nd order (needed for diffusion) → possible with more neighbours 2 compute momentum convection/diffusion at cells: - 

[∇.(α k ρ k " v k ⊗ " v k )]c using a convection scheme on the [" v ]c [∇.α k µ k (∇" v k + t ∇" v k )]c
[∇.(α k ρ k # v k ⊗ # v k )] f = µ# n f .[∇.(α k ρ k # v k ⊗ # v k )] am(f ) + (1 -µ)# n f .[∇.(α k ρ k # v k ⊗ # v k )] av (f ) CEA | 14/
[Λ∇u] cf = ( f ′ ∨c W c 2ff ′ (Λ)(u f ′ -u c ) → the u f are determined by the equations [Λ∇u] am(f )f + [Λ∇u] av (f )f = 0, leading to the (SPD) linear system * - ! f ∨c |f |[Λ∇u] cf = |c|[s] c ∀c [Λ∇u] am(f )f + [Λ∇u] av (f )f = 0 ∀f CEA | 14/
k ] f to compute the diffusive term [∇.(α k λ k ∇T k )] c momentum equation (Q k ) → integrated at faces (normal components) mass matrix is diagonal! pressure gradient : introduce [p] f to compute [∇p] f (system is closed using [∇p] cf + [∇p] c ′ f = 0)
convection term: computed at cells (using 1 st -order interpolation), then projected momentum difusion: computed using vorticity variables using the identity ∇ ∧ (µ∇ ------------r'--------------. Temp.

∧ " v ) = ∇.(µ t ∇" v ) -∇.(µ∇" v ) CEA |
[oC]

Temp. 

  TrioMC code : two-phase sodium flows (ρ l /ρ g ∼ 2000) based on the TRUST open-source platform developed at CEA (together with FLICA5, TrioCFD,...) non-regular meshes: hexahedra, prisms, tetrahedra... CEA | 14/06/2022 | 2 / 25 Introduction Introduction Equations Large kinematic and thermal disequilibria → need the Euler-Euler system:

  ) equations : mass/momentum/energy conservation per-phase → 3N unknowns :α k ( ! α k = 1), T k , v k , p (single-pressure) → 3N equations of state: ρ k (p, T k ), e k (p, T k ) transport properties: µ k (p, Tk), λ k (p, Tk)closure laws: Γ k (phase change), F ki (interfacial friction), q ki (interfacial heat transfer)CEA | 14/06/2022 | 3

0 2

 0 use the fluxes F fc to discretize: the thermal diffusion term ∇.(α k λ k ∇T k ) in the energy equations; the pressure gradient term -α k ∇p in the momentum equtions Mixed Mimetic schemes (Eymard, Droniou, Bonnelle, da Veiga, Lipnikov, Manzini...) unconditionally stable on star-shaped meshes first formulation → mixed:

  by Bonnelle (then to Navier-Stokes by B. Koren et al.) using the identity

0

  incompressible flow : constant system → can use direct solver compressible/multiphase flow: variable matrix → must use iterative solver! CEA | 14/06/2022 | 10 many desirable properties: stability, symmetry (for Stokes),... but two incompatibilities with pressure reduction: auxiliary variables to solve diffusion (vorticities [ω] E ) → inconvenient, but manageable mass matrix in momentum equation → forces a saddle-point system → pressure reduction impossible ⇒ the search continues! CEA | 14/06/2022 | 11 start with a classical cell-centered diffusion scheme → MPFA-O (Aavatsmark)

  conditionally stable (but rather robust in practice) CEA | 14/06/2022 | 12 mass equation (M k ) → discretized in each cell c :

  by a convection scheme (usually upwind) other terms: local energy equation (E k ) → discretized in each cell c : convective term : same as in mass equation diffusive term [∇.(α k λ k ∇T k )]c : computed using MPFA-O fluxes other terms: local momentum equation (Q k ) → discretized at faces (normal components): pressure gradient -α k ∇p : computed using MPFA-O fluxes convective/diffusive terms: see next slide all other terms: local CEA | 14/06/2022 | 13 How to discretize the momentum convection/diffusion terms without altering the linear system structure? → introduce cell velocities [# v ] c :

  using MPFA-O fluxes 3 interpolate the needed face values by combining cell values :

  using a prediction step → linear system in([v ] f , [# v ] c ) no spurious oscillations despite using "collocated" momentum operators → the primary velocities are still the staggered [v ] F diagonal mass matrix in the momentum equations → pressure reduction possible Drawbacks: conditional stability → alleviated by sacrificing precision for stability on deformed meshes high numerical cost on tetrahedra → stencil in each cell extends to cells sharing one of its vertices (often ≳ 100) ⇒ scheme implemented as PolyMAC P0 But can the first scheme be fixed? back to HMM HMM schemes have a second formulation (hybrid form) using face scalar unknowns instead of fluxes to solve -∇.Λ∇u = s → using a SPD matrix W c 2 (Λ) in each cell:

  mass equation (M k ) : as usual energy equation (E k ) : introduce face temperatures [T

  stable on star-shaped meshes → like the original HMM scheme several auxiliary variables:face temperatures [T k ] f , vorticities [ω k ]e → computedonce per time step face pressures [p] f → included in the reduced pressure system but pressure reduction is possible! Main uses: very deformed meshes (but PolyMAC P0 is hard to beat in practice...) meshes consisting mainly in tetrahedra implemented as PolyMAC P0P1nc (or "PolyMAC") CEA | 14/06/2022 | 18 sodium : KNS-37 L22 test the reference for sodium boiling! 37 pin, electrically-heated reactor element (∼ 700 KW) loss of flow-type transient: t = 0 : pump trip (t 1/2 ∼ 2.5s) t = 6.3s : local boiling (does not obstruct flow) t = 8.5s : generalized boiling → blockage : flow redistribution t = 9.45s : dry-out → electrical power trip CEA | 14/06/2022 | 19

  .l.---r-----r----r----.-----L--.-----.----~--_r_.....:I----....-,."",::;=c=..------l------,:I---------\-----,-----l 300-'-:-.,-----r----r'--~-...L-__,--__,r__--.-----,.__-L22: pin temperature at 2/3rds + top of heated length CEA | 14/06/2022 | 22 proposed by M. Ndjinga for this symposium 3D manufactured solution (Poiseuille-like) for N-S: # v ana = x(1 -x)y (1 -y )# e z transient simulation from # u = 0 at CFL = 10 3 : need either full (" v , p) system → saddle-point: direct solvers (used here), augmented Lagrangian..time for both schemes → 10-11 time steps at CFL=1000 for both P0 faster on hexa, P0P1nc faster on tetra solving the full system via direct solvers does not scale... CEA | 14/06/2022 | 24 schemes with "MAC-like" properties for multiphase flows strong constraints to allow the same pressure-reduction method as on Cartesian meshes: block-diagonal structure in mass/energy equations → easy but also in momentum equations → harder! two schemes implemented: PolyMAC P0 : based on MPFA-O PolyMAC P0P1nc : based on HMM when using CFL≫ 1, we need a direct solver to solve the (# v , p) system → prediction/correction is still the best option (some schemes lead to a saddle-point in the correction step → KO) → this could be improved in the future! CEA | 14/06/2022 | 25 / 25

  Av δp + bv inverse blue block at each cell → gives ∆α = Aαδp + bα, ∆T = A T δp + b T
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Solution method → pressure reduction :

inverse green block at each face → gives ∆v = + all source terms (very strong) are implicit → very robust + staggered discretization → no low-Mach spurious modes + large reduction in final linear system → low cost