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Abstract

We study the weak formulation of the Poisson problem on closed Lip-
schitz manifolds. Lipschitz manifolds do not admit tangent spaces every-
where and the de�nition of the Laplace-Beltrami operator is more techni-
cal than on classical di�erentiable manifolds [?, see, e.g.,]]Gesztesy. They
however arise naturally after the triangulation of a smooth surface for
computer vision or simulation purposes. We derive Stokes' and Green's
theorems as well as a Poincaré's inequality on Lipschitz manifolds. The
existence and uniqueness of weak solutions of the Poisson problem are
given in this new framework for both the continuous and discrete prob-
lems. As an example of application, numerical results are given for the
Poisson problem on the boundary of the unit cube.

Keywords� Lipschitz manifold, Laplace-Beltrami operator, Finite el-
ement method, Elliptic equation, closed surfaces

1 Introduction

Traditionally in the context of the �nite element simulation of PDEs on
surfaces [?, see, e.g.,]]Dziuk1988,Dziuk2013,ElliotStinner,NdjingaNguemfouo,
a continuous surface Γ is �rst triangulated into a piecewise linear surface
Γh that is no longer di�erentiable but merely a Lipschitz manifold. The
solution u of a linear PDE on Γ can then be approximated by the solution
uh of the same PDE on Γh. Using a variational formulation, one then
seek for ũh the projection of uh on the �nite dimensional space generated
by the nodal functions of Γh. The numerical resolution of the resulting
linear system yields the nodal values of ũh.

In [11, 12], the well-posedness of the Poisson problem −△Γu = f
on a smooth surface Γ immersed in Rd is studied, and a �nite element
approximation is proposed. In the context of immersed surfaces, [12]
de�nes di�erential operators (tangential gradient and divergence) which
are based on Fermi coordinates. Fermi coordinates [?, see Section 2.3
in]]Dziuk2013 are global coordinates on a hypersurface Γ ∈ Rd that avoid
the use of local charts. Unfortunately, the existence of Fermi coordinates
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requires Γ to be C2, or more precisely to satisfy both an interior and
an exterior sphere condition. The issue of polyhedral surfaces is raised
in [11] (page 3), which quotes [3] for the de�nition of Sobolev spaces on
C0,1 manifolds. However, [3] deal with C2,κ manifolds (see De�nition 2.10
and Section 4.2). The assumption of C2 regularity made on the surface
Γ in [11, 12] restricts the scope of surfaces Γ for which the methodology
yields the well-posedness of the continuous problem. Furthermore, even if
Γ is assumed C2, after triangulation of Γ, the new surface Γh is piecewise
linear, and no longer C2. The study and characterisation of uh the solution
of the Poisson problem on Γh can not therefore be performed using the
methodology in [11, 12] due to the lack of smoothness of Γh.

In order to perform calculus on more general surfaces that are not
C2, especially on triangulated surfaces, we can not rely on the approach
of [11, 12] using Fermi coordinates on C2 immersed surfaces. We chose
instead to extend the de�nition of the classical di�erential operators to
Lipschitz manifolds following [9] (Section 3), [8] (Appendix A) and [10].

Lipschitz manifolds are an intermediate structure between topological
manifolds where the tangent space is de�ned nowhere and C1 manifolds
where the tangent space is de�ned everywhere. On Lipschitz manifolds
the tangent space is de�ned almost everywhere, which is enough to de�ne
spaces of functions that are weakly di�erentiable. [8] de�nes Lebesgue Lp

spaces, as well as Sobolev W 1,p and W−1,p spaces. The main technical
di�culty is that Lipschitz manifolds are not di�erentiable everywhere. For
that reason, they make an intensive use of di�erentiability almost every-
where through the Rademacher's theorem. We use this new setting for
the de�nition and study of the Poisson problem on a Lipschitz manifold,
and propose a �nite element method for its numerical simulation.

The article is organised as follows. In Section 2, following [8], we
recall the de�nition of Lipschitz manifolds, and the associated di�erential
and exterior calculi. We go on introducing the Sobolev spaces as well as
the Laplace-Beltrami operator on a Lipschitz manifold. We extend [8] by
proving Stokes' 1 and Green's 2 theorems as well as a Poincaré's inequality
on Lipschitz manifolds. In Section 3, in the context of closed Lipschitz
manifold we study the Poisson problem and give a theorem of existence
and uniqueness of solutions. This theorem relies on the weak formulation
of the problem that is available thanks to the Green's theorem. Section
4 is devoted to the introduction of the linear �nite element discretization
and Section 5 is concerned with the numerical simulation of the Poisson
problem on a Lipschitz manifold : the boundary of the unit cube.

2 Calculus on Lipschitz manifolds

In standard calculus, the gradient, divergence and Laplace operators are
classically de�ned on the Euclidean space Rd. They can however also be
de�ned on a C1 manifold M in an intrinsic way (no immersion into Rd),
using a Riemannian metric [?, see for example Section 1.2 in]]Hebey2000
or the Hodge operator [?, see Section 11.2 in]]Aubin1998.

Following [8], we recall the de�nition of Lipschitz manifolds in sec-
tion 2.1. Lipschitz di�erentiable forms are de�ned in section 2.3. Sobolev
spaces on Lipschitz manifolds are introduced in section 2.4, and the Laplace-
Beltrami operator in section 2.5.
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2.1 Lipschitz manifolds

We recall that a topological manifold M of dimension d ∈ N∗ is a
topological space such that for every x ∈ M there exists an open set U ⊂
M and a map ϕ : U → Rd such that x ∈ U and ϕ is an homeomorphism
onto its image ϕ(U). The couple (U, ϕ), where U ∈ M is an open set
around x and ϕ : U → ϕ(U) ⊂ Rd is an homeomorphism, is called a local
coordinate chart. An atlas on M is a countable familly {Ui, ϕi}i∈I such
that M = ∪i∈IUi and (Ui, ϕi) is a local coordinate chart for each i ∈ I.

We recall that a map ϕ : E → F between two metric spaces E and F
is a bilipschitz map if it is a Lipschitz homeomorphism onto its image
ϕ(E), and its inverse is also Lipschitz.

De�nition 1 (Lipschitz manifold).
A Lipschitz manifold is a topological manifold with an atlas (called a
Lipschitz atlas) {Ui, ϕi}i∈I such that for any i, j ∈ I the transition map
ϕi ◦ ϕ−1

j is bilipschitz from ϕj(Ui ∩ Uj) to ϕi(Ui ∩ Uj).

Since di�erentiability will occur only almost everywhere, functional
analysis on Lipschitz manifolds requires the de�nition of negligible sets.

De�nition 2 (Negligible sets).
Let Γ be a Lipschitz manifold and {Ui, ϕi}i∈I its Lipschitz atlas.
A set S ⊂ Γ is negligible provided ϕi(Ui ∩ S) has measure zero in Rd.

A property that is true on all but a negligible set of points of Γ is said
to hold almost everywhere.

Given a Lipschitz manifold Γ with a Lipschitz atlas {Ui, ϕi}i∈I , a point
x ∈ Γ is said to be a singular point if there exists i, j ∈ I such that
x ∈ Ui ∩ Uj and ϕi ◦ ϕ−1

j is not di�erentiable at ϕj(x). A point x that is
not singular is called a regular point.

A consequence of the Rademacher's theorem [?, see Corollary 11.7
in]]Taylor2006 is that the set of singular points is negligible. Hence
for any Lipschitz manifold, one can properly de�ne a tangent space only
almost everywhere (see De�nition 5 below). Note that if the Lipschitz
manifold is embedded in Rd, it admits almost everywhere a normal vector.

Unlike smooth manifolds where di�erentiability can take place every-
where and be of any order, di�erentiability on Lipschitz manifolds can
happen only at regular points and is necessarily of order one.

De�nition 3 (Di�erentiable map).
Let Γ be a Lipschitz manifold. A map f : Γ → R is said to be di�erentiable
at x ∈ Γ provided

� x is a regular point of Γ

� there exists a local chart (U, ϕ) such that x ∈ U and f ◦ϕ−1 : ϕ(U) →
R is di�erentiable at ϕ(x)

De�nition 4 (Measurable and Lipschitz maps).
Let Γ be a Lipschitz manifold, m ∈ N∗. A map f : Γ → Rm is measurable
(resp. Lipschitz) if for any local coordinate chart (U, ϕ), the map f ◦ϕ−1 :
ϕ(U) → Rm is measurable (resp. Lipschitz).

Lipschitz maps are di�erentiable almost everywhere thanks to the
Rademacher's theorem.

2.2 Tangent space

Let x ∈ Γ be a regular point. A path through x is a continuous map
γx :] − ϵ, ϵ[→ Γ, ϵ > 0 with γx(0) = x and such that there exists i ∈ I,
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x ∈ Ui and ϕi ◦ γx is di�erentiable at 0.
We de�ne the following equivalence relation between paths through x :
γ1x and γ2x are equivalent if they share the same derivative at x :

γ1x ≡x γ2x ⇔ (ϕi ◦ γ1x)′(0) = (ϕi ◦ γ2x)′(0). (1)

Following [8] appendix A and [9] Section 3.1, we de�ne the tangent
space almost everywhere as the space of equivalence classes γ̇x for the
relation (1).

De�nition 5 (Tangent space).
Let Γ be a Lipschitz oriented manifold. The tangent space of Γ at x ∈ Γ
is the vector space

TxΓ = {γ̇x, γx a path through x} if x is a regular point

TxΓ = {0} if x is a singular point
(2)

If Γ is a Lipschitz oriented manifold of dimension d ∈ N∗, its tangent
space at every regular point is a vector space of dimension d. At every reg-
ular point x ∈ Γ belonging to a local chart (U, ϕ = (ϕ1, . . . , ϕd)), we can
de�ne a basis of the tangent space TxΓ by considering the d curves ϕj

x(t) =
ϕ−1
i (tx1 , . . . , t

x
j−1, t

x
j+t, t

x
j+1, . . . , t

x
d) where (t

x
1 , . . . , t

x
j−1, t

x
j+t, t

x
j+1, . . . , t

x
d) =

ϕ−1
i (x). The curves t→ ϕj(t) form d independent classes for the relation

(1). Hence ϕ̇j
x form a basis of TxΓ.

De�nition 6 (Strong gradient map).
Let Γ be a Lipschitz manifold, x ∈ Γ a regular point and f : Γ → R be
di�erentiable at x.
The linear tangent map of f at x denoted Gradxf is the map sending the
equivalence class γ̇ of the relation ≡x to the equivalence class ˙f ◦ γ of the
relation ≡f(x) :

Gradxf : Tx(Γ) → R (3)

d

dγx
→ d

dt
(f ◦ γ) (t)|t=0. (4)

On a Lipschitz manifold of dimension d, if x ∈ Γ is a regular point,
TxΓ is a real vector space of dimension d and basis ϕ̇1

x, . . . ϕ̇d
x. Following a

classical duality argument, the strong gradient of f at x, which is a linear
form, can therefore be represented by a d-dimensional real vector denoted−→
∇xf such that

Gradxf

(
d∑

i=1

aiϕ̇
i
x

)
= (a1, . . . , ad) ·

−→
∇xf.

2.3 Measurable and Lipschitz di�erential forms

On any vector space E of dimension d, we introduce for any integer l ∈
{0, 1, . . . , d} the l-th exterior power ΛlE as the vector space of l-linear
alternate forms on E.
Because of the lack of di�erentiability of Lipschitz manifolds, we cannot
work with smooth di�erential forms as done classically. Instead, following
[9] (Section 3.2), we introduce measurable and Lipschitz di�erential forms
as follows.
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De�nition 7 (Measurable and Lipschitz di�erential forms).
Let p ∈ [1,∞], l ∈ {0, 1, . . . , d}, Γ be a closed Lipschitz manifold of di-
mension d, and {Ui, ϕi}i∈I its Lipschitz atlas.

A measurable (resp. Lipschitz) di�erential form ω of degree l is a
mapping de�ned almost everywhere on Γ such that

� ω ∈ ΛlTxΓ for almost every x ∈ Γ

� for any local chart (U, ϕ = (ϕ1, . . . , ϕd)) and any multi-index J of
length l, there exists a measurable (resp. Lipschitz) function aJ such
that almost everywhere

ω =
∑
|J|=l

aJdϕ
J . (5)

Due to the lack of regularity, we cannot de�ne the exterior derivative
as an endomorphism on di�erential forms as done classically [?, see, e.g.,
Theorem 5.42 in]]Lafontaine2015. Instead, the derivative of a Lipschitz
di�erentiable form is a measurable di�erentiable form de�ned as follows.

De�nition 8 (Exterior derivative of a Lipschitz di�erentiable form).
Let Γ be a Lipschitz manifold of dimension d, and {Ui, ϕi}i∈I its Lipschitz
atlas. Let l ∈ {0, 1, . . . , d}, and ω a Lipschitz di�erential form of degree l
on Γ. The exterior derivative of ω is the measurable di�erential form dω
of degree l + 1 such that on any local chart (U, ϕ = (ϕ1, . . . , ϕd))

dω =
∑
|J|=l

∑
j∈J

∂aJ
∂ϕj

dϕj ∧ dϕJ , (6)

where aJ are the Lipschitz coe�cients of ω : ω =
∑

|J|=l aJdϕ
J .

In de�nition 8, the di�erentiability of a Lipschitz form follows from
the Rademacher's theorem.

The orientability of a manifold is a necessary condition for the exis-
tence of a volume form [?, see, e.g., Theorem 6.5 in]]Lafontaine2015, which
in turns yields a measure and integration theory on the manifold. The
classical de�nition of orientability involves the positiveness everywhere of
the Jacobian of the transition maps ϕi ◦ ϕ−1

j . However, in the case of
Lipschitz manifolds, the transition maps are di�erentiable only almost
everywhere.

De�nition 9 (Orientation).
A Lipschitz manifold Γ with Lipschitz atlas {Ui, ϕi}i∈I is oriented provided
the change of coordinates ϕi ◦ϕ−1

j has positive jacobian on Ui ∩Uj almost
everywhere.

An orientation is therefore given by an atlas such that the coordi-
nate charts (Ui, ϕi = (ϕi1, . . . , ϕid)) de�ne a positively oriented basis(

d
dϕi1

, . . . , d
dϕid

)
of the tangent space almost everywhere. On any oriented

Lipschitz manifold Γ of dimension d, there exists a Lipschitz di�erentiable
form dVΓ(x) ∈ ΛdTxΓ such that dVΓ(x) ̸= 0 for almost every x ∈ Γ. The
proof is a direct adaptation of Theorem 6.5 in [1]. Such a form is called
a volume form [?, see, e.g., De�nition 6.3 in]]Lafontaine2015 and takes
the form dVΓ = fdϕ1 ∧ · · · ∧ dϕd, where f is measurable.

Integrating volume forms requires the pullback operator. Following
the de�nition 5.18 in [1] we de�ne the pullback of a volume form by a
Lipschitz map.
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De�nition 10 (Pullback of a volume form).
Let Γ be a Lipschitz manifold of dimension d ∈ N∗, U an open subset of
Rd and let g : U → Γ be a Lipschitz map.
The pullback of a measurable di�erentiable form ω on Γ by g is the mea-
surable di�erentiable form g∗ω on Rd de�ned by

(g∗ω)x(v1, . . . , vq) = ωg(x)(∇g(x)g·v1, . . . ,∇g(x)g·vq) a.e.x ∈ U,∀v1, . . . , vq ∈ Rd.
(7)

Note that the pullback of a Lipschitz di�erential form by a Lipschitz
map is merely a measurable di�erential form (not Lipschitz). For instance,
the pullback of a volume form dVΓ = fdϕ1 ∧ · · · ∧dϕd by a Lipschitz map
g is the form (g∗ω)x = f ◦ g(x) det(∇g(x)g)dx

1 ∧ · · · ∧ dxd [?, see, e.g.,
Proposition 6.12 in]]Lafontaine2015, which is not necessarily Lipschitz.

On Rd, volume forms take the form dVRd(x) = f(x)dx1 · · ·dxd and
their integral is simply

∫
Rd dVRd =

∫
Rd f(x)dx

1 . . .dxd. On a general Lip-
schitz manifold, the integral of a volume form [?, see, e.g., De�nition
6.16 in]]Lafontaine2015, is de�ned by∫

Γ

fdλΓ =
∑
i∈I

∫
ϕi(Ui)

(ϕ−1
i )∗(θifdVΓ), (8)

where (θi)i∈I is a Lipschitz partition of unity on Γ, subordinate to the
cover (Ui)i∈I : supp(θi) ⊂ Ui, 0 ≤ θi ≤ 1 and

∑
i∈I θi = 1 [?, see Propo-

sition 6.14 in]]Lafontaine2015.
The value of the integral (8) does not depend on the choice of coordi-
nate charts nor the partition of unity [?, see the proof of Theorem 6.15
in]]Lafontaine2015.

We are now ready to state Stokes' theorem for Lipschitz forms, which
is required for the integration by part (see the proof of Green's theorem
2).

Theorem 1 (Stokes' theorem).
Let Γ be a compact oriented Lipschitz manifold of dimension d. Let ω be
a Lipschitz form of degree d− 1 on Γ. Then∫

Γ

dω = 0. (9)

Proof. Since Γ is compact, there is a �nite set I ′ and a �nite number of
charts (Ui, ϕi)i∈I′ that covers Γ : Γ = ∪i∈I′Ui. Let (αi)i∈I′ be a smooth
partition of unity subordinate to that cover. The existence of (αi)i∈I′

is given by Proposition 6.14 in [1]. Since ω =
∑

i∈I′ αiω, it is su�cient
to prove the theorem for αiω that is, for a Lipschitz di�erentiable form
supported within an open subset Ui.

We assume therefore in the following that supp(ω) ⊂ Ui where (Ui, ϕi =
(ϕ1

i , . . . , ϕ
d
i )) is a local chart. Since ω is a Lipschitz di�erentiable form of

degree d− 1, for any j ∈ {1, 2, . . . , d}, there exists a Lipschitz function aj
supported in Ui such that almost everywhere

ω(x) =

d∑
j=1

aj(x)dϕ
1 ∧ dϕ2 ∧ · · · ∧ d̂ϕj ∧ · · · ∧ dϕd, x ∈ Γ. (10)
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Since ω is Lipschitz, it admits an exterior derivative which is

dω(x) =

d∑
j=1

∂aj
∂ϕj

(x) dϕj ∧ dϕ1 ∧ dϕ2 ∧ · · · ∧ d̂ϕj ∧ · · · ∧ dϕd (11)

=

(
d∑

j=1

(−1)j−1 ∂aj
∂ϕj

(x)

)
dϕ1 ∧ dϕ2 ∧ · · · ∧ dϕd, (12)

From the de�nition of the tangent map (De�nition 6) we have

∂aj
∂ϕj

(ϕ−1
i (x)) =

∂aj ◦ ϕ−1
i

∂xj
(x). (13)

The pullback of the exterior derivative is

(ϕ−1
i )∗(dω) =

(
d∑

j=1

(−1)j−1 ∂aj
∂ϕj

)
(ϕ−1

i (x)) (ϕ−1
i )∗(dϕ1) ∧ (ϕ−1

i )∗(dϕ2) ∧ · · · ∧ (ϕ−1
i )∗(dϕd)(14)

=

(
d∑

j=1

(−1)j−1 ∂aj
∂ϕj

)
(ϕ−1

i (x)) dx1 ∧ dx2 ∧ · · · ∧ dxd, (15)

since (ϕ−1
i )∗(dϕj

i ) = dϕj ◦ ϕ−1
i = dxj .

From the de�nition of form integrals (8) :∫
Ui

dω =

∫
ϕi(Ui)

(ϕ−1
i )∗(dω) (16)

=

∫
ϕi(Ui)

(
d∑

j=1

(−1)j−1 ∂aj
∂ϕj

)
(ϕ−1

i (x)) dx1 ∧ dx2 ∧ · · · ∧ dxd.(17)

Using the tangent map property (13) we obtain∫
Ui

dω =

∫
ϕi(Ui)

(
d∑

j=1

(−1)j−1 ∂aj ◦ ϕ−1
i

∂xj

)
(x) dx1 ∧ dx2 ∧ · · · ∧ dxd.(18)

Since aj is compactly supported within the open set Ui, aj is zero in a
neighborhood of ∂Ui and therefore on ∂Ui we have aj = 0 and ∇aj = 0.
Similarly on ∂ϕi(Ui), aj ◦ϕ−1

i = 0 and ∇aj ◦ϕ−1
i = 0, where ∇aj denotes

the tangent map of aj . ∇aj goes from TxΓ to R and can therefore be

identi�ed with a vector denoted
(

∂aj

∂ϕ1 , . . . ,
∂aj

∂ϕd

)
.

We can therefore extend aj ◦ ϕ−1
i to Rd as a Lipschitz function fj with

compact support :

fj(x) =

{
aj ◦ ϕ−1

i (x) if x ∈ Ui

0 if x /∈ Ui
. (19)

Since aj is Lipschitz and ϕ−1
i is Lipschitz by de�nition of a Lipschitz

chart, fj is Lipschitz as composition of Lipschitz functions and then is
di�erentiable by Rademacher's Theorem.

Now (18) becomes
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∫
Ui

dω =

∫
Rd

(
d∑

j=1

(−1)j−1 ∂fj
∂xj

)
(x) dx1 ∧ dx2 ∧ · · · ∧ dxd (20)

=

d∑
j=1

(−1)j−1

∫
Rd

∂fj
∂xj

(x) dx1 ∧ dx2 ∧ · · · ∧ dxd (21)

=

d∑
j=1

(−1)j−1

∫
Rd−1

(∫ +∞

−∞

∂fj
∂xj

(x) dxj
)

dx1 ∧ dx2 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxd(22)

where (22) is a consequence of Fubini's theorem.
The result follows from the fact that fj has compact support.

2.4 Sobolev spaces on Lipschitz manifolds

The Lebesgue spaces are de�ned by a pullback of the Euclidean Lebesgue
space.

De�nition 11 (Lebesgue space Lp(Γ)).
Let p ∈ [1,∞], Γ be a compact oriented Lipschitz manifold and {Ui, ϕi}i∈I

its Lipschitz atlas.
The space Lp(Γ) is de�ned as the set of real valued functions f de�ned
almost everywhere on Γ such that for any local chart {Ui, ϕi}, f ◦ ϕ−1

i ∈
Lp(ϕi(Ui)) .

The associated norm is

∥f∥p =

(∫
Γ

|f |p dλΓ

) 1
p

. (23)

The integral above is de�ned through a volume form (see formula 8).

The strong gradient
−→
∇xϕ was de�ned in (6) for a di�erentiable func-

tion f at a regular point x. The usual de�nition of Sobolev Spaces [?,
see]]Adams2003 is based on smooth test functions. Since di�erentiability
is limited to order one on Lipschitz manifolds we choose to replace smooth
test functions by Lipschitz test functions. A function f ∈ Lp(Γ) is said
to be weakly di�erentiable if there exists g⃗ ∈ Lp(Γ)d such that for any
Lipschitz function ϕ : Γ → R we have∫

Γ

f
−→
∇xϕ dλΓ = −

∫
Γ

ϕg⃗ dλΓ. (24)

g⃗ is called the weak gradient of f and denoted
−→
∇Γf .

Because Lipschitz manifolds admit only one order of di�erentiability,
we can study only the space of order one weakly di�erentiable functions.
The Sobolev space W 1,p(Γ) is de�ned in a similar way to the Euclidean
case.

De�nition 12 (Sobolev space W 1,p(Γ)).
Let p ∈ [1,∞], Γ be a compact oriented Lipschitz manifold. The space
W 1,p(Γ) is de�ned as the set of weakly di�erentiable functions equipped
with the norm

∥f∥p
W1,p(Γ)

= ∥f∥pp + ∥
−→
∇Γf∥pp. (25)
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We introduce the following classical notations in the Hilbertian case :
H1(Γ) =W 1,2(Γ).

From the De�nition 12 of Sobolev spaces, it is straightforward that

−→
∇Γ :W 1,p(Γ) → Lp(Γ)d. (26)

The de�nition of the weak divergence by a duality approach as well as
the study of weak solution of the Poisson problem both require Sobolev
spaces with negative index. Following [6] sections 3.7 to 3.13, we de�ne
W−1,p(Γ) using duality.

De�nition 13 (Dual Sobolev space W−1,p(Γ)).
Let p ∈ [1,∞[, Γ be a compact oriented Lipschitz manifold.
The spaceW−1,p(Γ) is de�ned as the dual of the spaceW 1,p(Γ) : W−1,p(Γ) =

(W 1,p′(Γ))′, where p′ is the conjugate of p : 1
p′ +

1
p
= 1.

It is equipped with the norm

∥L∥W−1,p(Γ) = sup
f∈W1,p(Γ),f ̸=0

|L(f)|
∥f∥W1,p(Γ)

. (27)

W−1,p(Γ) is the extension to W 1,p(Γ) of distributions that act nor-
mally on in�nitely smooth test functions [?, see Section 3.10 in]]Adams2003.
The weak divergence is de�ned for p ∈]1,∞] as the adjoint of the weak
gradient

∇Γ· : Lp(Γ)d →W−1,p(Γ). (28)

Indeed, if p′ < ∞ is the conjugate of p,
−→
∇Γ : W 1,p′(Γ) → Lp′(Γ)d yields

an adjoint operator ∇Γ· from (Lp′(Γ)d)′ (which is isometrically equivalent

to Lp(Γ)d) into (W 1,p′(Γ))′ =W−1,p(Γ).

The surface divergence of a general function f⃗ ∈ Lp(Γ)d is therefore a

linear operator acting on W 1,p(Γ). However, for f⃗ ∈ W 1,p(Γ)d, ∇ · f⃗ can
be identi�ed by duality with a function in Lp(Γ).

The following Green's theorem connects the divergence and the gra-
dient on Lipschitz manifolds. From a functional analytic point of view,
it is an extension of the de�nition of weak di�erentiability (24) to test
functions in W 1,p(Γ).

Theorem 2 (Green's theorem). Let Γ be a compact oriented Lipschitz

manifold of dimension d, u ∈W 1,p(Γ) and v⃗ ∈W 1,p′(Γ)d. Then∫
Γ

v⃗ ·
−→
∇Γu dλΓ = −

∫
Γ

u∇Γ · v⃗ dλΓ. (29)

Proof. De�ne the following Lipschitz di�erential forms of order (d− 1) :

ωi = uvi dx
1 ∧ dx2 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxd, i = 1, . . . , d,

where vi, i = 1, . . . , d are the components of v.
Since

dωi =
∂

∂xi
(uvi) dx

1 ∧ dx2 ∧ · · · ∧ dxd =
∂

∂xi
(uvi) dλΓ,

we have

∇Γ · (uv⃗) dλΓ =
d∑

i=1

∂

∂xi
(uvi) dλΓ =

d∑
i=1

dωi.
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Given that in a similar way to the strong gradient, the weak gradient
satis�es the product rule

∇Γ · (uv⃗) = u∇Γ · v⃗ + v⃗ ·
−→
∇Γu,

the result follows from Stokes theorem 1 :∫
Γ

v⃗ ·
−→
∇Γu dλΓ +

∫
Γ

u∇Γ · v⃗ dλΓ =

∫
Γ

∇Γ · (uv⃗) dλΓ =

d∑
i=1

∫
Γ

dωi = 0.

A consequence of the Green's theorem 2 is that the operator −∆Γ is
symmetric and positive. Green's theorem 2 will be used to perform the
integration by part needed to obtain the weak formulation (38) of the
Laplace-Beltrami operator (Theorem 3).

2.5 The Laplace-Beltrami operator on Lipschitz

manifolds

The Laplace-Beltrami operator is classically de�ned as a second order
di�erential operator on C2 manifolds [?, see for instance]]Aubin1998. The
lack of smoothness on a Lipschitz manifold prevents us from making sense
of the Laplace�Beltrami operator as a di�erential operator of order two.
One way of de�ning the Laplace-Beltrami operator on a Lipschitz manifold
Γ is

△Γ := ∇Γ ·
−→
∇Γ :W 1,p(Γ) →W−1,p(Γ). (30)

The following theorem, taken from [8] (Theorem 1.3) gives some impor-
tant properties of the Laplace-Beltrami operator on Lipschitz manifolds
on the Sobolev space H1(Γ) =W 1,2(Γ).

Theorem 3 (Laplace-Beltrami operator on Lipschitz manifolds).
Let Γ be a compact, connected, oriented Lipschitz manifold. The operator

△Γ := ∇Γ ·
−→
∇Γ is well de�ned, self adjoint and bounded from W 1,p(Γ) to

W−1,p(Γ).
Moreover the operator −△Γ has a purely discrete spectrum

0 = λ0 < λ1 ≤ · · · ≤ λj ≤ . . . (31)

with λj → ∞ as j → ∞.
Furthermore, there is an Hilbertian basis (ψj)j≥0 of L2(Γ) composed of
eigenvectors ψj ∈ H1(Γ) of −△Γ.

A corollary of theorem 3 is the existence of the Poincaré constant on
H1(Γ) which is the �rst non zero eigenvalue λ1 of −△Γ.

Corollary 1 (Poincaré's inequality).
Let Γ be a compact, connected, oriented Lipschitz manifold. There exists
a constant C > 0 such that

∀u ∈ H1(Γ), ∥u− |Γ|−1

∫
Γ

u∥L2(Γ) ≤ C∥∇Γu∥L2(Γ). (32)

A classical consequence of Poincaré's inequality is that provided
∫
Γ
u =

0, the L2 norm of ∇Γu is equivalent to the H1 norm of u :∫
Γ

u = 0 ⇒ ∥∇Γu∥L2(Γ) ≤ ∥u∥H1(Γ) ≤ (1 + C)∥∇Γu∥L2(Γ). (33)
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3 The Poisson problem on a closed Lips-

chitz surface

Now that we have de�ned the Laplace-Beltrami operator in section 2.5,
we can study the Poisson problem on closed Lipschitz manifolds. We start
by setting the problem and the relevant functional spaces in section 3.1.
We then give the weak formulation of the problem in section 3.2. We end
up by giving an existence result in section 3.3.

3.1 De�nition and functional spaces

Let Γ be a closed Lipschitz manifold. Since Γ is closed, it has no boundary
(∂Γ = ∅), and all the constant functions u are in the kernel of ∆Γ. ∆Γ is
therefore not invertible on the space of functions u ∈ H1(Γ).
We choose to impose the global condition

∫
Γ
u = 0 to guarantee the

uniqueness of solution. Hence we de�ne

L2
0(Γ) =

{
f ∈ L2(Γ),

∫
Γ

f = 0

}
, H1

0 (Γ) =

{
u ∈ H1(Γ),

∫
Γ

u = 0

}
(34)

Consider the following Poisson problem for a given f ∈ L2
0(Γ) :

Find u ∈ H1
0 (Γ) such that −∆Γu = f. (35)

In the next section we give the weak form of the Poisson problem (35).

3.2 Weak form of the Poisson problem

The classical Laplace-Beltrami operator acts on C2 functions. A classical
solution of (35) is therefore a function u ∈ C2(Γ). Unfortunately such a
strong solution doesn't always exists even if f is assumed continuous (see
Section 3.1.2 in [7] in the Euclidean case).

We now de�ne a weak form of the Laplace Beltrami operator which
acts onH1

0 (Γ) instead of C
2(Γ). Theweak Laplace-Beltrami operator

on Γ : H1
0 (Γ) → (H1

0 (Γ))
′ is the operator sending u ∈ H1

0 (Γ) to the linear
functional

H1
0 (Γ) → R (36)

v →
∫
Γ

−→
∇Γu ·

−→
∇Γv dλΓ, (37)

where
−→
∇Γu is the weak gradient of u on Γ given by (24).

The variational formulation for (35) is the following.

Find u ∈ H1
0 (Γ) such that ∀v ∈ H1

0 (Γ),

∫
Γ

−→
∇Γu ·

−→
∇Γv dλΓ =

∫
Γ

fv dλΓ.

(38)
We obtain (38) from (35) using the Green's theorem 2.
A solution u ∈ H1

0 (Γ) of (38) is called a weak solution of the
Poisson problem (35). Indeed, it is only one time weakly di�erentiable
whereas a strong (classical) solution is twice strongly di�erentiable.

In the next section we are going to prove following [12], that the Pois-
son problem with a zero mean right hand side admits, a unique solution
with zero mean on a closed Lipschitz manifold.
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3.3 Existence result

The existence and uniqueness of weak solutions for the variational formu-
lation (38) of problem (35) on non smooth manifolds Γ is to our knowledge
open. Classical existence results require the smoothness of Γ [?, see for
instance Chapter 4, Section 1.2 in]]Aubin1998. The following statement
is taken from [11] Theorem 1 b).

Theorem 4 (Existence and uniqueness of weak solutions on a C3 hyper-
surface ([11])).
Let Γ be a closed embedded C3 hypersurface in R3. For every f ∈ L2

0(Γ),
there exists a unique weak solution u ∈ H1

0 (Γ) of −△u = f on Γ.

Proof. : see Theorem 1 b) in [11].

Unfortunately on a Lipschitz manifold, similar existence results can
not be found in the literature. Besides, as mentioned in [11] page 3, it
is important to check that the space H1(Γh) is well de�ned, where Γh

results from a triangulation of Γ.
The following statement is taken from [11] Theorem 2 b).

Theorem 5 (Existence and uniqueness of weak solutions on a triangu-
lated hypersurface ([11])).
Let Γh be a closed embedded C0,1 hypersurface in R3. For every fh ∈
L2(Γh) with

∫
Γh
fh = 0, there exists a weak solution uh ∈ H1(Γh) of

−△uh = fh on Γh. Furthermore uh is unique up to a constant.

[11] claims that the proof is a �simple application of usual Hilbert
space methods�. However these Hilbert space methods require a geomet-
rical and functional setting for calculus on Lipschitz manifolds that is not
easily found in the literature. Moreover Stokes' theorem 1 and Poincaré's
inequality (Corollary 1) on Lipschitz manifolds are never stated and do
not seem trivial to us.

Our existence theorem on Lipschitz manifolds relies on the Stokes'
theorem 1 and on the Lax-Milgram's theorem.

Theorem 6 (Existence theorem on Lipschitz manifolds).
Let Γ be a closed Lipschitz manifold. Let f ∈ L2

0(Γ). There exists a
unique weak solution u ∈ H1

0 (Γ) of −∆Γu = f on Γ. Furthermore, u
depends continuously on the right hand side:

∃C′ > 0, ∥u∥H1
0 (Γ) ≤ C′∥f∥L2

0(Γ). (39)

Proof. In order to use the Lax-Milgram's theorem, using the bilinear form

a(·, ·) : H1
0 (Γ)×H1

0 (Γ) → R
(u, v) →

∫
Γ

−→
∇Γu ·

−→
∇Γv dλΓ

and the linear form
b(·) : H1

0 (Γ) → R
v →

∫
Γ
fv dλΓ

we rewrite the weak formulation (38) of (35) as

a(u, v) = b(v), ∀v ∈ H1
0 (Γ)

12



� The continuity of the bilinear form a(·, ·) is a consequence of the
Cauchy-Schwarz's inequality :

|a(u, v)| = |
∫
Γ

−→
∇Γu ·

−→
∇Γv dλΓ|

≤ ∥
−→
∇Γu∥L2

0(Γ).∥
−→
∇Γv∥L2

0(Γ)

≤ ∥u∥H1
0 (Γ)∥v∥H1

0 (Γ)

� We obtain the coercivity of a(·, ·) thanks to the Poincaré's inequality
(Corollary 1) or more precisely inequality (33):

a(u, u) =
(−→
∇Γu,

−→
∇Γu

)
L2

0(Γ)

= ∥
−→
∇Γu∥2L2

0(Γ)

≥ 1

(1 + C)2
∥u∥2H1

0 (Γ)

� The continuity of b(·) is the consequence of the Cauchy-Schwarz's
inequality and the Poincaré's inequality (Corollary 1)

|b(v)| = |(f, v)L2
0(Γ)| ≤ ∥f∥L2

0(Γ)∥v∥L2
0(Γ)

≤ ∥f∥L2
0(Γ)∥v∥H1

0 (Γ)

Since the requirement of the Lax-Milgram's theorem are satis�ed, the
existence of a unique solution to the weak formulation (38) satisfying the
stability estimate (39) holds with C′ = 1

(1+C)2
.

In the next section we introduce the linear �nite element method.

4 The �nite element method

The �nite element method (FEM) is a numerical method for solving prob-
lems of engineering and mathematical physics that are formulated by
PDEs [?, see, e.g.,]]Allaire2007,ElliotStinner).

When the domain is a hypersurface Γ, we assume as done in [11], the
existence of a polyhedric surface Γh that approximates Γ and is made of
triangles with nodes on Γ. We can approximate functions u ∈ H1

0 (Γ) by
functions uh ∈ H1

0 (Γh). We can then approximate functions uh ∈ H1
0 (Γh)

by their projection on PL0(Γh) the space of continuous piecewise a�ne
functions with zero mean.

Considering the weak Laplace-Beltrami operator on the piecewise lin-
ear manifold Γh, we seek for ũh ∈ PL0(Γh) the projection on PL0(Γh)
of the solution uh ∈ H1

0 (Γh) of the Poisson problem −△Γhuh = fh. The
�nite element approximation therefore projects the original problem set
on H1

0 (Γ) onto the �nite dimensional space PL0(Γh) using a discrete vari-
ational formulation.

The discrete variational formulation of the Poisson equation (35)
is the following.

Find ũh ∈ PL0(Γh) such that ∀ṽh ∈ PL0(Γh),

∫
Γh

−→
∇Γh ũh·

−→
∇Γh ṽh =

∫
Γh

fhṽh.

(40)
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In a similar fashion as in equations (36-37), the discrete Laplace-

Beltrami operator −△̃h : PL0(Γh) → PL0(Γh)
′ is the operator sending

ũh ∈ PL0(Γh) to the linear functional

PL0(Γh) → R (41)

ṽh →
∫
Γh

−→
∇Γh ũh ·

−→
∇Γh ṽh, (42)

where
−→
∇Γh ũh is the weak gradient of ũh on Γh given by (24).

−△̃h acts between �nite dimensional spaces and approximates the
continuous weak Laplace-Beltrami operator (36-37). It can be represented
by a sti�ness matrix A△Γh

with size n the number of nodes of Γh.
The unknown function ũh belongs to the �nite dimensional space

PL0(Γh). De�ne the unknown vector (u1, ..., un) as the vector of com-
ponents of ũh on the nodal basis:

ũh =

n∑
i=1

uiϕi. (43)

Since PL0(Γh) is generated by the nodal functions ϕi : Γh → R, i =
1, ..., n such that ϕi(xj) = δij , the solution ũh of the discrete Poisson
problem (40) must therefore satisfy the following system of equations

∀i ∈ {1, ..., n},
∫
Γh

−→
∇Γh ũh ·

−→
∇Γhϕi =

∫
Γh

fhϕi, (44)

which takes the algebraic form

A△Γh
X = bh, where X = t(u1, ..., un). (45)

From (44) the coe�cients of the sti�ness matrix A△Γh
= (aij)i,j=1,...,n,

and of the right hand side vector bh = t(b1, ..., bn) are therefore given by

aij =

∫
Γh

−→
∇Γhϕi ·

−→
∇Γhϕj , (46)

bj =

∫
Γh

fϕj . (47)

The sti�ness matrix A△Γh
is symmetric positive but not invertible [?, see

Theorem 4.1 in]]NdjingaNguemfouo). However the �nite element linear
system admits a unique solution provided the right hand side has zero
mean [?, see Theorem 4.2 in]]NdjingaNguemfouo, hence the existence of
the discrete solution ũh as stated in the following theorem.

Theorem 7 (Existence of the discrete solution).
Let fh ∈ PL0(Γh), there exists a unique discrete solution ũh ∈ PL0(Γh)
to the discrete Poisson problem (40).

The computation of the coe�cients aij is usually performed by ex-
pressing the integral in (46) as a sum over the triangles Tk composing
Γh:

aij =
∑
Tk

∫
Tk

−→
∇Γhϕi ·

−→
∇Γhϕj . (48)

The gradients
−→
∇Γhϕi in (48) are thus computed in each separate trian-

gle Tk where their value is well de�ned and constant. There is no need to
compute the gradient at the edge between two triangles Tk, where it is not
properly de�ned. Therefore the lack of smoothness of Γh does not yield
any singularity in the computation of the sti�ness matrix coe�cients.

The coe�cients aij of A△Γh
can be computed explicitely as a function

of the mesh nodes coordinates and are given in [14].

14



5 Numerical experiments on the unit cube

boundary

In order to illustrate the applicability of our theoretical study we present in
this section the numerical simulation of a Poisson problem on the bound-
ary of the unit cube.

5.1 Setting of the problem

We consider the unit cube Ωcube = [0, 1] × [0, 1] × [0, 1] ⊂ R3 and its
boundary

Γ = ∂Ωcube.

Γ is a topological manifold but not a di�erential manifold because of the
presence of sharp edges where Γ admits no tangent space. Γ is however a
Lipschitz manifold,which admits tangent spaces except at the edges. As a
Lipschitz manifold, Γ can be endowed with a Laplace-Beltrami operator

△Γ = ∇ ·
−→
∇, de�ned as the combination of a surface divergence ∇Γ·, and

of a surface gradient
−→
∇Γ [?, see]]Gesztesy.

Figure 1: The unit cube in SALOME CAO module

We consider f the restriction to Γ of the smooth function cos(2πx) cos(2πy) cos(2πz).
The explicit expressions of f on each face of Γ are

f(x, y, z) =


cos(2πx) cos(2πy) if z = 0 or z = 1
cos(2πx) cos(2πz) if y = 0 or y = 1
cos(2πy) cos(2πz) if x = 0 or x = 1

. (49)
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f is an eigenfunction of the Laplace-beltrami operator on Γ since

△Γf(x, y, z) =


∂xx cos(2πx) cos(2πy) + ∂yy cos(2πx) cos(2πy) if z = 0 or z = 1

∂xx cos(2πx) cos(2πz) + ∂zz cos(2πx) cos(2πz) if y = 0 or y = 1

∂yy cos(2πy) cos(2πz) + ∂zz cos(2πy) cos(2πz) if x = 0 or x = 1

=


−2(2π)2 cos(2πx) cos(2πy) if z = 0 or z = 1

−2(2π)2 cos(2πx) cos(2πz) if y = 0 or y = 1

−2(2π)2 cos(2πy) cos(2πz) if x = 0 or x = 1

= −8π2f.

We are going to solve the following Poisson problem on Γ :

−△Γu = f, (50)∫
Γ

u = 0,

where the right hand side f de�ned in (49) and the unknown u ∈ H1(Γ)
are zero mean functions.

Our objective is to solve numerically the Poissson problem (35) using
the �nite element method described in [11].

� For the numerical resolution of our discrete problem, we use an iter-
ative solver (Conjugate Gradient) because the sti�ness matrix A△Γh

is large and sparse [?, see]]Saad1996 .

� For the design and meshing of the domain we use the GEOMETRY
andMESHmodules of the software SALOME 9.5 [?, see]]Ribes,Salome.

� For the visualisation of the result, we use the PARAVIS module
included in SALOME [?, see]]Salome.

� For the coding of the script, we use Python language and the open-
source Linux based library [18] which is very practical for the manip-
ulation of large matrices, vectors, meshes and �elds. It (SOLVER-
LAB) can handle �nite element and �nite volume discretizations,
read general 1D, 2D and 3D geometries and meshes generated by
SALOME.

5.2 Meshing of the domain

Below are the meshes used in our convergence analysis.

meshCubeSkin 1 meshCubeSkin 2 meshCubeSkin 3 meshCubeSkin 4

412 cells 1923 cells 7042 cells 13225 cells

Figure 2: Meshes of the unit cube boundary
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5.3 Visualisation of the results

Below are visualisations of the numerical results obtained on the di�erent
meshes

412 cells 1923 cells 7042 cells 13225 cells

Figure 3: Numerical results of the finite elements on the unit cube boundary

Below are clipings of the previous numerical results.

412 cells 1923 cells 7042 cells 13225 cells

Figure 4: Clipings of the numerical results on the unit cube boundary
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5.4 Numerical convergence

When re�ning the mesh, we observe the convergence of the method with
a numerical order of 1.91.

Figure 5: Convergence of the finite element method on the cube boundary

6 Conclusion and perspectives

The notion of Lipschitz manifold has been studied by some authors [8, 9]
and is usefull in laying the foundation of the �nite element method on
general compact manifolds. We showed how it allows the proper de�nition
of tangent spaces, gradient and divergence operators almost everywhere.
Di�erentiability almost everywhere thanks to Rademacher's theorem is
the key ingredient of the calculus on Lipschtz manifolds.

We have proposed proofs of the Stokes' (1) and Green's (2) theorems
as well as a Poincaré's inequality. This enables the weak formulation of
the Poisson problem. The well-posedness of the weak formulation of the
Poisson problem is then obtained thanks to the Lax-Milgram's theorem.

We gave an example of numerical simulation on a Lipschitz (non
smooth) manifold to illustrate the fact that the lack of smoothness does
not yield any numerical singularity. The numerical results of the Pois-
son problem on the unit cube boundary showed that the �nite element
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approximation converges towards the exact solution.
This study has set the theoretical ground for further numerical analy-

sis of more complex PDEs on Lipschitz manifolds. Note however that on
Lipschitz manifolds the maximum order of di�erentiability is one which is
enough for the classical weak formulation of second order elliptic PDEs.
This is however a technical di�culty for general high order PDEs on Lips-
chitz manifolds. One workaround for PDEs of order three and more could
however be to reset the PDE into a system of low order PDEs.

Yet, with this new approach we were not able to extend the regularity
and convergence theorems of [11, 12] because the lack of smoothness of
the Lipschitz manifold Γ prohibits the use of the lift operator. Further
research should therefore be devoted to the theoretical analysis of the
convergence of both the approximate manifold Γh and solution uh towards
the exact manifold Γ and solution u.
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