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Non Destructive Examination (NDE) of industrial structures requires the modeling of specimen geometry echoes generated by the surfaces (entry, backwall . . . ) of inspected blocks. For that purpose, the study of plane wave diffraction by a wedge is of great interest. The work presented here is preliminary research to model the case of an elastic wave diffracted by a wedge in the future, for which there exist various modeling approaches but the numerical aspects have only been developed for wedge angles lower than π. The spectral functions method has previously been introduced to solve the 2D diffraction problem of an immersed elastic wedge for angles lower than π. As a first step, the spectral functions method has been developed here for the diffraction on an acoustic wave by a stress-free wedge, in 2D and for any wedge angle, before studying the elastic wave diffraction from a wedge. In this method, the solution to the diffraction problem is expressed in terms of two unknown functions called the spectral functions. These functions are computed semi-analytically, meaning that they are the sum of two terms. One of them is determined exactly and the other is approached numerically, using a collocation method. A successful numerical validation of the method for all wedge angles is proposed, by comparison with the GTD (Geometrical Theory of Diffraction) solution derived from the exact Sommerfeld integral.

Introduction

The canonical problem of an acoustic, electromagnetic or elastodynamic plane wave diffraction by a wedge with Neumann or Dirichlet boundary conditions is a complex mathematical problem which has been of great interest to researchers for over a century.

The mathematical theory of wedge diffraction was first introduced by Sommerfeld [START_REF] Lebeau | Asymtotische darstellung von formeln aus beugungstehorie des lichtes[END_REF], who gave an analytical expression of the exact solution of the diffraction problem of a scalar plane wave as a contour integral [START_REF] Babich | Diffraction theory: Sommerfeld-Malyuzhinets technique[END_REF]. Macdonald [START_REF]Electric waves : being an Adams prize essay in the University of Cambridge[END_REF] has expressed the scalar solution as a series, using the variables separation technique.

The most common approximation of diffraction problems is that of far-field asymptotics (i.e. wave behavior when kr >> 1, k being the wave number and r the observation distance). The Geometrical Theory of Diffraction (GTD) was first proposed by Keller [4] in electromagnetics based on an asymptotic expansion of Sommerfeld's exact solution. Sommerfeld [START_REF] Lebeau | Asymtotische darstellung von formeln aus beugungstehorie des lichtes[END_REF] gave an analytical formula of the GTD diffraction coefficient for an arbitrary-angled wedge (with Neumann or Dirichlet boundary conditions) illuminated by a scalar plane wave. This wedge GTD coefficient can be used for scalar wave diffraction both in electromagnetics [START_REF] Kouyoumjian | A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface[END_REF] and in acoustics [START_REF] Bouche | Asymptotic Methods in Electromagnetics[END_REF][START_REF] Lu | Numerical comparison of acoustic wedge models, with application to ultrasonic telemetry[END_REF].

In the more complex case of an elastic wave diffracted by a wedge of angle less than π, there exist two major approaches : one is based on the Sommerfeld integral (SI) representation of the elastodynamic potentials, it was introduced by Budaev and Bogy [START_REF] Budaev | Rayleigh wave scattering by a wedge[END_REF] and clarified by Kamotski et al. [START_REF] Kamotski | On budaev and bogys approach to diffraction by the 2d tractionfree elastic wedge[END_REF]. The other method is based on the Laplace transform of the displacement field (LT), and was developed by Gautesen and Fradkin [START_REF] Gautesen | Diffraction by a two-dimensional traction-free elastic wedge[END_REF]. In the particular case of a scattered Rayleigh wave, a method which uses the free-space Green's tensor to express the Fourier transform of the displacement field has been developed by Gautesen for wedge angles smaller and greater than π [START_REF] Gautesen | Scattering of a Rayleigh wave by an elastic wedge whose angle is less than 180[END_REF][START_REF] Gautesen | Scattering of a Rayleigh wave by an elastic wedge whose angle is greater than 180 degrees[END_REF]. However the range of the wedge angle was restricted to the range [63 o , 180 o ] for angles smaller than π and to [189 o , 327 o ] for angles greater than π in order to avoid numerical instabilities.

These methods are non-uniform in the sense that they lead to a solution which diverges at shadow boundaries and caustics of the Geometric-Elastic (GE) field [START_REF] Bouche | Asymptotic Methods in Electromagnetics[END_REF]. To overcome this difficulty, Ufimtsev [START_REF] Ufimtsev | Fundamentals of the Physical Theory of Diffraction[END_REF] has introduced the Physical Theory of Diffraction (PTD) in electromagnetics. This technique has been extended to elastic waves by Zernov et al. [START_REF] Zernov | A refinement of the kirchhoff approximation to the scattered elastic fields[END_REF], however it is computationally expensive. Another uniform correction of GTD is the Uniform Asymptotic Theory (UAT), introduced by Lewis [START_REF] Lewis | Uniform asymptotic theory of edge diffraction[END_REF] in electromagnetics and acoustics and extended to elastodynamics by Achenbach et al. [START_REF] Achenbach | Ray methods for waves in elastic solids: with applications to scattering by cracks[END_REF], which gives a systematic approach for computing a uniform solution but is quite complicated to implement for complex geometries as it requires extension of the reflected field to its shadow zone using fictitious rays [START_REF] Bouche | Asymptotic Methods in Electromagnetics[END_REF], [START_REF] Molinet | Acoustic high-frequency diffraction theory[END_REF]. For practical purposes, the most used uniform correction of the GTD method is the Uniform Theory of Diffraction (UTD) as it is computationally efficient and does not require an artificial extension of the reflected field. It was developed in electromagnetics by Kouyoumjian and Pathak [START_REF] Kouyoumjian | A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface[END_REF], using the Pauli-Clemmow method [START_REF] Clemmow | Some extensions to the method of integration by steepest descents[END_REF] and extended to elastodynamics by Kamta Djakou et al. [START_REF] Kamta Djakou | The uniform geometrical theory of diffraction for elastodynamics: Plane wave scattering from a half-plane[END_REF]. A comparison of different asymptotic (GTD and uniform) and exact solutions has been carried out in elastodynamics by Aristizabal et al. [START_REF] Aristizabal | Efficient solution for the diffraction of elastic sh waves by a wedge: Performance of various exact, asymptotic and simplified solutions[END_REF] but for the scalar case of the 2D wedge diffraction of a shear horizontally polarized incident wave.

For a certain time, methods of computation have been studied without proof of solvability for the wedge diffraction problem. Osher [START_REF] Osher | Initial-boundary value problems for hyperbolic systems in regions with corners. i[END_REF][START_REF] Osher | Initial-boundary value problems for hyperbolic systems in regions with corners. ii[END_REF] has studied the well-posedness of hyperbolic initial and boundary value problems (meaning the solution is fixed at t = 0 and on the domain boundaries) in a region with a corner (meaning a right-angled wedge) and has given certain necessary conditions that the boundary values must verify in order for a problem to be wellposed; he has thoroughly presented the consequences if these conditions were not verified. Huang and Temam [START_REF] Huang | The linear hyperbolic initial and boundary value problems in a domain with corners[END_REF] have studied the well-posedness of hyperbolic initial and boundary value problems in a rectangular domain and have also specified how the boundary values must be chosen for the problem to be solvable; they have also given a brief explanation as to how their theory can be applied to wave equations.

Concerning the specific problem of wave propagation in a wedge-shaped region, Friedlander [START_REF] Friedlander | Sound Pulses[END_REF] has studied the problem in the case of an incident acoustic pulse (the incident wave is non-periodical in time) and constructed the corresponding Green's function. Castro and Kapanadze [START_REF] Castro | Wave diffraction by wedges having arbitrary aperture angle[END_REF] have proven existence and uniqueness of the solution for acoustic and electromagnetic plane waves using a detailed Fredholm analysis. Kamotski and Lebeau [START_REF] Kamotski | Diffraction by an elastic wedge with stress-free boundary: existence and uniqueness[END_REF] have proven existence and uniqueness of the solution to the elastic plane wave diffraction by a soft wedge (Dirichlet boundary) problem using the Spectral Functions method in which the diffracted wave is modeled thanks to these spectral functions. Their demonstration is valid for all wedge angles but they do not propose any method of computation of the solution. The Spectral Functions method was at first developed by Croisille and Lebeau [START_REF] Croisille | Diffraction by an Immersed Elastic Wedge[END_REF] who proposed a numerical algorithm in order to compute these functions for elastic wedges of angle lower than π immersed in a fluid. In the current paper, wedges are of any angle (even larger than π) are taken into account, and the outside medium is void. There is only one wave type to be considered and Dirichlet boundary conditions are supposed, as opposed to the case studied by Croisille and Lebeau [START_REF] Croisille | Diffraction by an Immersed Elastic Wedge[END_REF] where three propagation modes coupled by the boundary conditions are considered, but only for wedge angles lower than π.

In the field of seismic diffraction, other approaches have been developed. The problem of acoustic diffraction in a system of wedge-shaped regions was studied by Klem-Musatov [START_REF] Klem-Musatov | Theory of seismic diffractions[END_REF]. Using the Malyuzhinetz transform, this problem is reduced to a system of functional equations. However, this system is too complex to be solved in general cases. A successive approximations method is proposed in the particular case of a wedge-shaped separation between two media having the same acoustic wave velocity or in the case where the medium containing the incident wave is a wedge of angle lower than π. In the very general case of acoustic wave propagation in a homogeneous or inhomogeneous medium delimited by an arbitrary-shaped boundary, a mathematical model has been rigorously presented by Aizenberg and Ayzenberg [START_REF] Aizenberg | Feasible fundamental solution of the multiphysics wave equation in inhomogeneous domains of complex shape[END_REF], providing the analytical feasible fundamental solution for this problem. The notion of feasible fundamental solution is a generalization of Green's function for an unbounded medium. Ayzenberg [START_REF] Ayzenberg | Transmission-propagation operator theory and tip-wave superposition method for sub-salt shadow wavefield description[END_REF] shows how this general mathematical model can be numerically applied to the case of wedge diffraction. This method is applied in the case of a spherical source and it appears that parallel computation is necessary to obtain a short computation time, whereas the spectral functions method is applied here in the case of plane-wave diffraction and a simple architecture is sufficient to obtain results for a short computation time.

The aim of this paper is to develop and implement the methodology of Croisille and Lebeau [START_REF] Croisille | Diffraction by an Immersed Elastic Wedge[END_REF] in the twodimensional (i.e. the incident wave vector lies in the plane normal to the edge) case of an acoustic wave diffracted by a soft wedge immersed in a fluid (Dirichlet boundary condition) and propose a numerical validation of the method for angles both smaller and larger than π. The expansion to all wedge angles is obtained using Kamotski and Lebeau's [START_REF] Kamotski | Diffraction by an elastic wedge with stress-free boundary: existence and uniqueness[END_REF] idea of defining a new angular variable, 2ϕ, defined in equation [START_REF] Klem-Musatov | Theory of seismic diffractions[END_REF], thanks to which the complete resolution and the computation of the solution are proposed and developed here for all wedge angles with a single method. Numerical validation will be achieved by comparing the GTD approximation of the diffraction coefficient obtained using the spectral functions method, with the analytical expression given in [START_REF] Bouche | Asymptotic Methods in Electromagnetics[END_REF][START_REF] Lu | Numerical comparison of acoustic wedge models, with application to ultrasonic telemetry[END_REF] of the GTD approximation of the exact solution.

The outline of the paper is the following: section 2. presents the problem and the diffraction coefficients are expressed in terms of the spectral functions. The resolution of the problem is discussed in section 3. Finally, numerical results are given in section 4. and compared to the analytical Sommerfeld solution.

Problem statement

Let us consider a stress-free wedge of angle 2ϕ immersed in a fluid Ω f constituted of the junction of two faces F 1 and F 2 (see Fig. 1). The Cartesian coordinate system (O; e x 1 , e y 1 ) is linked to the face F 1 of the wedge and (O; e x 2 , e y 2 ) is linked to the face F 2 . These Cartesian coordinate systems have the same origin located on the wedge edge which coincides with the z-axis. Let x = (x 1 , y 1 ) (e x 1 ,e y 1 ) = (x 2 , y 2 ) (e x 2 ,e y 2 ) be a position vector x = (r, 0) in a local basis of polar coordinates associated to the Cartesian coordinates (x 1 , y 1 ). The time convention used in this chapter is exp(iωt). The wedge is thus irradiated by a velocity potential plane wave in the form

g inc (x, t) = A e i(ωt-k inc •x) (1)
where A is the amplitude of the incident velocity potential, ω is the circular frequency, t is time and

k inc = k 0 (-cos θ inc , -sin θ inc ) (e x 1 ,e y 1 ) (2) 
is the wave vector of the incident wave with k 0 = ω/c 0 being the wave numberc 0 is the sound velocity in the fluid. The velocity potential in the fluid g satisfies the motion equation in the fluid medium Ω f surrounding the wedge

∂ 2 g ∂t 2 -c 2 0 g = 0 (3)
and the Dirichlet boundary condition on the wedges faces

g | F j = 0, j = 1, 2. ( 4 
)
The dimensionless form of the problem is obtained by defining the function h by g(x, t) = 2A e iωt h(k 0 x).

The dimensionless function h is the sum of the incident dimensionless wave h inc and of the scattered dimensionless wave In this decomposition, the scattered wave v is the sum of two fields : the Geometric-Elastodynamic (GE) field, which is the sum of the possibly multiple specular reflections of the incident wave and of fictitious fields compensating the incident wave in shadow zones, and the diffracted field. A detailed description of the GE field, in the case of a half-plane scatterer, is given by Kamta-Djakou et al. [START_REF] Kamta Djakou | The uniform geometrical theory of diffraction for elastodynamics: Plane wave scattering from a half-plane[END_REF].

v h = h inc + v (6) 
The system (3)-( 4) is equivalent to the following system of equations for the dimensionless problem, obtained by inserting Fourier transform ( 5) and decomposition (6) into equations ( 3) and ( 4)

       ( + 1)v = 0 in Ω f , v = -h inc on F j , j = 1, 2 . (7) 
In order to obtain a solution to this problem which is physically relevant, the limiting absorption principle is used. It consists in substituting the wave number k 0 by a complex one k 0 e -i with > 0. This means that absorption occurs in the medium and thus the scattered waves attenuate with the distance. The system (7) then becomes :

(S * )        ( + e -2i )v = 0 in Ω f , v = -h inc on F j , j = 1, 2 (8) 
The physically relevant solution to [START_REF] Lu | Numerical comparison of acoustic wedge models, with application to ultrasonic telemetry[END_REF], called the outgoing solution, can now be defined. It is the one obtained when taking → 0 in (8). This limit is noted v 0 . Its integral representation is found hereafter.

Outgoing solution: integral representation

First, a special class of distributions is defined.

Definition 2.1. The class of distributions A is defined as follows. The distribution f ∈ A if :

• f ∈ L 2 (R) (f is a tempered distribution) • supp( f ) ⊂ [0, +∞[ • ∃C 0 > 0 such that sup -π<θ<0 ρ>C 0 | f (ρe iθ )| 2 dρ < ∞
where f is the Fourier transform of f defined by

f (ξ) = R f (x)e -ixξ dx. • f (ξ) is holomorphic near ξ = 1
The outgoing solution to [START_REF] Lu | Numerical comparison of acoustic wedge models, with application to ultrasonic telemetry[END_REF] can now be defined properly. Definition 2.2. An outgoing solution of the equation ( 7) is a solution v of the form

v = v 1 | Ω f + v 2 | Ω f (9)
where, for j = 1, 2 :

v j = -lim →0 ∆ + e -2i -1 α j ⊗ δ F j (10) 
with α j ∈ A are unknown and where δ F 1 and δ F 2 are Dirac delta functions on the faces F 1 and F 2 of the wedge respectively (these functions take value δ F j (x, y) = 1 on F j , and 0 elsewhere).

The following theorem is proven by Croisille and Lebeau in [START_REF] Croisille | Diffraction by an Immersed Elastic Wedge[END_REF] :

Theorem 2.1. The equation (7) admits a unique outgoing solution.

The aim of this paper is to extend and detail the computation of this outgoing solution for the stress-free wedge immersed in a fluid using the spectral functions method.

The double Fourier transform of a tempered distribution and its inverse are defined by :

f (ξ, η) = R 2 f (x, y)e -i(xξ+yη) dxdy (11a) f (x, y) = 1 4π 2 R 2 f (ξ, η)e i(xξ+yη) dξdη (11b)
The double Fourier transform of ( 10) using (11a) gives

v j = ξ 2 + η 2 -e -2i -1 α j . (12) 
The dimensionless velocity potential v j is then found by applying the inverse Fourier transform in ξ and η to [START_REF] Gautesen | Scattering of a Rayleigh wave by an elastic wedge whose angle is greater than 180 degrees[END_REF].

v j = 1 4π 2 +∞ -∞ +∞ -∞ e iy j η ξ 2 + η 2 -e -2i dη α j (ξ) e ix j ξ dξ. ( 13 
)
For 0, the inner integrand poles are given by

η = ± e -2i -ξ 2 = ±ζ 0 (14) 
and are never crossed by integration along the real axis. Integral (13) can be calculated using the residue theorem which leads to the following result

v j (x j , y j ) = i 4π +∞ -∞ e i|y j |ζ 0 (ξ) e ix j ξ ζ 0 (ξ) α j (ξ) dξ. ( 15 
)
This integral is well defined if Im(ζ 0 ) > 0, so that the exponential in the integral decreases with the distance y j and the absorption principle is respected. Function ζ 0 (ξ) then satisfies for ξ real

ζ 0 (ξ) = i ξ 2 -e -i if |ξ| ≥ 1, (16a) 
ζ 0 (ξ) = -e -i -ξ 2 if |ξ| ≤ 1. ( 16b 
)
The branch points of the function ζ 0 (ξ) are ± e -i . For > 0, integral ( 15) is well defined because these complex singular points are never crossed by the integration contour (the real axis). The integration contour of [START_REF] Lewis | Uniform asymptotic theory of edge diffraction[END_REF], is deformed into the contour Γ 0 illustrated on Fig. 2 so that these singular points ± e -i are not crossed by the new contour Γ 0 when → 0 (for which the physical outgoing solution of ( 8) is obtained). Arrows F 1 and F 2 on Fig. 2 are described later in section 3.2.2.

Thus, even for = 0, the integral

v 0 j (x j , y j ) = i 4π Γ 0 e i|y j |ζ 0 0 (ξ) e ix j ξ ζ 0 0 (ξ) α j (ξ) dξ (17) 
converges. Using [START_REF] Kamotski | On budaev and bogys approach to diffraction by the 2d tractionfree elastic wedge[END_REF], our initial solution is then

v(x) = v 0 1 (x 1 , y 1 ) + v 0 2 (x 2 , y 2 ) ( 18 
)
One of the goals of this paper is to compute the spectral functions α1 (ξ) and α2 (ξ) in order to find the GTD diffraction coefficient (92). The accuracy of the spectral functions method is evaluated in section 4 by comparing results of (92) with (97). Section 3 is devoted to the computation of the spectral functions α1 and α2 .

× 0 × 1 × -1 (Γ 0 ) F 1 F 2 σ τ
Fig. 2: Integration contour Γ 0 in the complex plane ξ = σ + iτ. Arrows F 1 and F 2 show the deformation of Γ 0 into the imaginary axis.

Spectral functions computation

To compute the spectral functions, the functional equations satisfied by spectral functions α1 and α2 first have to be determined.

Functional equations of spectral functions

The velocity potential in the boundary conditions of the system ( 8) is substituted by its expression [START_REF] Clemmow | Some extensions to the method of integration by steepest descents[END_REF]. It then leads to the following system of equations for the boundary conditions on each wedge face:

       v 0 1 (x 1 , 0) + v 0 2 (x 2 cos 2ϕ, x 2 sin 2ϕ) = -v 0 inc | F 1 v 0 1 (x 1 cos 2ϕ, x 1 sin 2ϕ) + v 0 2 (x 2 , 0) = -v 0 inc | F 2 . ( 19 
)
The Fourier transform is applied to the potential velocity expression on the face of each wedge

F (x j → v 0 j (x j , 0))(ξ) = i 4π Γ 0 α j (λ) ζ 0 0 (λ) ∞ 0 e -ix j (ξ-λ) dx j dλ, (20) 
= 1 4π Γ 0 α j (λ) ζ 0 0 (λ)(ξ -λ) dλ and F x j → v 0 j x j cos 2ϕ, x j sin 2ϕ (ξ) = i 4π Γ 0 α j (λ) ζ 0 0 (λ) ∞ 0 e -ix j (ξ-λ cos 2ϕ-| sin 2ϕ| ζ 0 0 (λ)) dx j dλ, (21) 
= 1 4π Γ 0 α j (λ) ζ 0 0 (λ) ξ -λ cos 2ϕ -| sin 2ϕ| ζ 0 0 (λ) dλ.
The dimensionless incident wave on the faces F 1 and F 2 of the wedge which is involved at the right side of ( 19) is respectively:

v 0 inc (x 1 , 0) = 1 2 e i x 1 cos θ inc , (22a) 
v 0 inc (x 2 , 0) = 1 2 e i x 2 cos(2ϕ-θ inc ) . ( 22b 
)
Therefore, applying the Fourier transform to [START_REF] Kamta Djakou | The uniform geometrical theory of diffraction for elastodynamics: Plane wave scattering from a half-plane[END_REF] leads to the following functional system of equations:

             DM( α1 )(ξ) + T M( α2 )(ξ) = 1 ξ -Z 1 T M( α1 )(ξ) + DM( α2 )(ξ) = 1 ξ -Z 2 (23)
where Z 1 = cos θ inc , Z 2 = cos(2ϕ -θ inc ). DM is an integral operator defined as

DM( α1 )(ξ) = Γ 0 DM(ξ, λ) α1 (λ) dλ = 1 2iπ Γ 0 m(λ) ξ -λ α1 (λ) dλ ( 24 
)
where

m(λ) = 1 ζ 0 0 (λ)
and T M is also an integral operator defined as

T M( α1 )(ξ) = Γ 0 T M(ξ, λ) α1 (λ) dλ = 1 2iπ Γ 0 m(λ) ξ -λ cos 2ϕ -| sin 2ϕ|ζ 0 0 (λ) α1 (λ) dλ (25) 
Note that the function T M can be expressed as

T M(ξ, λ) = 1 2iπ m(λ) ξ -T 0 (λ) , (26) 
where, applying the variable change λ = cos θ

T 0 (λ = cos θ) = λ cos 2ϕ + sin 2ϕ ζ 0 0 (λ) = cos(θ + 2ϕ) ( 27 
) with 2ϕ =        2ϕ if 0 < 2ϕ < π 2π -2ϕ if π < 2ϕ < 2π (28) 
By using this angular variable, defined differently for wedge angles lower and higher than π, the description of the spectral functions method can be written the same way for wedge angles lower and higher than π, even if the final results (the diffraction coefficients) are different for wedge angles π < 2ϕ < 2π and 2π -2ϕ. Indeed, the variable 2ϕ appears in all the resolution, whereas the variable 2ϕ appears only in the definition of the function T 0 in [START_REF] Croisille | Diffraction by an Immersed Elastic Wedge[END_REF] and of the domain Ω 0 in which T 0 operates, defined as

Ω 0 = {ξ ∈ C, ξ = cos θ, 0 < Re θ < π -2ϕ}. ( 29 
)
Domain Ω 0 is delineated by the hyperbola

∂Ω + 0 = {ξ ∈ C, ξ = cos θ, Re θ = π -2ϕ}. ( 30 
)
Domain Ω 0 and its upper boundary ∂Ω + 0 are illustrated on Fig. 3. Domain Ω 0 is the dotted area in Fig. 3. Arrows F 1 and F 2 on Fig. 3 are described later in section 3.2. Having found the system of functional equations, it is now resolved following the methodology of [START_REF] Croisille | Diffraction by an Immersed Elastic Wedge[END_REF].
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System resolution

The resolution of the system of functional equations ( 23) is necessary in order to find the values of the spectral functions α1 and α2 . With these values, the diffraction coefficients can be computed [see Eq. ( 92)].

It is shown in [START_REF] Croisille | Diffraction by an Immersed Elastic Wedge[END_REF] that DM and T M integral operators are constituted of a "singular term" and of a "regular term". For a singular function

φ(ξ) = 1 ξ -z , z ∈ C\] -∞, -1] with Im z 0, (31) 
DM and T M integral operators defined respectively in ( 24) and ( 25) can be decomposed using the residue theorem as

DM(φ)(ξ) = Γ 0 DM(ξ, λ) • 1 λ -z dλ = m(z) ξ -z + D p (ξ, z) (32a) T M(φ)(ξ) = Γ 0 T M(ξ, λ) • 1 λ -z dλ = m(z) ξ -T 0 (z) 1(z ∈ Ω 0 ) + T p (ξ, z), (32b) 
where the function T 0 is defined in [START_REF] Croisille | Diffraction by an Immersed Elastic Wedge[END_REF] and where

1(z ∈ Ω 0 ) =        1 if z ∈ Ω 0 , 0 else (33) 
and integrals D p and T p are holomorphic on C\] -∞, -1]. Such integrals are expressed as

D p (ξ, z) = 1 2πi Γ 1 m(λ) ξ -λ • 1 λ -z dλ, (34a) 
T p (ξ, z) = 1 2πi ∂Ω + 0 m(λ) ξ -T 0 (λ) • 1 λ -z dλ. ( 34b 
)
Contours Γ 1 and ∂Ω + 0 are illustrated on Figs. 4 and 3 respectively. In the sequel, using the decomposition of the DM and T M operators for a function of the form of (31), it will be shown that the unknown spectral functions α1 and α2 in the system [START_REF] Huang | The linear hyperbolic initial and boundary value problems in a domain with corners[END_REF] have a singular part. The first step for the resolution of the system ( 23) is then to determine this singular part.

× 0 × 1 × -1 Γ 1 σ τ (Γ 0 ) F 2

Singular part

It is well known that poles of the spectral functions lead to the reflections of the incident field on the wedge faces (these reflections can be multiple), and to the fictitious fields that compensate the incident wave in the shadow zones. The sum of these reflections with the fictitious compensating fields constitute the aforementioned GE field. The singular part of the spectral functions contains these poles. The goal of this subsection is to calculate the poles and the corresponding residues and then to determine the expression of the singular part of the spectral functions, by employing a recursive algorithm.

Knowing the incident field on the wedge faces, the spectral function α j can be written as

α j (ξ) = V j ξ -Z j + X j (ξ), j = 1, 2 (35) 
where Z 1 , Z 2 are the initial poles, given in [START_REF] Huang | The linear hyperbolic initial and boundary value problems in a domain with corners[END_REF] with unknown residues V 1 and V 2 and the functions X j are unknown, j = 1, 2. From (32a), it is known that

DM( α j )(ξ) = m(Z j ) • V j ξ -Z j + D p (ξ, Z j ) • V j + DM(X j )(ξ). ( 36 
)
By choosing V j = m -1 (Z j ), the right hand side of the system ( 23) is suppressed by the first term in the right hand side of (36). The resulting system's unknown functions are X j , j = 1, 2 :

DM(X j )(ξ) + T M(X 3-j )(ξ) = -T M V 3-j ξ -Z 3-j (ξ) -D p (V j , Z j )(ξ) j = 1, 2 (37) 
Besides, from (32b), we know that

T M V j ξ -Z j (ξ) = m(Z j ) • V j ξ -T 0 (Z j ) 1(Z j ∈ Ω 0 ) + T p (ξ, Z j ) • V j j = 1, 2 (38) 
Thus, X j has a pole at ξ = Z 2 j = T 0 (Z 3-j ) if Z 3-j ∈ Ω 0 . T 0 function defined in ( 27) is then called translation operator because it translates a pole of the spectral function α j , j = 1, 2, to a pole of the spectral function α3j . The wave incident on face F 3-j is reflected. This reflected wave is incident on face F j , generating a new pole Z 2 j = T 0 (Z 3-j ). The unknown function X j in (35) is then decomposed as

X j (ξ) = V 2 j ξ -Z 2 j + X j (ξ), j = 1, 2 (39) 
where the function X j is unknown. Once again, the residues V 2 j of these generated poles Z 2 j are chosen so that they cancel the singular term DM(X j )(ξ), found using the formula (32a), compensating the singular term in the T M operator in (38).

This pole propagation process is applied recursively in order to determine all the poles of the spectral functions α j . This process stops when the generated poles are no longer in the domain Ω 0 defined in [START_REF] Aizenberg | Feasible fundamental solution of the multiphysics wave equation in inhomogeneous domains of complex shape[END_REF]. All the generated poles then belong to Ω 0 ∪]cos 2ϕ, +∞]. Their imaginary part is then always positive due to the definition of the domain Ω 0 (see Fig. 3).

At the end of this process, spectral functions have the decomposition

α j = Y j + X j , (40) 
where Y j is the singular part, X j is the regular part and j = 1, 2 is the face index. The singular part is expressed as

Y j (ξ) = i V i j ξ -Z i j , (41) 
where i ∈ N * , Z 1 j = Z j defined in ( 23) is the initial pole on each face of the wedge,

Z i+1 j = T 0 (Z i k ), j, k ∈ {1, 2}, k j (42) 
are the different generated poles with their respective residue

V i+1 j = -m -1 (T 0 (Z i k )) m(Z i k )) V i k 1(Z i k ∈ Ω 0 ), k j. (43) 
. Figure 5 represents the generated poles in the complex plane for two different cases : figure 5a for a wedge of angle ϕ = 80 o with an incident angle of θ inc = 55 o and figure 5b for ϕ = 20 o and θ inc = 15 o . As the wedge angle decreases, the number of poles increases, some poles being very close to one another, rendering the method less accurate for very small wedge angles. The second step of the system resolution is the determination of the regular part X j of the spectral function α j [see Eq. ( 40)]. The regular part is determined by using the Galerkin collocation method. Section 3.2.2 gives the principal steps of this resolution method.

Regular part

After the determination of the singular part of the solution using the pole propagation process explained in section 3.2.1, the remaining right hand side of ( 23) is composed of D p and T p functions. Thus, the system 23 becomes by construction

           DM(X 1 )(ξ) + T M(X 2 )(ξ) = - k D p (ξ, Z k 1 ) • V k 1 + T p (ξ, Z k 2 ) • V k 2 T M(X 1 )(ξ) + DM(X 2 )(ξ) = - k T p (ξ, Z k 1 ) • V k 1 + D p (ξ, Z k 2 ) • V k 2 (44) Re Im • • -1 1 × × × × (a) ϕ = 80 o , θ inc = 55 o Re Im × × × × × × × × × × • • -1 1 (b) ϕ = 20 o , θ inc = 15 o
Fig. 5: Generated poles plotted in the complex plane where X j , j = 1, 2 are the regular parts of the spectral functions (40), D p and T p functions are defined in (34) and Z k j are the poles of the spectral function α j with their respective residue V k j . D p and T p are holomorphic functions on C\] -∞, -1] according to [START_REF] Croisille | Diffraction by an Immersed Elastic Wedge[END_REF], and therefore the functions X j are also holomorphic on this domain.

The functions X j (ξ), being holomorphic on C\] -∞, -1], can be approximated in the basis ϕ k , 1 ≤ k ≤ N given by

ϕ k (ξ) = d k ξ + a k , a k ∈ [1, ∞[, d k = a k π . ( 45 
)
The discretization of the solution X j (ξ) in this finite basis is called a Galerkin approximation.

In the following, the integration contour Γ 0 pictured on Fig. 2 is deformed into the imaginary axis. If

f (λ) is a holomorphic function on C\] -∞, -1], the function f (y) = f (iy) is introduced so that f is holomorphic on C \ i[1, ∞[. The variable change λ = iy gives a new basis e a k (y) = d k y -ia k = i φ(y), with d k = a k π and a k ∈ [1, ∞[, (46) 
Having an approximation basis of the regular part of the spectral functions, X j (ξ) can be expressed as

X j (ξ) ≈ N k=1 Xk j ϕ k (ξ), Xk j ∈ C. ( 47 
)
The coordinates Xk j are unknown. The system (44) then becomes, for j = 1, 2

N k=1 Xk j Γ 0 DM(ξ, λ)ϕ k (λ) dλ + Xk 3-j Γ 0 T M(ξ, λ)ϕ k (λ) dλ = u j (ξ), (48) 
where

u j (ξ) = - k D p (ξ, Z k j ) • V k j + T p (ξ, Z k 3-j ) • V k 3-j j = 1, 2 (49) 
The variable changes λ = iy and ξ = ix in (48) lead to the following system ( j = 1, 2)

N k=1 Xk j ∞ -∞ DM(x, iy) e a k (y)dy + Xk 3-j ∞ -∞ T M(x, iy) e a k (y)dy = ũ j (x) ( 50 
)
where DM(x, iy) = DM(ix, iy) and T M(x, iy) = T M(ix, iy). Following [START_REF] Croisille | Diffraction by an Immersed Elastic Wedge[END_REF], we introduce another subspace of finite dimension in L 2 (R) which is generated by vectors e b k with

e b k (y) = d k y -ib k , Re(b k ) ∈ [1, ∞[ and Im(b k ) = 0 -. ( 51 
)
The b k are called collocation points. The system (50) is projected in this subspace using the following relation :

( φ|e b k ) L 2 (R) = (-2iπ) d k φ(b k ) (52)
Using ( 52), the projection of the system (50) leads to the following new systems (for j = 1, 2)

               N k=1 Xk j ∞ -∞ DM(b 1 , iy)e a k (y) dy + Xk 3-j ∞ -∞ T M(b 1 , iy)e a k (y) dy = u j (b 1 ) . . . N k=1 Xk j ∞ -∞ DM(b N , iy)e a k (y) dy + Xk 3-j ∞ -∞ T M(b N , iy)e a k (y) dy = u j (b N ) (53)
The obtained system (53) is a linear system of equations and can be put in a matrix format:

[D] [T ] [T ] [D] X1 X2 = U 1 U 2 ( 54 
)
where

X j =              X1 j . . . XN j              , Xk j ∈ C; U j =             u j (b 1 ) . . . u j (b N )             , u j (b k ) ∈ C (55) 
and

[D] lk = ∞ -∞ DM(b l , iy)e a k (y) dy (56) [T ] lk = ∞ -∞ T M(b l , iy)e a k (y) dy (57) 
are the matrix elements of [D] and [T ] respectively. System (54) can be rewritten as

       ([D] + [T ]) ( X1 + X2 ) = U 1 + U 2 ([D] -[T ]) ( X1 -X2 ) = U 1 -U 2 . (58) 
To find the regular part of the spectral functions (47), its coordinates Xk j in the Galerkin basis ϕ k , 1 ≤ k ≤ N defined in (45) must be determined. These coordinates are solutions of the linear system of equations (54) or (58). To resolve such a system, the matrices [D] and [T ] and its right hand side U 1,2 must be calculated.

Matrices calculation

The first step is to determine [D] and [T ] matrices. Using ( 24) and (46), the [D] lk elements defined in (56) can be expressed as

(-2iπ)[D] lk = -id k D(a k , b l ) (59) 
with the function D(a, b) defined for a > 1 and b > 1 as

D(a, b) = +∞ -∞ m(iy) y + ib 1 y -ia dy = +∞ -∞ 1 y + ib 1 y -ia 1 ζ 0 0 (iy) dy. (60) 
Using ( 25) and ( 46) the [T ] lk elements defined in (57) can be expressed as

(-2iπ)[T ] lk = -d k T (a k , b l ) (61) 
where the function T (a, b) is defined for a > 1 and b > 1 as

T (a, b) = +∞ -∞ 1 b -iy cos 2ϕ + | sin 2ϕ| 1 + y 2 1 y -ia 1 ζ 0 0 (iy) dy. (62) 
According to [START_REF] Achenbach | Ray methods for waves in elastic solids: with applications to scattering by cracks[END_REF], D(a, b) and T (a, b) functions can be simplified using the relation

ζ 0 0 (iy) = -1 + y 2 . ( 63 
)
The function T (a, b) is first calculated. The variable change

y = 2x 1 -x 2 ; 1 + x 2 1 -x 2 = 1 + y 2 ; dy = 2 x 2 + 1 1 -x 2 2 dx (64)
is applied to (62) :

T (a, b) = 2 1 -1 x 2 -1 b (1 -x 2 ) -2ix cos 2ϕ + | sin 2ϕ|(1 + x 2 ) 1 2x -ia(1 -x 2 ) dx (65) 
Let us define the polynomial functions P(x) and Q(x) as

P(x) =b(1 -x 2 ) -2ix cos 2ϕ + | sin 2ϕ|(1 + x 2 ), (66) 
Q(x) =2x -ia(1 -x 2 ). ( 67 
)
The integrand of the T (a, b) function ( 65) is a rational function which can be decomposed in the partial fraction :

-1 + x 2 PQ = γx + δ P + αx + β Q (68)
as long as 0, with

= a 2 + b 2 + 2ab cos ϕ -(sin ϕ) 2 0 ( 69 
)
Using this partial fraction decomposition, T (a, b) function ( 65) can be written as

T (a, b) = 2 1 -1 γx + δ P(x) + αx + β Q(x) dx, (70) 
It is shown in appendix Appendix A that

1 -1 αx + β Q(x) dx = αsog(a) + iβ rog(a) (71) 
and that

1 -1 γx + δ P(x) dx = iγ b -sin 2ϕ π 2 -2ϕ -cos 2ϕ rog(b) + δ rog(b). (72) 
where rog and sog are defined in appendix Appendix A. Finally, using (71), ( 72) and (70),

T (a, b) = 2 [T 1 (a, b) + T 2 (a, b)] (73) 
with

T 1 (a, b) = α sog(a) + iβ rog(a), (74a) 
T 2 (a, b) = iγ b -sin 2ϕ π 2 -2ϕ -cos 2ϕ rog(b) + δ rog(b). (74b) 
Integral D(a, b) given in (60) can then be rewritten, using a partial fraction decomposition, as

D(a, b) = i b + a +∞ -∞        1 y -ia 1 1 + y 2 - 1 y + ib 1 1 + y 2        dy, if a + b 0. ( 75 
)
Using the variable change (64), we have for a ≥ 1,

R 1 y -ia 1 1 + y 2 dy = 2i 1 -1 1 a(1 -x 2 ) + 2ix dx = 2i rog(a) (76) × 0 × 1 × -1 Γ 2 Γ 0 F 1 Fig. 6: Contour Γ 2 . Arrow F 1 shows the deformation of Γ 0 into Γ 2 .
To begin, the contour Γ 0 in the DM integral operator is deformed into Γ 2 . The half-space {λ, Im λ < 0} is then crossed during this contour deformation as shown by the F 1 arrow on Fig. 6.

During this contour deformation, only the poles λ = ξ, with Im(ξ) < 0 (84) of the DM function ( 24) are crossed and therefore, applying the residue theorem, we have for ξ ∈ C, Im(ξ) < 0,

j = 1, 2, DM(X j )(ξ) = Γ 0 DM(ξ, λ)X j (λ) dλ = Γ 2 DM(ξ, λ)X j (λ) dλ + m(ξ)X j (ξ). ( 85 
)
The poles of the T M function ( 25) are

λ = T -1 0 (ξ) = ξ cos 2ϕ -sin 2ϕ ζ 0 (ξ) = cos(θ -2ϕ) if ξ = cos θ
T -1 0 operates in the domain Ω - 0 , therefore they are crossed during this contour deformation if and only if ξ ∈ Ω - 0 (see dotted area on Fig. 7). The domain Ω - 0 is delineated by the hyperbola

∂Ω - 0 = {ξ ∈ C, Im(ξ) < 0, ξ = cos θ, Re θ = 2ϕ}. ( 86 
)
Domain Ω - 0 and contour ∂Ω - 0 are illustrated on Fig. 7. Applying the residue theorem to the T M integral operator then gives for ξ ∈ C, Im(ξ) < 0, j = 1, 2,

T M(X j )(ξ) = Γ 0 T M(ξ, λ)X j (λ) dλ = Γ 2 T M(ξ, λ)X j (λ) dλ + m(ξ) X j [T -1 0 (ξ)]1(ξ ∈ Ω - 0 ) (87) σ τ × 1 × - 1 
∂Ω - 0 cos 2ϕ Ω - 0 recursive evaluation direct evaluation (ξ Ω - 0 )
Fig. 7: Domain Ω - 0 and its lower boundary ∂Ω - 0 in the complex plane ξ = σ + iτ. Ω - 0 is delimited by ∂Ω - 0 andthe semi-axis ] -∞, cos 2ϕ].

Using (85) and (87) in the system of functional equations (44), the system (44) is then equivalent to this new system for ξ ∈ C, Im(ξ) < 0:

             X 1 (ξ) = g 1 (ξ) -X 2 (T -1 0 (ξ)) 1(ξ ∈ Ω - 0 ) X 2 (ξ) = g 2 (ξ) -X 1 (T -1 0 (ξ)) 1(ξ ∈ Ω - 0 ) (88) 
where

g j (ξ) = m(ξ) -1 u j (ξ) - Γ 2 DM(ξ, λ) X j (λ) dλ - Γ 2 T M(ξ, λ) X 3-j (λ) dλ (89) 
Formula ( 88) is called the recursive formula because it uses the value of the regular function X 2 at point T -1 0 (ξ) to compute the value of X 1 at the point ξ where the approximation is not valid (and vice-versa). If the translation from ξ to T -1 0 (ξ) is not sufficient to reach the domain C\Ω - 0 where the approximation is valid, then the use of the formula is repeated as many times as necessary (computing X 2 (T -1 0 (ξ)) using the value of X 1 (T -2 0 (ξ)), etc.). To calculate g j functions, we need to compute

Γ 2 DM(ξ, λ) X j (λ)dλ = k Xk j Γ 2 DM(ξ, λ) ϕ k (λ) dλ and Γ 2 T M(ξ, λ) X j (λ)dλ = k Xk j Γ 2 T M(ξ, λ) ϕ k (λ) dλ
If Im(a) < 0, the residue theorem combined with the variable change λ = iy yields

Γ 2 DM(ξ, λ) 1 λ + a dλ = 1 2π D(a, ξ) - m(ξ) ξ + a = ND(a, ξ). (90) 
For the T M contributions, the poles λ = T -1 0 (ξ) are taken into account if and only if ξ ∈ Ω - 0 . Thus, for ξ ∈ Ω - 0 , Im(a) < 0, the residue theorem combined with the variable change λ = iy gives

Γ 2 T M(ξ, λ) 1 λ + a dλ = 1 2iπ T (a, ξ) - m(ξ) T - 0 (ξ) + a = NT (a, ξ) (91) 
Formula (47) finally leads to, for ξ ∈ Ω - 0 and j = 1, 2,

m(ξ) g j (ξ) -u j (ξ) = - k Xk j d k ND(a k , ξ) + k Xk 3-j d k NT (a k , ξ)
Some numerical results are presented in the sequel.

Numerical results

In this section, a far-field (k 0 r >> 1) asymptotic evaluation of the diffraction coefficient is computed using the stationary phase method :

D(θ) = e -i π 4 √ 2π [ α1 (-cos θ) + α2 (-cos(2ϕ -θ))] (92) 
where α1 and α2 are the spectral functions, is compared to the analytic expression of the diffraction coefficient of the scattering of a plane wave with a wedge at interfaces fluid/void as expressed by Sommerfeld [START_REF] Lebeau | Asymtotische darstellung von formeln aus beugungstehorie des lichtes[END_REF]. Keller [START_REF] Keller | Geometrical theory of diffraction *[END_REF] gives an analytical expression of the GTD approximation of the coefficient in the case of the diffraction of a scalar plane wave by a wedge with Dirichlet boundaries which can be used in the case of a stress-free wedge immersed in a fluid :

D (Dir) (θ) = e i π 4 2N √ 2π cot π + (θ + θ inc ) 2N + cot π -(θ + θ inc ) 2N -cot π + (θ -θ inc ) 2N -cot π -(θ -θ inc ) 2N , (93) 
with N = 2ϕ/π. To apply the recursive procedure described in 3.3, calculation points ξ must have a negative imaginary part. The calculation points considered are then

ξ 1 = -cos θ -i 10 -3 and ξ 2 = -cos(2ϕ -θ) -i 10 -3 , ( 94 
)
where θ is the observation angle in the wedge (see Fig. 1).

For the Galerkin basis defined in (46), the parameters a k ∈ [1, ∞[ are chosen as an exponential law [START_REF] Croisille | Diffraction by an Immersed Elastic Wedge[END_REF]:

a k = 1.1 + 0.05 10 k-1 4 -1 , 1 ≤ k ≤ 20 b k = a k -i0.1, 1 ≤ k ≤ 20. ( 95 
)
The module of the diffraction coefficients computed using spectral functions and Sommerfeld integral method for various wedge angles are plotted in terms of the observation angle θ, 0 ≤ θ ≤ 2ϕ and presented on Fig. 8. In the case of Neumann boundary conditions, the initial system (7) is replaced by the follwing :

       ( + 1)v = 0 in Ω f , ∂v/∂n = -∂h inc /∂n on F j , j = 1, 2 , ( 96 
)
where n is the inward-pointing normal to the wedge faces. The spectral functions method can once again be applied following the same steps as for the Dirichlet boundary conditions. The details of the computation are not repeated here. Once again, a far-field evaluation of the diffraction, given by ( 92) is compared to the analytic expression of the diffraction coefficient given by Sommerfeld [START_REF] Lebeau | Asymtotische darstellung von formeln aus beugungstehorie des lichtes[END_REF]. The GTD approximation of this coefficient is also given by Keller [START_REF] Keller | Geometrical theory of diffraction *[END_REF] : In each of these figures, the continuous light blue line represents the modules of the diffraction coefficients obtained using the Sommerfeld integral method, the continuous dark blue line represents those obtained using the Spectral function singular part Y j alone, the short-dashed green line represents those obtained using the Spectral functions method without propagation of the solution and the red circles represent those obtained using the spectral functions method with propagation of the solution described in paragraph 3.3.

D (Neu) (θ) = e i π 4 2N √ 2π cot π + (θ + θ inc ) 2N + cot π -(θ + θ inc ) 2N + cot π + (θ -θ inc ) 2N + cot π -(θ -θ inc ) 2N ( 
On Figs. 8a, 8b, 9a and 9b the wedge angles are lower than π and on figs. 8d, 8c, 9d and 9c the wedge angles are greater than π. In all cases, it appears clearly that both the regular part of the solution and the recursive method are necessary to obtain optimal results. When both of these are included, diffraction coefficients obtained with Spectral functions are close to those of the Sommerfeld method. In addition, the run time to evaluate the diffraction coefficients in 250 different observation points, in each of the presented configurations, using an Intel(R) Xeon(R) CPU E3-1240 v3 is under 0.1 seconds for both methods.

Conclusion

The spectral functions method is shown here to model diffraction of an acoustic wave from stress-free wedges. The diffraction coefficient obtained using the spectral functions has been compared to the analytic one obtained from the asymptotic evaluation of the Sommerfeld integral. The numerical results obtained thanks to the spectral Appendix A.2. Partial fractions integration Integrals to calculate in the subsection "matrix calculation" of section 3.2.2 are in the following form:

I 1 = 1 -1 αx + β Q(x) dx (A.6)
and

I 2 = 1 -1 γx + δ P(x) dx (A.7)
with polynomial functions P(x) and Q(x) defined in (66) and (67) respectively. Let us first calculate integral I 1 . (A.9)

I 1 = 1 -1 αx + β iax 2 + 2x -ia dx = α 2ia 1 -1 2(iax + 1) iax 2 + 2x -ia dx + 1 -1 β - α ia iax 2 + 2x -ia dx = πα 2a + β ia + α a 2 
We need to determine I 3 to access the value of I 2 . 

I 3 = 1 -1 1 x - i cos ϕ | sin 2ϕ| -b - √ b 2 -1 | sin 2ϕ| -b x - i cos ϕ | sin 2ϕ| -b + √ b 2 -1 | sin

(F 1 )e x 2 e y 2 2ϕ e x 1 e y 1 •Fig. 1 :

 12111 Fig.1: The wedge of angle 2ϕ whose faces are stress-free is illuminated by a plane wave of wave vector k inc .

Fig. 3 :

 3 Fig. 3: Domain Ω 0 (the dotted area) and its upper boundary ∂Ω + 0 . The lower boundary of Ω 0 is the semi-axis [-cos 2ϕ, +∞[. Arrows F 1 and F 2 show the deformation of Γ 0 (in thick dashed line) into ∂Ω + 0 .

Fig. 4 :

 4 Fig. 4: Contour Γ 1 . Arrow F 2 shows the deformation of Γ 0 (in dashed line) into Γ 1 .

Fig. 8 :

 8 Fig.8: Diffraction coefficient computed with the spectral functions and with the Sommerfeld method, in the case of Dirichlet boundary conditions.

  97) with N = 2ϕ/π. The results are presented on Fig 9.

Fig. 9 :

 9 Fig.9: Diffraction coefficient computed with the spectral functions and with the Sommerfeld method, in the case of Neumann boundary conditions.

1 - 1 1 x 2 + 2 ia x - 1 dxI 1

 11211 =α sog(a) + iβ rog(a) (A.8) with rog and sog functions being defined in (A.1) and (A.2) respectively. Now let us calculate integral I 2 , supposing b | sin 2ϕ|.

I 2 = 1 - 1 γx + δ b( 1 - 1 - 1 2γ 2 - b 2

 1111122 x 2 ) -2ix cos 2ϕ + | sin 2ϕ|(1 + x 2 ) dx = 1 2(| sin 2ϕ|b) | sin 2ϕ|b xi cos 2ϕ + 2 iγ cos 2ϕ + δ | sin 2ϕ|b x 2 (| sin 2ϕ|b) -2ix cos 2ϕ + (b + | sin 2ϕ|) dx = iγ | sin 2ϕ|b 2ϕ --1 (| sin 2ϕ|b) 2dt.

1 =π 2 +

 12 (| sin 2ϕ|b) rog(b). (A.10) Finally, using (A.10) in (A.9), I 2 = iγ | sin 2ϕ|b 2ϕiγ cos 2ϕ rog(b) + δ rog(b). (A.11)
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The matrices [D] and [T ] are now completely determined using (59) and (61) respectively. Their analytical properties are also known. In order to resolve the linear system of equations ( 54) or (58), their right hand side constituted of U 1 and U 2 must also be computed.

Determination of the right hand side of the system of equations

Using (49), the right hand side of the system (53) which is calculated at the collocation points b l defined in (51),

where D p and T p functions are defined in (32) and Z k j is defined in (42), k ∈ N * . Taking the definition of the D p function in (32a), and deforming the contour Γ 0 pictured on Fig. 2 into the imaginary axis by applying the variable change λ = iy, we get

Similarly, using the definition of the T p function given in (32b), and by deforming the integrand contour Γ 0 pictured on Fig. 2 into the imaginary axis by applying the variable change λ = iy we have

Expressions (80) of D p and (81) of T p functions are incorporated in the right hand side of the system (79) with z = Z k j for each u j (b l ), j = 1, 2. In this new expression, with the pole propagation process explained in section 3.2.1, singular terms of D p and T p functions cancel each other. The remaining term in the right hand side of the system (79) is therefore, for j = 1, 2; l ∈ {1, 2, . . . , N}

Once all matrix terms have been calculated, system (54) is resolved numerically. For that, the NAG numeric subroutine library for Fortran is used. With the resolution of this linear system of equations, the coordinates Xk j of the regular term X j of the spectral functions are known and therefore the regular term X j is approximated using (47). The spectral functions α j are then completely determined using (40), ( 41) and (47).

Propagation of the solution

The regular part approximation described previously is not accurate in the entire complex plane. There exists a procedure, called "propagation of the solution" and explained in [START_REF] Croisille | Diffraction by an Immersed Elastic Wedge[END_REF], which allows to propagate the accuracy of the regular part X j (ξ) of the spectral functions from ξ Ω - 0 , Im(ξ) < 0 where the approximation is valid to the domain Ω - 0 where it is not. The space Ω - 0 defined by

is represented in Fig. 7. The procedure consists in deriving new recursive equations by deforming the contour Γ 0 in the integrals of the right-hand side of (44) into a new contour Γ 2 and taking into account the poles crossed in the process.

Appendix A.1. Definition of rog and sog complex functions Let us introduce rog(a) and sog(a) complex functions defined as 

and has the following property : For x ±1,

Proof The roots of the polynomial a(1x 2 ) + 2ix, a ∈ C * are x ± = 1 a (i ± √ a 2 -1). When a {-1, 0, 1}, these roots are distinct and formula (A.3) results from a classical integral computation. When a = 0, both formulations (A.1) and (A.3) give rog(0) = π 2 and no singularity arises. However, when a = 1, (A.1) yields rog(1) = 1 whereas (A.3) presents a singularity. The indetermination is lifted by defining z = 1 -1/a 2 in (A.3). We then have :

The Taylor series expansion at z = 0 leads to rog(1) = 1. The rog function can therefore be extended to C \ {-1}.

Proof sog function defined in (A.2) depends on the rog function which is holomorphic on C\]-∞, -1]. To remove the indetermination near x = 0, let us define y = 1x 2 1/2 . We then have x = -i y 2 -1 1/2 using the same definition of the square root as in (16b). Thus, sog(x) = - 

Competing interests

We have no competing interests.