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Non destructive examination of industrial structures
requires the modeling of specimen geometry echoes
generated by the surfaces (entry, back-wall, etc.) of
inspected blocks. For that purpose, the study of
plane elastic wave diffraction by a wedge is of great
interest since surfaces of complex industrial speci-
men often include dihedral corners. These inspec-
tions often deal with high frequency (f = 2−5 MHz)
ultrasonic waves. Simulation of realistic inspections
by finite elements and finite differences can therefore
be time consuming because such methods require a
small mesh step for a better description of the scat-
tered wave. Semi-analytical methods are therefore
preferred for high frequency problems. There ex-
ist various approaches for semi-analytical modeling
of plane elastic wave diffraction by a wedge but the
theoretical and numerical aspects of these methods
have so far only been developed for wedge angles
lower than π. Croisille and Lebeau [1] have intro-
duced a resolution method called the Spectral Func-
tions method in the different case of an immersed
elastic wedge of angle less than π. Kamotski and
Lebeau [2] have then proven existence and unique-
ness of the solution derived from this method to the
diffraction problem of stress-free wedges embedded
in an elastic medium. The advantages of this method
are its validity for wedge angles greater than π and
its adaptability to more complex cases. The method-
ology of Croisille and Lebeau [1] has been first ex-
tended by the authors to the simpler case of an im-
mersed soft wedge [3] (submitted). It has then been
developed here for the 2D scattering problem of an
elastic longitudinal wave and a numerical validation
of the method for all wedge angles is proposed.

1 Introduction

Ultrasonic inspection of a specimen generates
echoes from the entry and backwall surfaces. If
these surfaces contain wedges, it is then necessary
to provide a correct model of the interaction be-
tween the ultrasonic beam and these wedges.

For that purpose, based on the Physical Theory
of Diffraction (PTD) introduced by Ufimtsev [4], an
ultrasonic system model has been developed for em-
bedded cracks and extended to mimic ultrasonics
with some head waves by Zernov et al. [5, 6]. Nev-
ertheless, this ultrasonic PTD model can be time
consuming for large specimen surfaces. A second
solution to this problem, called the Uniform The-
ory of Diffraction (UTD) has been proposed in elas-
todynamics by Kamta Djakou et al. [7] and devel-
oped for a half-plane scatterer. To apply the afore-
mentioned UTD method to the case of a wedge, a
generic and trustworthy wedge diffraction model is
necessary. Budaev [9,10] has developed a technique
to reduce the wedge diffraction problem to a singu-
lar integral equation in various cases, but a numer-
ical resolution method has only been presented in
the case of a Rayleigh wave by Budaev and Bogy
and clarified by Kamotski et al. [11,12]. The results
of Kamotski et al. have been applied by Gautesen
and Fradkin [8] in order to present the Sommerfeld
integral method. Gautesen and Fradkin have also
developed a method called the Laplace transform
method [8]. However, both models have only been
developed for wedge-angles lower than π in 2D con-
figurations (for which the incident wave vector is in
the plane normal to the edge) and have only been
developed for stress-free wedges.

The spectral functions method for diffraction by
a wedge presents numerous advantages. First, it
works for all wedge angles (and notably for angles
higher than π). Secondly, it requires a very short
computation time. It is a generic method adapt-
able to much more complex cases such as 3D con-
figurations or various types of media (impedance
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Figure 1: Plane wave incident on a stress-free
wedge of angle ϕ.

wedges for instance). It has originally been devel-
oped by Croisille and Lebeau [1] and applied to
an immersed elastic wedge. The methodology has
been extended to the case of a stress-free wedge em-
bedded in an elastic solid by Kamotski and Lebeau
[2] to prove existence and uniqueness of the solu-
tion to the diffraction problem but the numerical
aspects and the final solution have not been dealt
with. The study of further configurations is to come
and an article concerning the case of a stress-free
wedge in acoustics has been submitted [3].

The following paper deals with the longitudinal
wave diffracted by a wedge illuminated by an inci-
dent longitudinal wave in the plane normal to the
wedge edge. It begins by presenting the problem
and defining the wedge diffraction coefficient. Sec-
tion 3 deals with finding an integral formulation of
the solution. This integral formulation is expressed
in terms of two unknown functions called the spec-
tral functions. In section 4, a system of functional
equations solved by the spectral functions is deter-
mined. This system can be solved semi-analytically.
Section 5 presents some first validation results and
section 6 gives the conclusions and perspectives of
this work.

2 Problem statement

Let us consider the diffraction problem of a plane
longitudinal elastic wave uinc incident on a wedge
delimited by the stress-free infinite plane faces S1

and S2. The interior of the wedge, constituted of
an isotropic solid medium, is defined by

Ω =
{

(r cos θ, r sin θ)\θ ∈ ]0, ϕ[
}
.

And the incident plane wave is of the form

uinc(x, t) = ALe
i(pinc

L ·x−ωt).

AL and pinc
L are respectively the amplitude vector

and the incident wave vector. The Cartesian co-
ordinate system (O; ex1 , ey1) is attributed to the
face S1 of the wedge and (O; ex2

, ey2) is attributed
to the face S2, as shown in Fig. 1. These coordi-
nate systems have the same origin located on the
wedge edge which coincides with the z-axis. Let
x = (x1, y1)(ex1

,ey1
) = (x2, y2)(ex2

,ey2
) be a position

vector x = (r, θ) in a local basis of polar coordinates
associated to the coordinates (x1, y1).

In the coordinate system (ex1
, ey1), the incident

wave vector is given by

pinc
L = − ω

cL

(
cos θinc

sin θinc

)
,

where cL is the velocity of the longitudinal waves
(cT being the transversal wave velocity and cR the
Raygleigh wave velocity).

In the following, vectors are expressed in the co-
ordinate system (O; ex1 , ey1), except when explic-
itly stated otherwise. The displacement field u is
then solution to the linear elasticity problem for an
isotropic homogeneous material and satisfies stress-
free boundary conditions on S1 and S2. Bold let-
ters will hereafter be reserved for matrices in order
to simplify notations and the harmonic time-factor
e−iωt is omitted.

Let us suppose that the total field is the sum of
the incident field and of an edge diffracted field:

u = uinc + u0.

The dimensionless problem is obtained by applying
the following change in variables:

u0(x, y) = v

(
ω

cL
x,

ω

cL
y

)
.

The problem we wish to solve is now

(PL)

{
(E + 1)v = 0 (Ω),

Bv = −Bvinc
L (S1 ∪ S2),

(1)

where E is the dimensionless elasticity operator and
B is the normal stress operator (n being in equation
(3) the inward normal to each face of the wedge):

Ev = µ∆v + (λ+ µ)∇∇v, (2)

Bv = (λ∇v · I2 + 2µε(v)) · n, (3)

λ and µ are the dimensionless Lamé coefficients, I2
is the two-dimensional identity matrix and we have

εij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
.
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The dimensionless incident longitudinal wave is
given by

vinc
L (r, θ) =

(
cos θinc

sin θinc

)
eirνL cos(θ−θinc),

with
νL = 1, νT =

cL
cT
, νR =

cL
cR
.

In the far field approximation (ωrcL � 1, r being
the distance of propagation, see Fig. 1), it can be
shown using the steepest descent method that the
field v is the sum of two types of contributions:

v = vdiff + vsing,

where vdiff is the contribution of the saddle-point
and describes the cylindrical waves diffracted by the
edge. The contribution vsing is due to the singular-
ities of the solution. It will be shown in the follow-
ing that these can only be simple poles (which de-
scribe the plane bulk waves reflected by the wedge
faces and the surface Rayleigh waves) or branching
points (which describe head waves).

The subject of this study is the edge-diffracted
longitudinal wave. It can be expressed as a cylin-
drical wave, proportional to the incident wave and
weighted by a coefficient DL

L called the 2D diffrac-
tion coefficient which depends on the direction of
observation θ and on the parameters of the prob-
lem. The diffraction coefficient is therefore defined
by

vdiff
L (r cos θ, r sin θ)

= DL
L(θ)

e−ir√
r
vinc
L (r cos θ, r sin θ). (4)

In order to obtain a far-field approximation of
the longitudinal waves diffracted by a wedge, it is
sufficient to compute the diffraction coefficient, de-
fined by equation (4). The aim of the present work
is to compute this coefficient.

3 Integral formulation of the solutions

Kamotski and Lebeau [2] have partially applied the
spectral functions method to the case of an elas-
tic wave incident on a stress-free wedge. They
have used the method to prove the existence and
uniqueness of the outgoing solution to this diffrac-
tion problem but have not computed such a so-
lution. In the following, the main steps of their
method and its application to the computation of
the solution are presented.

Croisille and Lebeau [1] have shown that the
problem satisfies the limiting absorption principle.
The solution to the problem with absorption being
the sum of two single layer potentials, the exact
solution of the problem (P∗) is

v = v1 + v2, (5)

with

vj(xj , yj) =
1

4π2
lim
ε→0

∫ +∞

−∞
eixjξΣj(ξ)

×
∫ +∞

−∞
eiyjη(M(ξ, η)− e−2iεI2)−1 dη dξ, (6)

where Σj are unknown functions called the spectral
functions

Σj(ξ) =

(
α̂j(ξ)

β̂j(ξ)

)
,

and the operator M is the Fourier transform of the
operator E defined in (2). The unknown functions
αj , βj are sought for in a special class of distribu-
tions A defined by Kamotski and Lebeau [2] in the
following manner.

Definition 1 We say that f ∈ A if f ∈ S ′(R),
supp f ⊂ R+ and ∃C0 > 0 such that

sup
−π<θ<0

∫ ∞
C0

∣∣f̂(ρeiθ)∣∣2 dρ <∞, (7)

f̂ is holomorphic in neighbourhoods of νL, νT , νR.

The computation of the unknown functions α̂j , β̂j ∈
Â (Â being the Fourier transform of class A) will
be treated in section 4. The inner integral in (6)
can be computed using Gauss’ residue theorem.

This integral can be approached in the far-
field approximation by using the stationary phase
method. By identifying the result of this approxi-
mation with equation (4), we can express the longi-
tudinal diffraction coefficient in terms of the spec-
tral functions:

DL
L(θ) =

e−iπ/4

2
√

2π

(
α̂1(− cos θ) cos θ

+ β̂1(− cos θ) sin θ

+ α̂2(− cos(ϕ− θ)) cos(ϕ− θ)

+ β̂2(− cos(ϕ− θ)) sin(ϕ− θ)
)
. (8)

In the following section, we will explain how
the spectral functions can be computed semi-
analytically.

MD173534
Zone de texte 



DAYS on DIFFRACTION 2018 57

4 Semi-analytical resolution

The first step to computing the spectral functions
is to determine a system of functional equations of
which the spectral functions are solution. The sec-
ond step is to use this system to prove that the
spectral functions can be decomposed into a singu-
lar part and a regular part and to compute them.

4.1 Functional equations

To determine a system of functional equations of
which the spectral functions are solution, we begin
with the substitution of v by the decomposition (5)
in the wedge boundary conditions (1). The bound-
ary condition can be taken separately on each face
and expressed using the corresponding coordinate
system:{
B
(
v1(x1, 0) + v2(x2 cosϕ, x2 sinϕ)

)
= −Bvinc

L

∣∣
S1
,

B
(
v2(x2, 0) + v1(x1 cosϕ, x1 sinϕ)

)
= −Bvinc

L

∣∣
S2
.

Thanks to this decomposition, two new operators
can be defined. B1 is obtained by expressing the
normal stress operator B defined in (3) on Sj in
terms of (xj , yj).

The expression (3) of the normal stress oper-
ator can also be projected onto the coordinate
system (O; ex3−j

, ey3−j
) and expressed in terms of

(x3−j , y3−j), yielding the operator B2.
The system of boundary conditions can then be

written as follows:{
B1(v1) +B2(v2) = −Bvinc

L

∣∣
S1
,

B1(v2) +B2(v1) = −Bvinc
L

∣∣
S2
.

(9)

Let us take the Fourier transform of (9). First, the
integral formulation of v1 and v2 given by (6) is
taken at points y = 0, x ≥ 0 and substituted into
B1. The Fourier transform is then applied to the
result:∫ +∞

0

e−ixξB1(v1)(x) dx =
1

2
DM(Σ1)(ξ)

=
1

2

∫
Γ0

DM(ξ, ζ)Σ1(ζ) dζ,

with

DM(ξ, ζ) =
1

2iπ

1

ξ − ζ
dm(ζ).

The contour Γ0 is represented in Fig. 2. The ma-
trices dm and tmL and tmT defined in the fol-
lowing (10) are known explicitly. However, their

×
0

× ×
1 νT

××
−1−νT (Γ0)

Figure 2: Integration contour Γ0.

×
ν∗

×
−ν∗

− cos ϕ̃

Ω+
∗

Figure 3: Domain Ω+
∗ .

expression, being cumbersome [1], are not repro-
duced here.

To compute the Fourier transform of the operator
B2, a new translation operator must be defined,

T∗(ξ = ν∗ cos z) = ζ cosϕ+ ζ∗(ζ) sin ϕ̃

= ν∗ cos(z + ϕ̃),

where the following notation is used:

ϕ̃ =

{
ϕ if ϕ < π

2π − ϕ if ϕ ≥ π

This translation operator is well defined on the
following domain Ω+

∗ , represented in Fig. 3,

Ω+
∗ =

{
ξ = ν∗ cos z, 0 ≤ Re z < π − ϕ̃

}
.

The Fourier transform of B2 is obtained in a sim-
ilar manner as for B1. The integral formulation
of v1 and v2 given by (6) is taken at points x′ =
x cosϕ, y′ = x sinϕ and substituted into B2. The
Fourier transform is then applied to the result:∫ +∞

0

e−ixξB2(v2)(x) dx =
1

2
TM(Σ2)(ξ)

=
1

2

∫
Γ0

TM(ξ, ζ)Σ2(ζ) dζ,

with

TM(ξ, ζ) =
1

2πi

∑
∗=L,T

D∗(ξ, ζ)tm∗(ζ, sgn sinϕ),

(10)

D∗(ξ, ζ) =
1

ξ − T∗(ζ)
.
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By taking the sum of these two operators DM
and TM, the Fourier transform of the boundary
conditions on each face of the wedge is finally ob-
tained. This is a system of functional equations
solved by the spectral functions:

DM(Σ1) + TM(Σ2) =
WL

1

ξ − cos θinc
,

TM(Σ1) + DM(Σ2) =
WL

2

ξ − cos(ϕ− θinc)
.

(11)

The explicit expression of the residues in the
right-hand side can be obtained by taking the
Fourier transform of the right-hand side of (9).

This system of functional equations will be re-
solved in Â2⊕Â2, defined by (7) to obtain an eval-
uation of the spectral functions.

4.2 Method of resolution

The resolution of system (11) is done semi-
analytically. The first step is to compute yj , which
is called the “singular part”. First, the subsets of
C,
{
zk1
}
k≥0

and
{
zk2
}
k≥0

are defined recursively by

Kamotski and Lebeau [2].
These sets are the poles of the spectral functions

and Croisille and Lebeau [1] have shown that they
are finite, meaning that any incident ray on the
wedge will eventually become an outgoing ray after
a certain number of reflections.

Using these sets, Croisille and Lebeau [1] have
also proven the following result.

Lemma 1 There exist two functions Y1, Y2 being
the finite sum of principal parts corresponding to
simple poles

Yj(ξ) =
∑
k

akj
ξ − zkj

, akj ∈ C2, zkj ∈ C,

such that u1 and u2 defined by

uj(ξ) =
WL
j

ξ − zj
−DM(Yj)(ξ)−TM(Y3−j)(ξ) (12)

are analytical on C \ ]−∞,−1].

The functions Y1 and Y2 are the singular parts of
the spectral functions Σ1 and Σ2. Their poles and
residues are computed explicitly using a recursive
procedure given by Croisille and Lebeau [1].

Let us now compute the “regular parts” X1 and
X2 of the spectral functions, defined by

Xj(ξ) = Σj(ξ)− Yj(ξ).

(a) ϕ = 110◦, θinc = 90◦

(b) ϕ = 280◦, θinc = 240◦

Figure 4: Diffraction coefficient computed with
the spectral functions method and with the
Sommerfeld method.

According to (12), these functions are solutions of
the following system:{

DM(X1)(ξ) + TM(X2)(ξ) = u1(ξ),

TM(X1)(ξ) + DM(X2)(ξ) = u2(ξ).

Solvability of this system is proven by Kamotski
and Lebeau [2]. The functions X1 and X2 are ana-
lytical on C \ ]−∞,−1] and are approached numer-
ically by a Galerkin collocation method, yielding a
linear system of equations where the coefficients are
integrals that can be computed exactly. However,
the details of this computation are quite long and
are not presented here. They will hopefully be the
subject of a future publication.

The semi-analytical computation of the spectral
functions leads to the numerical evaluation of the
diffraction coefficients, presented in the following
section.
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5 Numerical results and validation

In this section, the “acoustic limit” of the spectral
functions code is taken by setting the longitudinal
wave velocities to satisfy cL � cT in order to sim-
ulate the diffraction of an acoustic wave.

We consider two examples: first a longitudi-
nal wave normally incident on a wedge of angle
ϕ = 110◦ (Fig. 4a) and secondly a longitudinal wave
incident with an angle θinc = 240◦ on a wedge of
angle ϕ = 280◦ (Fig. 4b).

The longitudinal diffraction coefficient is com-
puted for 200 observation angles using the spectral
functions method (8) and compared to the expres-
sion of the far-field Geometrical Theory of Diffrac-
tion (GTD) coefficient of the scattering of a plane
acoustic wave with a soft wedge, expressed by Som-
merfeld [13].

There is an excellent agreement between the re-
sults produced by the spectral functions method
and by Sommerfeld’s GTD.

6 Conclusion

This communication deals with the modeling of
the longitudinal waves scattered by a wedge illumi-
nated by a longitudinal plane elastic wave. A far-
field approximation of the elastic waves diffracted
by a stress-free wedge can be obtained by comput-
ing a function called the diffraction coefficient. This
coefficient is expressed in terms of two unknown
functions Σ1 and Σ2 called the spectral functions.

A first numerical test of the developed elastody-
namic code has shown than this method is valid in
the limit case of an acoustic wave.

Future work on this method will deal with
shear waves and include a validation of the two-
dimensional diffraction of an elastic wave by a
wedge for angles both lower and higher than π.
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