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ABSTRACT

Euler-Euler simulations of two-phase flows, such as the 6-equations model adopted in many system
thermal-hydraulics (STH) codes, becomes more challenging as the gas-liquid density ratio ρl/ρg in-
creases. On structured meshes, the association of a staggered ”MAC” numerical scheme with a semi-
implicit ”ICE” solution algorithm has proven particularly robust, and is currently used in the 3D modules
of the TRACE, CATHARE or RELAP codes.

However, structured meshes are too restrictive to cover a number of potential applications : apart from
the CFD scale, unstructured, polyhedral meshes are also encountered at the component scale when mod-
elling SFR subassemblies. This later case is the focus of the TrioMC code developed at CEA. In 2019,
this code was reimplemented using a new numerical scheme (”PolyMAC”) designed to generalise to
arbitrary meshes the main properties of the MAC staggered numerical scheme [1]. In 2020-2021, this
scheme, originally designed to solve the single-phase Navier-Stokes and energy equations, was extended
to multiphase flows: physical models dedicated to sodium boiling were then implemented in TrioMC,
and preliminary validation was carried out against a benchmark sodium boiling test (the KNS-37 L22
test provided by the ESFR-SMART H2020 project).
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Introduction

Contemporary Sodium Fast Reactor (SFR) oxide core designs, such as ASTRID or BN-1200, incorporate
measures to lower the void reactivity effect of the core so that sodium boiling in the core does not lead
to a power excursion. This constitutes a major safety innovation, as it should avoid the progression of
Unprotected Loss-Of Flow (ULOF) transients to core degradation. From a modelling point of view, it
presents a major challenge, requiring improvements both in the thermal-hydraulics of boiling sodium flows
and in its coupling to the neutronics of the core.

On the thermal-hydraulics side, major efforts have been directed to adapting system thermal-hydraulics
codes, such as TRACE or CATHARE, to boiling sodium flows. System-scale models of SFR cores represent
individual or average subassemblies as a 1D mesh : this multi-1D approach remains can be performed
on a single PC. By contrast, subchannel-scale simulations of complete SFR cores typically require HPC
resources, while CFD simulations remain a challenge even for a single subassembly.



However, although they are impractical at the full-core scale, finer two-phase simulations can play a strong
role in the design and interpretation of experiments. Due to practical constraints, subassembly boiling
sodium tests must be performed at a reduced horizontal scale compared to reactor S/As (1-3 rings vs 8-10
in reactor S/As): at this small size, experimental behaviour tends to be affected by 3D effects (such as local
boiling around the central pins). Since they simulate such effects, 3D codes can be used to analyse the
scaling from reduced to reactor-scale. Similarly, when designing a new experiment, 3D pre-calculations
can be used to position thermocouples at potential locations of interest: this is especially important in wire-
wrapped bundles, where the total number of in-bundle is often limited (one in each wire and 4-6 per pin).

The current state-of-the-art for “finer than 1D” boiling sodium simulations can be summarized as follows:

• at the CFD scale, single-pin and 19-pin experiments have been simulated with Neptune CFD;
• at the subchannel scale, several codes were developed in the 1980s such as CAFCA, SABRE or

SABENA. Among those, SABENA was used as recently as 2006.
• finally, a number of 2D (r, z) or coarse 3D (r, θ, z) approaches have been developed, for instance as

modules in the NATOF, SAS, ASTEC or SIMMER codes: more recently, such models have been
developed in TRACE, COREMELT and OpenFOAM.

Because the liquid-gas density ratio of boiling sodium is particularly high (ρl/ρg ∼ 2000) and because
its high liquid thermal conductivity leads to fast vaporization, most of the codes cited above employ the
staggered “MAC” numerical scheme together with the semi-implicit “ICE” time scheme in order to solve 4
to 6-equations models.

These choices explain the relative rarity of subchannel codes : the subchannel mesh for an SFR bundle (a
mixture of triangular, rectangular and quadrangular prisms, see fig. X) is not compatible with the standard
MAC scheme. [,,] implement a staggered scheme “by hand”, by constructing specific interpolations for each
mesh type : however, this approach is tedious and hard to generalize to complex subassemblies (fig. X).
Transitions to free regions (such as sodium plena above the pin bundle) can also pose difficulties.

The TrioMC code, developed at CEA on the basis of the TRUST platform to model SFR subchannel thermal-
hydraulics, initially adopted this approach. However, the need to model more complex S/As (such as fig. X)
motivated a reimplementation of the code along the following lines:

1. a new numerical scheme (“PolyMAC”), conserving the main aspect of the MAC scheme but
applicable to general polyhedra, was implemented in the TRUST platform;

2. source terms implementing physical models (pressure drop, wire mixing effects) and structures (pin
conduction and fluid heating) were added to TrioMC.

The resulting implementation of TrioMC is equivalent to a traditional subchannel code, but could more
accurately be described as a “coarse-grid CFD” code. Its structure easily allows for “unified subchannel-
CFD” simulations, where subchannel correlations are only applied in the part of a domain where pin bundles
are present, while turbulence models are applied in free areas. This strategy was used to model the primary
vessel of the FFTF reactor for the IAEA CRP [], coupling it to CATHARE using the MATHYS coupling
tool.

Efforts to extend TrioMC to two-phase flows began in 2020. Developments proceeded along the following
steps, which also correspond to the structure of this paper:



1. a new architecture (“Pb Multiphase”) was implemented in the TRUST platform to describe generic
N -phase flows using a 3N -equation system, along with the ICE (semi-implicit) and SETS
(prediction-correction) time schemes;

2. in the course of this development, it became apparent that some features of the PolyMAC numerical
scheme would prevent an efficient implementation of the ICE time scheme. To solve this issue, a
modified scheme (PolyMAC V2) was designed and implemented in TRUST;

3. the resulting multiphase solver was evaluated on a benchmark sedimentation test case;
4. source terms implementing physical models suitable for sodium boiling were implemented in

TRUST and/or TrioMC;
5. the resulting two-phase sodium subchannel model was validated against a sodium boiling test : a

loss-of-flow test at constant power performed on the KNS-37 37-pin sodium loop at KfK/KIT. Data
for this test (L22) was provided to CEA as part of a benchmark conducted within the ESFR-SMART
H2020 project.

These five sections are concluded by an outline of potential future developments.

1. Architecture for multiphase flows in the trust platform

The TRUST platform offers a flexible architecture where the user can specify one or more “problems” con-
sisting each in one or more “equations”: for instance, the Pb Thermohydraulique problem describes
a single-phase incompressible fluid through a Navier Stokes std equation for the velocity/pressure
(p,#v) and a Convection Diffusion Temperature equation for the temperature T . Default classes
implement heat conduction problems as well as incompressible and quasi-compressible (thermal-)hydraulics;
additional classes incorporating turbulence models are implemented in the TRUST-based TrioCFD code.
Aside from its equations, each problem is associated with a medium class (describing its medium proper-
ties), a discretization class (describing how the equations should be discretized in space), and a time scheme
class (describing how its equations should be integrated in time).

In order to describe multiphase flows, we implemented a new Pb Multiphase class describing the fol-
lowing equations:
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The primary unknowns of this system are the volumetric fractions (αk)1≤k≤N , the phase velocities #vk,
the phase temperatures Tk and the (common) pressure p : the associated medium specifies the densities
ρk(p, Tk), internal energies e(p, Tk) and enthalpies hk(p, Tk), viscosities µk(p, Tk) and thermal conduc-
tivities λk(p, Tk). Physical models prescribe the momentum and heat transfers from phase k to the (k, l)
interface (#F i

kl, q
i
kl) and to the wall (#Fw

k , qwk ), while interface jump conditions lead to Γkl = −Γlk =

(qikl + qilk)/(hl − hk) and #F i
lk = −#F i

kl. The system is finally closed by the continuity condition
$

αk = 1.
Implementation aspects led to the choice of a semi-conservative form for the momentum equations Q (to
avoid terms proportional to Γkl) and to the choice of an internal energy equation for E (to avoid additional
terms for each force in Q).



The system (M, Q, E) is in most cases nonlinear and tightly coupled by its source terms Γkl, #F i
kl and qikl:

the ICE time scheme offers a way to integrate these terms implicitly while avoiding the solution of a full
linear system in (α,#v, T, p). It consists in the following choice of implicit terms (in red) :
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Under this form, linearizing each equation E for a given increment (δα, δ#v, δT, δp) of the primary variables
as δE = ∂E
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where the blue and green blocks are purely “local” : when the equations are discretized (for instance via the
PolyMAC scheme), these blocks only contain non-zero terms for lines and columns belonging to the same
mesh location. They can thus be inverted as a series of local linear systems ((N,N) for the green block
and (2N, 2N) for the blue block) : since the overall system is upper-triangular, it can thus be inverted as
δα = δα0 + Mαδp, δ#v = δ#v0 + M#vδp and δT = δT 0 + MT δp. Inserting the first relationship into the
continuity constraint

$
αk = 0 leads to a system involving only the pressure increments δp : this system

can then be solved at each step of a Newton algorithm for the complete nonlinear system.

Compared to a full system over the increments (α,#v, T, p), this reduced system offers several advantages:

• it is vastly smaller (by a factor of around 8N + 1 in 3D) and does not increase in size for a larger
number of phases;

• its structure is in most cases elliptic (it resembles those of a discretized Poisson equation), and can
thus be solved efficiently at large scale and/or in parallel by multigrid methods.

On the other hand, the explicit discretization of convected quantities in (1) means that convective instabilities
for time steps above the material Courant-Friedrich-Levy (CFL) limit. In order to overcome this limit,
additional predictor steps can be implemented to provide initial estimates of these convected quantities:
this scheme, known as SETS, was implemented and found to vastly improve timesteps when the transient
dynamics are slow.

In order to implement the ICE scheme, the underlying architecture must be capable of providing the sparse
matrices corresponding to each block of the Jacobian (1). In TRUST, this computation is spread between
the space discretization, equation and medium classes in order to maximize code reuse. For instance, the
derivative of the convective term of the mass equation Mk w.r.t. the phase temperature Tk is computed as :
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• the red term is computed by the convection operator of the underlying space discretization, such as
PolyMAC. This operator implements a term of the form ∇.(F#v) for a convected field F : the
instance of this term associated with Mk operates with F = αkρk, while another instance associated
to Ek operates with F = αkρkek. Both equations rely on the same code to compute the matrix
∂∇.(F#v)/∂F ;

• the green term ∂αkρk/∂ρk is local, and computed by the equation Mk where the field F = αkρk is
defined. This field relies on the fields αk (a primary unknown) and ρk (the density, provided by the
medium);

• finally, the blue term is computed by the medium associated to the problem, where the density field
ρk(p, Tk) is defined.

This architecture has been designed to maximize code reuse, in particular at the level of the underlying space
discretization. It has been found to be flexible and efficient : for instance, for single-phase subassembly cal-
culations in TrioMC, a SETS multiphase problem with N = 1 is only ∼ 25% slower than the incompressible
Navier-Stokes resolution normally used in this case.

The 3N -equation system (Mk,Qk, Ek) presents particular difficulties in the case of a vanishing phase,
αk → 0. In the CATHARE code, this issue is handled by defining “residual” void fractions αres

l = 10−6

and αres
g = 10−5 and by introducing a term Γres

kl in the equations which strongly drives αk to αres
k when

αk < αres
k : if a Newton iteration leads to αk < 0, the solution algorithm is aborted and the time step is

reduced. In Pb Multiphase, no residual void fraction is used : rather, a limiter is placed on the total
phase change Γk =

$
l Γkl. For a time step ∆t, The time-discretized form of the mass equation Mk reads

α+
k ρ

+
k − α−

k ρ
−
k

∆t
+∇.(αkρk#vk) = Γk

with the -/+ superscripts denoting values at times t and t+∆t : hence, the condition α+
k ≥ 0 leads to
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At a given iteration, if Γk < Γlim
k , then the mass flux Γkl to the “dominant” phase l (those with the highest

αl) is modified so that Γk = Γlim
k : finally, the heat flux from phase l, qilk, is modified so that the jump

condition Γkl = (qikl + qilk)/(hl − hk) is preserved. This process ensures that the converged solution of the
Newton algorithm will satisfy αk ≥ 0 while maintaining consistent mass, energy and momentum balances
between the phases. Intermediate iterations may still lead to α+

k < 0 : thus, at the end of each iteration,
the αk must be post-processed to ensure αk = 0 while preserving

$
αk = 1. Final convergence is only

declared once the algorithm converges to a solution satisfying αk ≥ 0.

Additionally, the momentum and energy equations must ensure that #vk → #vl and Tk → Tsat when αk → 0.
In Pb Multiphase, this is obtained by ensuring that the interfacial exchange terms #F i

kl and qikl converge
to ε(#vk − #vl) and ε(Tk − Tsat) as αk → 0.

2. The PolyMAC V2 numerical scheme

The architecture described in Section 1 is largely independant from the underlying numerical scheme: it
can, for instance, be run “out-of-box” on the MAC numerical scheme for Cartesian meshes implemented in
the TRUST platform. However, target meshes (fig. X) can only be treated by the PolyMAC scheme.



In its initial version [1], PolyMAC discretizes the incompressible Navier-Stokes equation under the form

∂t#v + (#v.∇)#v = −∇p− ν∇∧ (∇∧ #v) (2)

and leads to an irreductible, saddle-point linear system over the variables (p,#v) even when employing a
predictor-corrector solution method such as SIMPLE or PISO : in that case, the linear system for the correc-
tion step reads "
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−D 0

#
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"
δv

∆tδp

#
=

"
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with v∗ the velocity computed by the prediction step, G and D the gradient and divergence operators (related
by D = −Gt), and H2 a symmetric, positive definite matrix. While this matrix is SPD, its saddle-point
structure prevent its easy solution by multigrid methods: furthermore, its coupled structure means that, in
a multiphase problem, systems with a velocity unknown per phase #vk but a single pressure unknown p will
be hard to implement. Finally, the identity ∇.(ν(∇#v +t ∇#v)) = −ν∇∧ (∇∧ #v) used in (2) only holds for
an incompressible fluid with constant viscosity : both assumptions are violated in the momentum diffusion
term in Qk.

In order to solve these issues, a new version of the PolyMAC scheme (“PolyMAC V2”) was developed and
implemented in TRUST. As in PolyMAC, PolyMAC V2 represents the scalar variables (α, T, p) by their
cell averages, noted [α]c for a cell c ∈ C; on the other hand, velocities are represented by their face normal
averages [v]f = 1

|f |
+
f #nf .#v.dS, with |f | and #nf the surface and normal of a face f ∈ F .

The discretization of the multiphase system (Mk,Qk, Ek) is performed in three steps :

• discretization of the face gradient [Λ∇u]f of a scalar variable u (discrettized by [u]C = ([u]c)c∈C)
with Λ an arbitrary symmetric tensor;

• discretization of the scalar equations Mk and Ek;
• discretization of the vector equation Qk.

2.1. Face discretization of gradients of scalar variables

The problem of constructing a face gradient [Λ∇u]f from cell averages [u]c has been widely studied in the
context of simulating the anisotropic diffusion problem

∇.(Λ∇u) = f . (3)

Among the many schemes developed for solving (3), cell-centered, flux-based schemes can be used to con-
struct a face gradient suitable for PolyMAC V2. Two such schemes present particularly attractive properties:

• the gradient of [X] leads to a convergent, unconditionally stable scheme on general polyhedral
meshes. On the reverse, its stencil can be quite large, extending to cells sharing a face with each
neighbor of face f ;

• the scheme defined in [Y] offers the same properties with a smaller stencil (limited to cells sharing a
vertex with face f ), provided that the mesh si such that, for each face f , the line connecting the cell
centers on each side of f intersects the face. Expressions for the face gradients associated with this
scheme were computed in [Z].



PolyMAC V2 consists in a hybrid approach between these two schemes, implementing the small-stencil
gradient of [Y] where it can be applied and falling back to the large-stencil gradient of [X] otherwise. This
ensures, in particular, that the elliptic part of the reduced pressure system produced by the ICE scheme will
be symmetric, positive and definite on any mesh.

2.2. Discretization of scalar equations

Given that the velocity field #v is discretized by its face normals, convective terms of the form ∇.(F#v), with
F a scalar field, can be easily discretized as

[∇.(F#v)]c =
1

|c|
!

f∈Fc

|f |[F ]f [v]cf , (4)

with |c| the volume of cell c, Fc the set of its faces, [v]cf = ±[v]f the normal velocity outgoing from c,
and [F ]f a face reconstruction of F at f from its values on each side of f : a simple upwind reconstruction
is currently used in PolyMAC V2. This method is used to discretize the term ∇.(αkρk#vk) in Mk and the
terms ∇.(αkρkek#vk), ∇.(αk#vk) in Ek.

The gradient discretization approach described in §2.1 is used to discretize the heat conduction term ∇.(αkλk∇Tk)
in the energy equation Ek, by taking Λ = αkλkI to obtain [αkλk∇Tk]f : then, its divergence can be easily
obtained by [∇.#v]c =

1
|c|

$
f∈Fc

[v]cf .

Finally, all the remaining terms in Mk and Ek are simply evaluated at cell c. When encountering a vanishing
phase, the phase change terms Γkl and the interfacial heat flux qikl may depend on the neighboring face
velocities through the term ∇.(αkρk#vk) in Γlim

k : physical models may also depend on phase velocities
within each cells. These are calculated using the following interpolation of the velocity vector:

[#v]c =
1

|c|
!

f∈Fc

|f |[v]cf (#xf − #xc) , (5)

where #xf and #xc are the respective barycenters of face f and cell c.

2.3. Discretization of the momentum equation

Since the phase velocities #vk are discretized by their face normals, the momentum equation Qk should
itself be discretized in the same way. However, constructing operators such as [∇.(αkρk#vk ⊗ #vk)]f and
[∇.(αkµk∇#vk)]f directly from the face normal velocities [vk]f presents a major challenge on polyhedral
grids. For these operators, PolyMAC V2 extends a technique already used by PolyMAC for the convection
operator :

1. reconstruct the phase velocity vectors in each cell at time t, [#v−
k ]c, by (5);

2. Discretize the momentum equation at cells, by using (4) for each part of the convective term and a
face gradient discretization of [#vk]c (§2.1) with Λ = αkµkI;

3. finally, discretize the momentum equation Qk at faces by using, for the convective and diffusive
terms, interpolations of the form

[∇.(αkρk#vk ⊗ #vk)]f =
!

c∈Cf

αfc#nf .[∇.(αkρk#vk ⊗ #vk)]c



where Cf = {c, c′} are the two cells neighboring c and where the coefficients αfc are chosen so that
$

αfc = 1 : in practice, the choice αfc =
dfc′

dfc+dfc′
, corresponding to a harmonic average, gave best

results. The pressure gradient term ∇p is obtained through a face discretization (as in §2.1) with
Λ = I : the remaining terms are local, so that they can be evaluated directly at face f .

If the convection and diffusion operators must be treated implicitly (for instance as part of a predictor step),
the cell and face velocity equations are solved simultaneously, in a linear system of the form

"
MC MFC
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#
.

"
[δ#v]C
[δv]F

#
=

"
[δQ]C
[δQ]F

#
;

the bottom-left term of this matrix is null as the face equations depend on the cell velocities, but the cell
equations do not depend on the face velocities. In a semi-implicit solution method such as ICE, the past
time cell velocities [#v−

k ]c can be used directly when evaluating the convection and diffusion operators at the
faces : hence, the cell equations do not need to be solved at all.

Because the face equations [Qk]F use a direct face discretization of the pressure gradient, this discretization
offers the same pressure-velocity coupling as a completely staggered scheme: however, its convection and
diffusion operators are the same as those of a collocated scheme. In single-phase, its stability and conver-
gence properties have been checked against the FVCA8 benchmarks []. A similar approach has been ex-
plored in OpenFOAM, where it was observed to reduce checkerboard modes compared to a fully-collocated
formulation [Wheeler, Radman]

3. Solver benchmarking on sedimentation test case

4. TrioMC physical models for sodium boiling

The initial reimplementation of TrioMC based on PolyMAC [1] implemented, as source terms, a number of
physical models in order to model single-phase flows :

• in the momentum equations, the “uCTD” detailed Cheng-Todreas correlation in the axial
direction [2] and the Gunther-Shaw correlation [3] in the transverse direction;

• in the energy equation, wall heat transfers based on the Seban-Shimazaki [4] Nusselt number
correlation. These transfers occur both where the fluid is in contact with an explicitly-solid mesh
(such as the hexagonal wrapper) and with immersed pins, which are not explicitly present in the fluid
mesh. Internal conduction within each of these pins is modeled by a 3D, cylindrical coordinates heat
conduction module;

• in both equations, diffusion coefficients are modified in the transverse direction in order to account
for the tortuosity of the medium (which reduces diffusive transfers compared to the axial direction)
and to account for mixing effects due to wire wrappers. In periheral channels, wires result in
convective rather than in diffusive mixing: in these channels, the Gunter-Shaw transverse pressure
drop correlation is modified to account for this “swirling” force.

In order to extend TrioMC to two-phase flows, these models must be complemented by a number of ad-
ditional correlations. The choices below took as a starting point the SABENA code [5], with modification
guided by experience accumulated at CEA over the validation of CATHARE [6] and BACCARAT [7]. The
following models were implemented:



Flow pattern

Due to the high liquid-gas density ratio of sodium, the flow pattern is assumed to be purely annular : in
practice, simulated void fractions rarely fall below α ∼ 0.7. Thus, the interfacial area Ai, as well as length
scales associated with the liquid film (δl) and gas core (δg) can be estimated easily:

Ai =
4
√
αg

Dh
, δl =

Dh

2
(1−√

αg) , δg = Dh − 2δl

with Dh the local hydraulic diameter.
Source: SABENA

Momentum transfers

Consistently with the assumption of annular flow, the Wallis interfacial friction correlation [8] is used for
interfacial friction:
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lg = −#F i
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i
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Source: SABENA
Wall friction is computed via a modified Muhler-Steinhagen-Heck [9] two-phase multiplier:
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where #G =
$

αkρk#vk is the total mass flux, x is the flow quality and fl, fg are single-phase friction factors
obtained by assuming that then flow G is completely liquid or gaseous. The coefficient β = 1.2 was added
in [7] to improve pressure drop predictions in the CEA GR19 experiment.
This wall friction acts entirely on the liquid phase (#Fw

l = #Fw, #Fw
g = #0) as long as αl > 10−3, with a linear

switch to #Fw
g for 0 ≤ αl ≤ 10−3.

Source: BACCARAT

Heat transfers

Interfacial heat transfers on the liquid and gas side are computed by Nusselt number correlations:

qilg = Ai
λl

δl
Nul(Tsat − Tl) , q

i
gl = Ai

λg

δg
Nug(Tsat − Tg) (6)

where Nul and Nug are computed respectively by the Seban-Shimazaki [4] and Dittus-Boetler [10] corre-
lations.
Similarly, wall heat exchanges are computed as

qwl = Awl
λl

δl
Nul(Tw − Tl) , q

w
g = Awg

λg

δg
Nug(Tw − Tg) (7)

with Awl and Awg the volumetric wall area in contact with the liquid and gas phase. The liquid film is
assumed to completely cover the walls (Awl = Aw, Awg = 0) until αg = 0.975 : Awg is then increased
inearily with αg until αg = 0.99, after which (Awl = 0, Awg = Aw).
Source : original



5. Validation on the KNS-37 L22 Test

The KNS “compact sodium boiling” loop was commissioned at KIT/KfK in the 1970s in support of sodium
boiling studies in support of the SNR-300 reactor project [11]. Its 37-pin test section, KNS-37 (fig. 1),
featured a 37-pin bundle with spacer grids : the electrically-heated pins could each provide up to 16KW
with a cosine power profile. More than 100 boiling tests were performed on this test sections : among those,
the L22 test, consisting in a loss-of-flow transient at constant power with a flow halving time of 2.35s,
served as the reference test for two benchmarks [12] as well as for several validation studies [5]. It was thus
a natural first choice for a first two-phase validation of TrioMC.

(a) (b)

Figure 1. Overview of the KNS-37 experiment : loop (a), test section and power profile (b).

In order to reproduce the dynamic behavior associated with a transient test, the complete loop (fig. 1.a)
should ideally be modelled, for instance coupling TrioMC to the CATHARE system code. As a temporary
alternative, the main loop of the test section was modelled from the upstream pressure sensor P711 to the
downstream pressure sensor P716, with imposed pressure boundary conditions provided by experimental
measurements at these two locations: at low flow rates, this approximation is expected to be roughly equiv-
alent to the real loop behavior, due to the presence of a bypass line between these two locations. Other
boundary conditions include the test section inlet temperature (constant at T = 379◦), the bundle power
(713 KW) and heat losses at the outside of the hexcan (heat exchange at hext = 6.7 W/m2K with an external
temperature Text = 40◦).

The TrioMC fluid domain uses a single radial mesh in the upstream region (from P711 to P712), the standard
subchannel mesh in the bundle region (from P712 to P715), and an extrusion of the subchannel mesh in the
downstream region (from P715 to P716), for a total of around 7236 meshes: it is coupled to a solid domain
simulating the hexagonal wrapper. Calibration on the initial steady-state of the L22 tests led to a few changes
in the TrioMC models (§4):

• thermal balance considerations provided a 5% lower power estimate compared to the theoretical
value of 713 KW, as noticed in [11]. The thermal power input in the TrioMC model was thus



reduced by this amount;
• pressure signals P712, P713 and P714 indicated that the axial pressure drop in the test section was

severely underestimated by the uCTD correlation, as the nine spacer grids (fig. 1b) were unaccounted
for. A multiplicative factor of 2.3 was applied in order to recover the correct pressure drop;

• finally, analysis of the initial radial temperature profile showed that transverse heat transfers were
underestimated as well, likely because the spacer grid led to mixing effects. A factor of 2 was
applied to the transverse mixing coefficients to account for this effect.

The following phenomena occur over the L22 transient:

• boiling starts in the center subchannels at t = 6.11s;
• (A) from t = 6.91s, this boiling leads to high-frequency pressure/flowrate oscillations;

Figure 2. TrioMC simulation of the KNS-37 L22 test: subchannel mesh (left), comparison between
calculated (top) and experimental (bottom) boiling regions at t = 6.91s (A), t = 9.31s (B), t = 9.25s (C)
and t = 9.45s (D).



• (B) at t = 8.31s, boiling reaches the peripheral channels. This leads to the end of oscillatory
behavior, as it is replaced by a rapid mass flow rate decrease (flow redistribution);

• (C) at t = 9.25s, pin wall temperatures in the central channels start to rise rapidly, indicating dryout;
• at t = 9.45s, a pin wall temperature reaches 950◦, triggering a power shutoff to preserve the

experiment;
• (D) vaporisation peaks at t = 9.65s, then condenses rapidly as the mass flowrate recovers.

The progression of the boiling region is broadly captured by the TrioMC simulation (fig. 2). Analysis of the
mass flowrate and pressure signals (fig. 3a-b) shows that :

• in the radial expansion phase (A-B), overall flowrate and pressure trends are well predicted, although
the oscillatory behavior in this phase is underestimated;

• in the axial expansion phase (B-D), flowrate and pressure trends are captured well;
• in the condensation phase after (D), the code predicts more recondensation at the top of the vapor

region than observed in the experiment, leading to an underprediction of the outlet mass flowrate
F603 and to the prediction of pressure peaks.

Analysis of the pin surface temperatures at two levels of the heated section (fig. 3c-d) shows that temper-
ature evolutions before dryout are predicted well. The dryout itself is reproduced correctly in the center
subchannels (T539 on fig.3c, T555 on fig.3d): howvever, the code also predicts a radial expansion of the
dryout zone that is not born out experimentally. This indicates that the dryout criterion (the transition from
Awl to Awg in (7)) may require further work. It should be noted that the experimental dryout zone seems to
be dissymetric (for instance, compare T550 and T554 in fig.3d).

Conclusion

The TrioMC SFR subchannel code was successfully extended to two-phase flows. This required the de-
velopment of a multiphase solver in the underlying TRUST platform both applicable to general polyhedral
meshes and robust enough to sustain the abrupt phenomena associated with boiling at high density ratios.
This was achieved by generalizing the numerical strategy adopted by system codes. First, a flexible archi-
tecture for assembling the 3N -equation system and solving it with the ICE scheme was first implemented
in TRUST: then, the underlying PolyMAC numerical scheme was modified to satisfy the new requirements
imposed by the architecture (in particular the ability to solve a single linear system on the pressure unknowns
at each iteration).

Based on this developments, a first set of correlations was implemented in TrioMC (§4). Initial validation
of the resulting 6-equations model on the KNS-37 L22 test (§5) showed encouraging results, but also led to
the identification of several areas for improvement:

• radial expansion of the dryout region was overpredicted by the code, indicating that the simple
dryout criterion by the wall heat transfer models (7) should be improved;

• the condensation phase following the power shut-off was considerably more violent in the
calculation than observed experimentally : improvements to the interfacial heat transfer models (6)
could solve this issue.

Overall, the L22 transient exhibits both high void fractions (with αl < 1%) and high gas velocities (with vg
rising above 50m/s in the two-phase region). In this regime, entrainment of the liqudi film by the gas core is



(a) (b)

(c) (d)

Figure 3. Comparison between simulation (plain lines) and experimental results (dots) for L22 test:
(a) mass flowrates, (b) pressure signals, pin surface temperatures at (c) z = 720mm and (d) z = 870mm
(see fig. 1.b).



expected to play a major role, resulting in particular in faster dryout at high gas velocities. In order to study
this issue further, a three-field model (liquid film, droplets and gas) will be implemented in TrioMC: this
approach was explored in SABENA [13] with promising results.

Aside from physical models, simulating the remaining parts of the KNS-37 loop (bypass line, pump and
extension tanks) should also improve the prediction of dynamical aspects. For this purpose, the TrioMC
model developed here will be coupled to the CATHARE model of the entire loop
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