
HAL Id: cea-04432876
https://cea.hal.science/cea-04432876

Submitted on 1 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Papyrus4Manufacturing: A model-based systems
engineering approach to AAS digital twins

Saadia Dhouib, Yining Huang, Asma Smaoui, Tapanta Bhanja, Volkan Gezer

To cite this version:
Saadia Dhouib, Yining Huang, Asma Smaoui, Tapanta Bhanja, Volkan Gezer. Pa-
pyrus4Manufacturing: A model-based systems engineering approach to AAS digital twins. IEEE
ETFA 2023 - IEEE 28th International Conference on Emerging Technologies and Factory Automa-
tion, Sep 2023, Sinaia, Romania. pp.1-8, �10.1109/ETFA54631.2023.10275523�. �cea-04432876�

https://cea.hal.science/cea-04432876
https://hal.archives-ouvertes.fr


Papyrus4Manufacturing: A Model-Based Systems
Engineering approach to AAS Digital Twins

Saadia Dhouib∗ , Yining Huang∗ , Asma Smaoui∗, Tapanta Bhanja† , and Volkan Gezer†
∗Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France

†Innovative Factory Systems, German Research Center for Artificial Intelligence (DFKI), 67660, Kaiserslautern, Germany
Email: {yining.huang, saadia.dhouib, asma.smaoui}@cea.fr

{tapanta.bhanja, volkan.gezer}@dfki.de

Abstract—As digital twins gain momentum in their usage in di-
verse domains, the concept of Asset Administration Shells (AAS)
has become very relevant for achieving the digital twin approach,
where Administration Shells are the digital representation of
physical assets. Being a relatively new concept in the Industrial
Internet of Things (IIoT) domain, the tools and approaches for
creating and deploying AASs are likewise in infancy. This paper
introduces an open-source tool, Papyrus4Manufacturing, which
provides a model-based systems engineering approach to the
AAS. This toolset supports the creation of AAS digital twins from
modeling to automatic deployment and connection to assets using
the OPC UA protocol. This paper also includes an evaluation of
its usability, as it is put to test with an academic use case.

Index Terms—Digital Twins, Asset Administration Shell,
Model-Based System Engineering, Unified Modelling Language,
UML Profiles, Generative Software Engineering, OPC UA,
BaSyx, Eclipse Papyrus

I. INTRODUCTION

Digital Twins (DT), as defined by [1], are high-fidelity
virtual models of physical objects in virtual space in order
to stimulate their behaviors in the real world and provide
feedback. DT has and will become part and parcel of the In-
dustrial Internet of Things. With the industrial entities gaining
computational abilities, connecting the surrounding physical
world and the ongoing processes in it, exchanging information,
and processing data [2], a need for a common language
that describes the system DT with a clear projection of the
system architecture, representing the whole system coherently
at various levels of abstraction, while avoiding information
silos, has become imminent [3]. This standardization is driven
by the concept of Asset Administration Shell (AAS) [4], which
defines the meta-model for modeling such digital twins of
physical assets or cyber-physical systems.

Model-Based Systems Engineering (MBSE) - is a for-
malized methodology that puts models at the central focus
of system design and is used to support the requirements,
design, analysis, verification, and validation associated with
the development of complex systems that are increasingly
adaptable to the digital-modeling environment [5]. The term
system is defined here, according to Walden et al. [6], as

The work has received funding from the European Union’s Horizon 2020
program via Project GA Nr. 952003 AI REGIO and from the European
Institute of Innovation and Technology (EIT), a body of the European Union,
under the Horizon 2020 program, via the CanvAAS project.

an integrated set of elements, subsystems, or assemblies that
accomplish a defined objective. The system could be diverse
ranging from a complex chain of interconnected independent
machine and machine tools to a single hardware or a software
component being coherent to the definition of asset defined in
[4]. According to [7], to fight the ever increasing complexity
of embedded devices, embedded software development has
been through a trend shift from manual to model-driven devel-
opment (MDD), just like high-level programming languages
have almost replaced assembly language. However generic
model-driven development languages like UML, is an abstract
modeling language, built to fit all domains and needs. A need
for refinement of UML arises when considering a specific
domain, which in the case of this paper are DTs for the
manufacturing industry.

The toolset presented in this paper, Papyrus4Manufacturing
(P4M), extends the UML Modeling Tool Papyrus, to meet the
standards of the AAS. In addition to the AAS models creation,
P4M automates the deployment of these models. The code
generation of the digital twins from the AAS models permits
the establishment of communication between the digital twin
and its physical counterpart.

This article is organized as follows. Section II presents the
related work. Section III briefly explains the architecture of
the developed tool P4M followed by an introduction to the
AAS-based modeling environment in Section IV. The BaSyx
code generation and deployment of this tool are covered in
Section V. Section VI presents an academic use case where
the tool was tested and iteratively developed with. The article
is concluded with a discussion and conclusion about the work
and its further development scope.

II. RELATED WORKS

The drive towards the Industry 4.0 and the novel concept
of the Asset Administration Shell have invited professionals
across industries and the scientific community to put efforts
towards realizing the concepts at the operative level. These
efforts have led to standardization activities like - the devel-
opment of the RAMI (Reference Architecture Model Industrie
4.0) [8] and the Details of the Asset Administration Shell [4],
which helps in providing the cornerstones while developing
the AASs for representing any considered ecosystem of Cyber-
Physical Systems (CPS). The advancements are not just lim-

https://orcid.org/0000-0003-3896-7295
https://orcid.org/0000-0003-0106-8771
https://orcid.org/0000-0003-3661-6715
https://orcid.org/0000-0003-1988-1162


ited to the reference architectures and standards but are also
seen in the various implementations of the concept of AAS.
These projects include not only the development of Software
Development Kits (SDKs) such as BaSyx [9], but also some
implementation efforts like Fraunhofer Advanced AAS Tools
(FA3ST) [10], AAS Package Explorer [11], SAP I4.0 AAS [12]
and NOVAAS [13].

Eclipse BaSyx provides an execution infrastructure for AAS
models, but it doesn’t support a ready-to-use HMI (Human-
Machine Interface) tool for non-tech-savy users. Instead, it
provides software development kits in JAVA, .Net Core, and
C++ [14]. The SDKs act as the basis for creating applica-
tions where information is modeled and transferred using the
standards of the AAS.

FA3ST [10] is a java-coded service-oriented tool. It includes
a predefined implementation for HTTP and OPC UA-based
protocols endpoint, JSON serializer and deserializer, file and
database-backed persistence manager, as well as MQTT and
OPC UA-based asset connections. A FA3ST service can be
deployed either as a Java JAR file or as a Docker container.
Compared to BaSyx, FA3ST provides more features, such
as the integration with Apache StreamPipes (a toolbox for
Industrial IoT with a focus on stream processing) as well as
with the international data spaces (IDS).

The AASX Package Explorer (AASX PE) is a user-friendly
application with a GUI which provides working tools and
components for the creation of AAS models based on the
specification [4] [11]. As AASX PE is a tool most used
today for the specification of AAS models, many middelwares
offer the possibility of being configured with .aasx files for
execution.

Both the FA3ST service and AASX Package Explorer offer
an HTTP and an OPC UA-based service endpoint; however,
in the AASX Package Explorer, they are not synchronized,
meaning that changes to the DT via one type of endpoint
are not reflected in the other. The AASX PE provides some
functionality beyond the specification and is not implemented
by FA3ST Service, such as HTTPS/SSL MQTT endpoint and
a graphical user interface. However, connecting the DT to
existing assets is limited to OPC UA.

On the other hand, the SAP I4.0 AAS, implemented in
JavaScript, TypeScript, and Go, offers a GUI for describing
an asset as per the standard of AAS. NOVAAS [13] is a
Node-RED-based implementation of the AAS specification
[14]. It has a strong focus on JSON, HTTP, MQTT, and
usability, e.g., it provides user management and a dashboard
to visualize live data. Still, it does not address essential parts
of the specification, such as different data formats or OPC UA.
Moreover, NOVAAS is realized using only Node-RED so it is
less capable to integrate with other systems.

An aspect that lacks in all of the above-mentioned tech-
nology tools for the creation of the AAS is the model-
driven approach. In light of the benefits that model-driven
development approaches bring, as mentioned in Section I,
it is apparent that a model-driven development approach to
the AAS is also necessary. The tool Papyrus4Manufacturing

TABLE I
TOOLS IMPLEMENTING AAS STANDARD

Tool HMI MBSE Asset Connection AAS Execution

AASX
PE

Yes No OPC UA Yes (with
different
middlewares)

NO-
VAAS

Yes
(web
based)

No OPC UA/ HTTP/
MQTT

Yes

SAP Yes
(web
based)

No No Yes

FA3ST No No OPC UA/ HTTP/
MQTT

Yes

P4M Yes Yes OPC UA/ HTTP/
MQTT/ WebSocket/
ROS

Yes (automatic
code gen to
BaSyx)

[15] provides exactly the needed MBSE approach to AAS.
P4M was developed on top of the UML-Modeling tool, which
provides features restricted to the standard - Details of the
Asset Administration Shell, in order to provide a graphical
modeling environment that helps to model an AAS.

Moreover, while Roth and Rumpe (2015) [16] mention
that code generators are an integral part of any model-driven
development process, Höllder et. al. [17] say that constructive
generation or synthesis of code from the models needs to be
among the first steps of a model-based development process
implying the necessity of code generation. Thus, during the
development of P4M, the feature of code generation from the
models developed using the UML-based modeling tool was
taken into account. The BaSyx Java SDK [9], an open-source
middleware for the implementation of AAS, was used as the
code generation target.

Table I illustrates a comparison of the previous related
works, i.e. tools implementing the AAS Standards. We can
see that all the tools are implementing the AAS standard and
propose an execution of the AAS model by manually creating
the software code. However, only our tool is (1) providing the
automatic generation of the executable code from the AAS
models and (2) ensuring the synchronization between the AAS
models and the executable code.

III. PAPYRUS4MANUFACTURING ARCHITECTURE

P4M is a novel open-source toolset for digital twins model-
ing and deployment, released with an open-source license in
the Eclipse platform [15]. It is fully compliant with the AAS
specification and provides automatic integration with BaSyx,
the open-source middleware for Industry 4.0 applications. P4M
is based on two open-source tools Papyrus [18] and BaSyx
[9]: Papyrus for the AAS graphical modeling interface and
BaSyx for the AAS execution infrastructure as shown in Fig. 1.
The toolset implements the AAS meta-model published in
the AAS specification [4], which offers a graphical modeling



environment for designing AAS-compliant digital twins and
enables their code generation to the BaSyx middleware, then
their deployment to an AAS HTTP server. AAS digital twins
running in the AAS server are made accessible through a
REST API, thus any data analytic application or dashboard
can connect to the AAS server and request data from the
Administration Shell (digital twin) of a physical asset. As
shown in Fig. 1, owing to the use of BaSyx as the middleware,
P4M is able to offer an OPC UA Adapter which enables
the establishment of communication with physical assets over
an OPC UA communication protocol. It is important to
mention that any number of OPC UA connections can be
initialized which implies that there is no limit to the amount
of physical assets being connected to the AAS as long as
they communicate using an OPC UA communication protocol.
The toolset is also interoperable with other environments
supporting the AAS specification. Indeed, it offers a data
exchange functionality using the AASX package format or
JSON.

AAS Digital Twins Design

BaSyx Middleware

Assets

AAS Server

Automatic Code
Generation

OPC UA Communication

Deployment

Dashboard

REST
Request OPC UA Adapter

AAS 
Repositories

AASX

JSON

Fig. 1. Papyrus4Manufacturing Architecture

IV. AAS-BASED MODELING ENVIRONMENT

The AAS-based modeling environment was developed as
an ISO/IEC/IEEE 42010 compliant architecture framework
[19] (Fig.2). It provides several modeling editors in order to
create multiple views for the description of AAS-based digital
twins architectures. The modeling environment is embedding
a domain-specific modeling language (DSML) that governs all
the viewpoints of the architecture framework. The DSML is
a UML profile that implements the AAS meta-model (version
3RC1). We have chosen the UML profile mechanism since the
AAS-based modeling environment is implemented as an ex-
tension of Papyrus [18] which is an open-source model-driven
workbench supporting the OMG modeling language standards:
UML, SysML, and BPMN. Extending an existing modeling
environment is a well-suited approach for developing DSMLs
in an iterative way, taking advantage of the already existing
modeling diagrams and consequently avoiding developing the
environment from scratch.

AAS Meta-Model

AAS UML Profile

UML Meta-Model

extends implements

stereotypes constraints

restricts

AAS Modeling Editors

Graphical
Modeling
Diagrams

Tabular 
Editors

governs

AAS Models

governs

BaSyx deployment
requirements

satisfies

Fig. 2. Papyrus4Manufacturing Modelling Environment

<<DataType>> 
AssetInformation

<<Metaclass>> 
Class

<<Stereotype>> 
Reference
{abstract} 

<<Stereotype>> 
AssetAdministrationShell

<<Stereotype>> 
SubmodelElementCollection

<<Stereotype>> 
ConceptDescription

1

1

1

*

*

<<Stereotype>> 
SubmodelElement 

{abstract} 
<<Metaclass>> 

Property
<<Metaclass>> 

Operation

<<Stereotype>> 
Capability

<<Stereotype>> 
Property

<<Stereotype>> 
Entity

<<Stereotype>> 
Event

<<Stereotype>> 
Operation

<<Stereotype>> 
DataElement 

{abstract} 

<<Stereotype>> 
ReferenceElement

<<Stereotype>> 
File

Extension
Association

Generalization

*

<<Stereotype>> 
Submodel

/submodelElements:SubmodelElement*
...

Fig. 3. Excerpt from the AAS UML profile

A. AAS UML Profile

First, we implemented the AAS meta-model as a UML
profile in Papyrus. Figure 3 shows an excerpt from the UML
profile, the whole model is available in the git repository
of P4M1. UML profiles are a straightforward mechanism for
extending the UML meta-model with concepts that are specific
to a particular domain. The primary extension construct in

1https://git.eclipse.org/c/papyrus/org.eclipse.papyrus-manufacturing.git/
tree/aas/plugins/modeling/org.eclipse.papyrus.aas.profile/resources

https://git.eclipse.org/c/papyrus/org.eclipse.papyrus-manufacturing.git/tree/aas/plugins/modeling/org.eclipse.papyrus.aas.profile/resources
https://git.eclipse.org/c/papyrus/org.eclipse.papyrus-manufacturing.git/tree/aas/plugins/modeling/org.eclipse.papyrus.aas.profile/resources


a profile is the Stereotype. We defined a mapping between
the AAS meta-model and the UML meta-model based on the
semantics of each meta-model construct, the semantics must
be compliant.

• AssetAdministrationShell, Asset, Submodel, Submod-
elElementCollection, Reference, ConceptDescription
stereotypes extend the UML meta-class Class since each
of the semantics of these AAS concepts are compliant
with the semantics of Class: “The purpose of a Class is
to specify a classification of objects and to specify the
Features that characterize the structure and behavior of
those objects” [20]. In order to restrict the semantics of
UML meta-class Class, we define constraints attached to
each stereotype. For example, an Asset must not contain
attributes, operations, and behaviors.

• Each SubmodelElement extends a specific meta-class
depending on its semantics. For example, the “Operation”
stereotype extends the UML meta-class Operation with
the restriction: the return parameter of the UML operation
is not considered since AAS operations support only in,
out, and inout parameters.

• Capabilities and Skills are specializations of Submod-
elElements. Capabilities are represented using the “Ca-
pability” stereotype that extends the Property meta-class
from UML with the constraint that the Capability does not
have a type. Skills are represented using the “Operation”
stereotype that extends the Operation meta-class from
UML. In capability-based engineering captured from [21]
and [22], the Capability concept (a type of AAS Sub-
modelElement) is an abstract description of the function-
ality of a production resource while the skill concept is
the asset-dependent implementation to achieve a certain
effect. The main goal of capability-based engineering
is to design, implement and then dynamically operate
the system according to the functions required in each
step of the production process, rather than explicitly
specifying the actual production resources. In article [23],
we presented the possibility of Capability and Skills
modeling in P4M.

B. AAS UML Profile Constraints
Besides the UML stereotypes presented in the previous

section, we developed Java EMF constraints2 that restrict
the usage of UML meta-classes extent by the stereotypes.
These Java constraints implement the semantics of the AAS
concepts. Examples of constraints are listed below. All the
Java constraints are available in the AAS validation plugin3.

• Constraint “AAS must contain only submodels”: all the
UML nestedClassifiers of the class stereotyped with
“AAS” must be stereotyped with “Submodel”

• Constraint “A submodel contains only submodelEle-
ments”: all the UML ownedElements (attributes, oper-
ations and nestedClassifiers) of a submodel UML class

2https://www.eclipse.org/emf-validation/
3https://git.eclipse.org/c/papyrus/org.eclipse.papyrus-manufacturing.git/

tree/aas/plugins/modeling/org.eclipse.papyrus.aas.validation

must be stereotyped with a stereotype that inherits from
the SubmodelElement stereotype.

• Constraint “an Asset must contain neither attributes, nor
operations, nor sub-classes”

• Constraint “an Identifiable must have an identifier”: the
identification attribute of the stereotype Identifiable must
have a value.

• Constraint “an AAS must reference an asset” : the asset-
Information attribute of the AAS stereotype must have a
value.

Constraints are implemented as model validation rules that
can be executed manually by the AAS designer (batch mode)
or automatically triggered by the modeling tool (live mode).
Model validation is mandatory before automatic code genera-
tion, it prevents generating erroneous code.

C. Semantic Annotation of AAS Models

Although the AAS standard provides syntactic interoper-
ability for assets cross-vendor, the semantic interoperability
problem remains. Ontologies define semantic models of data
combined with relevant domain knowledge and formulate in-
ference strategies. In P4M, we covered the semantic annotation
of standardized AAS data models with domain-specific ontolo-
gies and reasoning features, which bring together the power
of modeling and ontology to create the ultimate combination.
In article [24] we addressed an approach, which provides the
semantic meanings defined in a specific ontology (MaRCO
ontology [25]) to digital twin AAS models with a concrete
example. In addition, this method is not only applicable to
MaRCO ontology but also to any other ontology. The reason
we choose MaRCO is that it provides a good foundation
for capability matchmaking in a capability-based engineering
approach.

D. AAS Modeling Editors

The AAS graphical modeling editors consist of:

• a diagram for creating AASs and Submodels. This dia-
gram is an extension of the UML Class diagram, it hides
all the UML terminology and exposes only the AAS-
specific concepts.

• a diagram for creating a bill of material submodel. This
diagram is an extension of UML composite structure
diagrams.

• a diagram for creating BPMN processes diagrams. This
diagram is an extension of UML activity diagrams and
exposes a subset of the BPMN [26] language. It is the
basis for modeling production and assembly processes
inside an AAS Submodel.

• tabular editors for SubmodelElements creation and bill of
material creation. In order to integrate data from external
sources, the tabular editors support importing/exporting
data from/to MS Excel sources.

All the details of the editors are shown in the P4M [15]
documentation.

https://www.eclipse.org/emf-validation/
https://git.eclipse.org/c/papyrus/org.eclipse.papyrus-manufacturing.git/tree/aas/plugins/modeling/org.eclipse.papyrus.aas.validation
https://git.eclipse.org/c/papyrus/org.eclipse.papyrus-manufacturing.git/tree/aas/plugins/modeling/org.eclipse.papyrus.aas.validation


V. CODE GENERATION AND DEPLOYMENT

As discussed in Section II, code generators are an in-
tegral part of model-driven development, which allows an
automatic and iterative transformation of abstract models to
concrete code. The code generator is defined as a deter-
ministic and interactive system that terminates creating an
implementation (code) in a programming language from a
set of input artifacts, where the artifacts are typically models.
Papyrus4Manufacturing perfectly fits the definition above. The
developed model-based systems engineering tool does in fact
provide an iterative development of AASs, from the UML-
based models converting them into deployable implementation
codes.

Besides, the code generators generally consist of a front-
end part, language processing and a back-end part, code
generation. The front-end part receives information in an input
language and processes it using the language processor, while
the back-end part maps this information to the target language
using the code generator. P4M follows a similar principle.
UML models which represent the AAS of assets being mod-
eled are the set of input artifacts that are converted to the
target language Java. The developed AAS-based modeling
environment in Papyrus is the language processor here, while
the BaSyx code generator takes the role of code generation.

A. BaSyx Code Generation

AAS Java API AAS Model in
Papyrus (UML)

AAS Meta-model
conforms_to conforms_to

Model
TransformationAAS Java

Objects generate
call

instance_of

input

BaSyx Java Code

generate

BaSyx Codegen API

Project FileUtils

AASModule
Creator

SubModel
Creator

DEWorkspace
Creator

DataHandler
Creator

FileGenerator MLP
Gnerator

Operation
Generator

Property
Generator

SEC
Generator

use

use

use use

Fig. 4. Architectural Overview of Code Generator

Figure 4, shows an overview of the code generator architec-
ture P4M uses in translating the input model and its artifacts to

the code generator using the BaSyx SDK [9] as a middleware.
In the background, when a model is created in P4M, it effec-
tively generates AAS Java Objects by transforming UML/AAS
model elements to AAS Java API objects [27]. The BaSyx
Codegen API uses the same object in its framework for code
generation. This enables the tool, P4M, to invoke the BaSyx
Codegen API using the created AAS JAVA API objects, as
mentioned above, and generate code that corresponds to the
model. The generated project is a holistic package ready for
deployment of the contained AAS on any HTTP Server (which
is specified in the model by the user during modeling phase).

The architecture and the interaction of each class in the
code generator is shown inside the Basyx Codegen API block
(Figure 4. The code generator is added to the Papyrus Code-
base as an Eclipse Plugin. The Project class is used as the
gateway to the several constituent generator classes of the
code generator plugin. The code generator has a FileUtils
class which contains static methods that help in the File
operations at the system level - creating directories, copying
files and artifacts, writing files with contents are some of the
major functionalities that this class offers. There are four main
generator classes associated with the Project class which take
on the role of code generator from the model inputs - AASMod-
uleCreator, DEWorkspaceCreator, DataHandlerCreator and
SubModelCreator.

The AASModuleCreator - generates codes for classes that
are responsible for creating the BaSyx Context Information
and hosting the AAS thus created, on a Tomcat Server to
have it available communicating with the HTTP Protocol.
Communication with AAS, thus working with the REST API
calls.

The DEWorkspaceCreator - generates a class DynamicEle-
mentsWorkspace which creates the space to define the behavior
of SubmodelElements of the AAS that are defined by the user
to be dynamic. The behavior of these dynamic elements is
to be encoded using Java. This DynamicElementsWorkspace
ensures that the user is able to deal with the code base at a
single point and with knowledge of Java.

The DataHandlerCreator generates classes in the generated
code that are responsible for generating the connector wrap-
pers for assets and the dependent variable class types for the
generated BaSyx code. The connector wrappers now supported
are - OPCUAConnectorWrapper, HTTPConnectorWrapper,
MQTTConnectorWrapper, WebSocketConnectorWrapper and
ROSConnectorWrapper.

The SubModelCreator generates the constituents of the Sub-
models. By parsing the AAS instance from the AAS Java API,
the SubModelCreator invokes the different submodel elements
generator class - FileGenerator - for SubmodelElements File,
MLPGenerator - for SubmodelElements MultiLanguageProp-
erty, SECGenerator - for SubmodelElements SubModelEle-
mentCollection, OperationGenerator - for SubmodelElements
Operation and PropertyGenerator - for SubmodelElements
Property. The code is generated based on the user specification
at the modeling environment, thereby making it conformant to
AAS API in BaSyx.



B. Java Development Tool Synchronization with AAS Models

As mentioned above, the DEWorkspaceCreator generates
a class DynamicElementsWorkspace which creates the Java
class to define the behavior of dynamic submodelElements
of the AAS. The behavior of these dynamic elements (Prop-
erty, Operation) should be encoded using Java. In fact, it is
easier for the user to specify the behavior of each dynamic
SubmodelElement (Property, Operation) directly in the Java
file (and not in the Papyrus model) to take advantage of the
several features of the Eclipse JDT Editor like completion,
syntax analysis, etc. However, if the user defines the behavior
of a dynamic property by encoding a getProperty() in the
DynamicElementsworkspace and regenerates its Java code,
this behavior will be lost because the Papyrus model is not
aware of it (the code is generated from the Papyrus model).
To overcome this synchronization problem, we developed
a functionality that ensures the automatic synchronization
between the Java code edited by the user and the P4M
UML/AAS model in both directions. If the user modifies the
generated Java code, the UML/AAS model will be notified and
updated. At the same time, if the user modifies the UML/AAS
model, the Java code is notified and updated. This functionality
improves the usability of the P4M tool by relieving the user
from the error prone manual synchronization task.

VI. ACADEMIC USE CASE - I4.0 ROBOTIC CELL

We have developed an academic demonstrator representing
an I4.0 Robotic Cell which is a proof of concept for I4.0 digital
twin research. The I4.0 production cell comprises several
components for production and communication as illustrated
in Figure 5. It includes a Niryo Ned robotic arm, a TurtleBot3
AGV, a conveyor belt, a human operator, a storage zone, a
workspace, and a Raspberry Pi 3 Model B+. In the initial
development phase, Raspberry hosts an OPC UA PubSub
brokerless server, which provides the operational data and the
device operations access via an OPC UA information model.

The use case for this production cell involves transporting
objects from the storage zone to the workspace for assembly
by the operator. The I4.0 Robotic Cell demonstrates the ability
to control a mini production cell using the P4M toolset. In
this use case, the toolset provides the roles of modeling and
deployment:

NET
OPC UA
Server

I4.0 Robotic Cell

Pub/Sub
Client/Server

Fig. 5. I4.0 Robotic Cell demonstrator components

Fig. 6. AAS Process specification example

• Design standardized AAS models of production re-
sources, and their provided capabilities and describe the
production processes using BPMN diagrams.

• Generation of runtime AAS code for monitoring and
automated control

A. I4.0 Robotic Cell AAS Models

According to the definition given by Plattform I4.0, all
relevant participants are I4.0 components, which we call
assets. The assets in the use case are the resources, production
processes, and products introduced in the previous paragraph.
To model the processes, BPMN diagrams are provided in P4M
for modeling a process workflow.

The AAS model specification of the assembly process can
be found in Figure 6, where a Submodel declares the capabil-
ities required by the process steps and their semantic annota-
tion comes from MaRCO ontology (PickAndPlaceFlexible &
Transporting). An operation “Workflow” is be created to host
the BPMN Process diagram of this production process.The
BPMN Process diagram can also be used to describe the
skill behaviors. The skills in the context of capability-based
engineering refer to the implementation of AAS Capabilities.
In our use case we modeled the skill by an AAS Operation,
which has a behavior modeled as a BPMN process (Figure 7).
The BPMN process defines the sequence of Operation Calls
that compose the behavior (i.e. implementation) of the skill.

Fig. 7. BPMN Process diagram of TurtleBot3 transport implementation



An OPC UA server permits the accessibility of the assets’
information model from the AAS server. For the resource
modeling in P4M, in order to connect with real-world devices
via OPC UA, the operations and dynamic properties of each
device are specified in an “OperationalData Submodel” with
their OPC UA nodeId information. Figure 8 shows the AAS
design diagram of TurtleBot3. The “Capabilities Submodel”
specifies the transporting capability offered by the device. The
“OperationalDatal LittleTurtle” exposes not only the dynamic
properties such as “BucketStatus” which refers to the object
reception status of this robot but also the operations exposed
by the OPC UA information model.

Fig. 8. AAS diagram of a TurtleBot3 instance

B. I4.0 Robotic Cell AAS Modules Generation

After the model specification phase, as presented in Sec-
tion V-A, a right-click menu on the AAS model allows the
generation of BaSyx executable code. The generated code
contains the Java methods to get Property values. However,
the behaviors of Operations still need to be implemented.
To enable the synchronization between Java code and P4M
UML/AAS model, the user needs only to right-click on the

selected Operation and choose “Designer - Open a JDT Edi-
tor”. This command will open the DynamicElementsworkspace
Java class of the generated submodelElement code, where we
can specify the behaviors. This synchronization function is
reflected in that after saving the newly changed code, the code
body will be saved in this AAS Operation as a UML method
as shown in Figure 10.

Fig. 10. JDT synchronization example

C. I4.0 Robotic Cell Process Execution

The functionality of transforming AAS models into BaSyx
code facilitates the deployment of an AAS model into an
HTTP server. The asset’s dynamic information model can be
accessed and modified through the HTTP requests sent to the
dynamic AAS server. Additionally, the API for invoking AAS
operations is available. To orchestrate the production process,
all the resources’ AAS servers involved in the process plan
should be started and continuously accessible. To visualize

Fig. 9. Node-RED flow



the result of the process execution, we published a video4 in
the documentation of Papyrus4Manufacturing.

To implement the production process, we used Node-RED:
a visual programming language development tool enabling
hardware devices to connect with online services and APIs.
The BPMN process in P4M can be easily transformed to Node-
RED workflow (Figure 9) for the execution. Two customized
AAS nodes in Node-RED have been developed to minimize
the number of nodes involved in the workflow: (1) AAS
Operation, this node enables the invocation of AAS Operations
by specifying the URL endpoint and the input parameters.
(2) AAS Property, this node permits the read/write value
functionality of a given URL endpoint.

VII. CONCLUSION

In this paper, we proposed a novel model-driven toolset,
Papyrus4Manufacturing, which enables the creation and de-
ployment of digital twins following the AAS specification.
The toolset integrates user-friendly editors for creating AAS
models (digital twins) and provides an automatic deploy-
ment functionality based on model transformations and code
generation. All along the development process of P4M, an
educational use case has demonstrated the functionalities of
this toolset.

Though P4M with its novel approach to bringing a model-
based system engineering approach to the domain of DTs and
AASs, it has a lot of potential for improvement. Integrating
Grafana Dashboards for data visualization and analysis could
enhance the value addition achieved. The current version of
P4M does not include an integrated connector to a database,
a possible further advancement would be the integration of a
database for data storage. Last but not the least, P4M is at its
current implementation not able to deploy multiple AASs to
the server. Enabling the use of BaSyx registry to host multiple
AASs would further enhance the usability and functionality of
the tool.

REFERENCES

[1] D. M. Grieves, “Digital twin: Manufacturing excellence through virtual
factory replication,” US Florida Institute of Technology, Melbourne
(2014), Tech. Rep., 01 2014.

[2] L. Monostori, Cyber-Physical Systems. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2018, pp. 1–8.

[3] E. R. Carroll and R. J. Malins, “Systematic literature review: How
is model-based systems engineering justified?.” 3 2016. [Online].
Available: https://www.osti.gov/biblio/1561164

[4] “Details of the asset administration shell - part1, version 3.0rc02,”
Tech. Rep., 11 2020. [Online]. Available: https://www.plattform-i40.
de/IP/Redaktion/DE/Downloads/Publikation/Details of the Asset
Administration Shell Part1 V3.pdf? blob=publicationFile&v=5

[5] N. Shevchenko, “An introduction to model-based systems
engineering (mbse),” Carnegie Mellon University’s Soft-
ware Engineering Institute Blog, Dec. 21 2020, ac-
cessed:30.06.2022. [Online]. Available: http://insights.sei.cmu.edu/blog/
introduction-model-based-systems-engineering-mbse/

[6] D. D. Walden, G. J. Roedler, K. J. Forsberg, R. D. Hamelin, and T. M.
Shortell, Systems Engineering Overview. San Diego, CA, USA: John
Wiley & Sons, Inc., 2015, pp. 5–16.

[7] P. Liggesmeyer and M. Trapp, “Trends in embedded software engineer-
ing,” IEEE Software, vol. 26, no. 3, pp. 19–25, 2009.

4https://youtu.be/G5Hfinm guE

[8] D. K. Schweichhart, “Reference architectural model
industrie 4.0 (rami 4.0).” [Online]. Available: https:
//ec.europa.eu/futurium/en/system/files/ged/a2-schweichhart-reference
architectural model industrie 4.0 rami 4.0.pdf

[9] Fraunhofer iese, eclipse basyx. [Online]. Available: https://www.eclipse.
org/basyx/

[10] L. Stojanovic, T. Usländer, F. Volz, C. Weißenbacher, J. Müller,
M. Jacoby, and T. Bischoff, “Methodology and tools for digital twin
managementmdash;the fa3st approach,” IoT, vol. 2, no. 4, pp. 717–740,
2021. [Online]. Available: https://www.mdpi.com/2624-831X/2/4/36

[11] A. Orzelski, M. Hoffmeister, and M. Ristin. Eclipse aasx package
explorer. [Online]. Available: https://projects.eclipse.org/proposals/
eclipse-aasx-package-explorer

[12] S. Wolf, K. Rehman, H. Dickel, T. Ostermann, M. Sauer, P. Huebner,
and Y. Schiebelhut, “Sap/i40-aas.” [Online]. Available: https://github.
com/SAP/i40-aas

[13] G. D. Orio, P. Maló, and J. Barata, “NOVAAS: A reference
implementation of industrie4.0 asset administration shell with best-of-
breed practices from IT engineering,” in IECON 2019. IEEE, 2019,
pp. 5505–5512. [Online]. Available: https://doi.org/10.1109/IECON.
2019.8927081

[14] P. D. Rudolf Pribiš, Lukáš Beňo, “Asset administration shell
design methodology using embedded opc unified architecture server,”
Electronics, vol. 10, no. 20, 2021. [Online]. Available: https:
//www.mdpi.com/2079-9292/10/20/2520

[15] S. Dhouib, A. Smaoui, I. Khemir, T. Bhanja, and V. Gezer, “Papyrus
for manufacturing,” 2023, (accessed: 06.04.2023). [Online]. Available:
https://www.eclipse.org/papyrus/components/manufacturing/

[16] A. Roth and B. Rumpe, “Towards product lining model-
driven development code generators,” in In Proceedings of
the 3rd International Conference on Model-Driven Engineering
and Software Development. SciTePress, 2015, pp. 539–
545. [Online]. Available: http://www.se-rwth.de/publications/
Towards-Product-Lining-Model-Driven-Development-Code-Generators.
pdf

[17] K. Hölldobler, J. Michael, J. O. Ringert, B. Rumpe, and A. Wortmann,
“Innovations in Model-based Software and Systems Engineering,” The
Journal of Object Technology, vol. 18, no. 1, July 2019.

[18] “Papyrus model driven workbench,” accessed: 30.06.2022. [Online].
Available: https://www.eclipse.org/papyrus/

[19] ISO/IEC/IEEE, “Systems and software engineering - architecture de-
scription,” ISO/IEC/IEEE 42010:2011(E), pp. 1 –46, 1 2011.

[20] “Omg, unified modeling language (uml) specification, version 2.5.1,”
accessed: 30.06.2022. [Online]. Available: https://www.omg.org/spec/
UML/

[21] P. I4.0, “Describing capabilities of industrie 4.0 components.”
[Online]. Available: https://www.plattform-i40.de/PI40/Redaktion/EN/
Downloads/Publikation/Capabilities Industrie40 Components.html

[22] ——, “Information model for capabilities, skills services.” [Online].
Available: https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/
Publikation/CapabilitiesSkillsServices.html

[23] Y. Huang, S. Dhouib, and J. Malenfant, “Aas capability-based operation
and engineering of flexible production lines,” in 2021 26th IEEE Inter-
national Conference on Emerging Technologies and Factory Automation
(ETFA ), 2021, pp. 01–04.

[24] Y. Huang, S. Dhouib, L. P. Medinacelli, and J. Malenfant, “Semantic
interoperability of digital twins: Ontology-based capability checking in
aas modeling framework,” in 2023 IEEE 6th International Conference
on Industrial Cyber-Physical Systems (ICPS), 2023, pp. 1–8.

[25] E. Järvenpää, N. Siltala, O. Hylli, and M. Lanz, “The development of
an ontology for describing the capabilities of manufacturing resources,”
Journal of Intelligent Manufacturing, vol. 30, no. 2, p. 959 – 978,
2019. [Online]. Available: https://www.scopus.com/inward/record.
uri?eid=2-s2.0-85048584278&doi=10.1007%2fs10845-018-1427-6&
partnerID=40&md5=e848963588207b3b7f28956fdece2c3c

[26] OMG, “Business process model and notation v2.0,” 2010. [Online].
Available: https://www.omg.org/spec/BPMN/2.0/

[27] “Admin-shell-io: Java model.” [Online]. Available: https://github.com/
admin-shell-io/java-model

https://www.osti.gov/biblio/1561164
https://www.plattform-i40.de/IP/Redaktion/DE/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V3.pdf?__blob=publicationFile&v=5
https://www.plattform-i40.de/IP/Redaktion/DE/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V3.pdf?__blob=publicationFile&v=5
https://www.plattform-i40.de/IP/Redaktion/DE/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V3.pdf?__blob=publicationFile&v=5
http://insights.sei.cmu.edu/blog/introduction-model-based-systems-engineering-mbse/
http://insights.sei.cmu.edu/blog/introduction-model-based-systems-engineering-mbse/
https://youtu.be/G5Hfinm_guE
https://ec.europa.eu/futurium/en/system/files/ged/a2-schweichhart-reference_architectural_model_industrie_4.0_rami_4.0.pdf
https://ec.europa.eu/futurium/en/system/files/ged/a2-schweichhart-reference_architectural_model_industrie_4.0_rami_4.0.pdf
https://ec.europa.eu/futurium/en/system/files/ged/a2-schweichhart-reference_architectural_model_industrie_4.0_rami_4.0.pdf
https://www.eclipse.org/basyx/
https://www.eclipse.org/basyx/
https://www.mdpi.com/2624-831X/2/4/36
https://projects.eclipse.org/proposals/eclipse-aasx-package-explorer
https://projects.eclipse.org/proposals/eclipse-aasx-package-explorer
https://github.com/SAP/i40-aas
https://github.com/SAP/i40-aas
https://doi.org/10.1109/IECON.2019.8927081
https://doi.org/10.1109/IECON.2019.8927081
https://www.mdpi.com/2079-9292/10/20/2520
https://www.mdpi.com/2079-9292/10/20/2520
https://www.eclipse.org/papyrus/components/manufacturing/
http://www.se-rwth.de/publications/Towards-Product-Lining-Model-Driven-Development-Code-Generators.pdf
http://www.se-rwth.de/publications/Towards-Product-Lining-Model-Driven-Development-Code-Generators.pdf
http://www.se-rwth.de/publications/Towards-Product-Lining-Model-Driven-Development-Code-Generators.pdf
https://www.eclipse.org/papyrus/
https://www.omg.org/spec/UML/
https://www.omg.org/spec/UML/
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/Capabilities_Industrie40_Components.html
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/Capabilities_Industrie40_Components.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/CapabilitiesSkillsServices.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/CapabilitiesSkillsServices.html
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048584278&doi=10.1007%2fs10845-018-1427-6&partnerID=40&md5=e848963588207b3b7f28956fdece2c3c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048584278&doi=10.1007%2fs10845-018-1427-6&partnerID=40&md5=e848963588207b3b7f28956fdece2c3c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048584278&doi=10.1007%2fs10845-018-1427-6&partnerID=40&md5=e848963588207b3b7f28956fdece2c3c
https://www.omg.org/spec/BPMN/2.0/
https://github.com/admin-shell-io/java-model
https://github.com/admin-shell-io/java-model

	Introduction
	Related Works
	Papyrus4Manufacturing Architecture
	AAS-based Modeling Environment
	AAS UML Profile
	AAS UML Profile Constraints
	Semantic Annotation of AAS Models
	AAS Modeling Editors

	Code generation and deployment
	BaSyx Code Generation
	Java Development Tool Synchronization with AAS Models

	Academic Use Case - I4.0 Robotic Cell
	I4.0 Robotic Cell AAS Models
	I4.0 Robotic Cell AAS Modules Generation
	I4.0 Robotic Cell Process Execution

	Conclusion
	References

