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A B S T R A C T

Elastic plane wave diffraction by a stress-free wedge is a canonical problem of
interest to researchers in many different fields. To our knowledge, no fully ana-
lytical resolution has been found and semi-analytical evaluations of asymptotic
approximations have therefore become a common approach. In this paper, a
method called the spectral functions method is developed in a 3D configura-
tion, meaning that the incident ray is not necessarily in the plane normal to the
wedge edge. The diffracted displacement field is expressed as an integral in
terms of two unknown functions called the spectral functions. These functions
are decomposed into two parts : one which can be computed analytically and
the other which is approached numerically using a collocation method. The
details of the corresponding numerical scheme are given and first numerical
validations are presented. The presented method is valid for incident skew an-
gles which are below the critical angle in diffraction.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The problem of 3D wedge diffraction has been studied over the past century in acoustics, electromagnetics and
in to a lesser degree in elastodynamics. The problem was introduced notably by Sommerfeld [1], who gave an exact
expression of the solution to the scattering problem of a scalar plane wave by a wedge with Dirichlet or Neumann
boundaries in the form of a contour integral.

In the case of an incident acoustic wave, Rawlins [2] determined an expression of the solution as a real integral
for a spherical acoustic wave diffracted by a wedge with Dirichlet or Neumann boundaries when the aperture angle is
a multiple of π

n , where n is an integer. In the case of an electromagnetic wave, Rojas [3] derived a uniform asymptotic
solution for a plane wave incident on an impedant wedge when the wedge angle is a multiple of π

2 . Gerard and
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Lebeau have studied diffraction by a curved wedge with Dirichlet boundary conditions [4] and their results were
generalized to mixed boundary conditions by Lafitte [5]. By generalizing the Malyuzhinets technique [6], Bernard
[7] reduced the 3D problem of a plane electromagnetic wave diffracted by an impedance wedge of arbitrary angle to a
scalar functional equation with only one unknown and provides examples of numerical resolution of this equation for
some particular classes of wedges. In the case of a spherical acoustic wave diffracted by a wedge-shaped separation
between two homogeneous mediums, Ayzenberg [8] proposes a numerical scheme of resolution. However, it appears
that parallel programming is necessary to obtain a short computation time. To obtain a shorter computation time,
some simplifying approximations can be made. Favretto-Cristini [9] studies the effect of these approximations on the
resulting accuracy. Finally, an application of the Wiener-Hopf technique to the case of electromagnetic plane wave
diffraction by impenetrable wedges of arbitrary angles was developed by Daniele in 2D [10] and extended to 3D cases
by Daniele and Lombardi [11]. A review and comparison of various methods and solution forms for acoustic wave
diffraction wedge diffraction has been made by Nethercote et al. [12].

In the case of a plane elastic wave, it seems that the solution can not be computed analytically [13]. Therefore,
semi-analytical resolutions and far-field (kr >> 1, k being the wave number and r being the distance of observation)
asymptotics have become common approaches. In this regard, the Geometrical Theory of Diffraction (GTD) was first
introduced in electromagnetics by Keller [14]. Sommerfeld’s intergral can be used to obtain an analytical expression
of the GTD diffraction coefficient both in electromagnetics and in acoustics [15, 16]. In the scalar case of 2D wedge
diffraction of a shear horizontally polarized incident wave, a comparison of asymptotic (GTD and uniform) and exact
solutions has been carried out in elastodynamics by Aristizabal et al. [17].

The total asymptotic fields obtained with the GTD method does not correctly model all the head waves occuring
at the vicinity of a wedge [18] and are spatially non-uniform in the sense that they diverge at shadow boundaries
of the Geometrical Elastodynamics (GE) field. Recent developments from the articles [18–23] and a modification
[24] of the Kirchhoff approximation has recently been proposed to account for head waves. To solve the divergence
problem at shadow boundaries, some uniform corrections of the GTD have been developed. One of these methods
is the Physical Theory of Diffraction (PTD), which has been developed in electromagnetics by Ufimtsev [25] and
extended to elastic waves [26, 27] but it is computationally expensive for large scatterers. Another uniform correction
is the Uniform Asymptotic Theory (UAT) developed in elastodynamics by Achenbach et al. [28]. This method has
been tested by Fradkin and Stacey [29], using a finite difference algorithm. It requires an artificial extension of the
scattering surface and the construction of fictitious rays [15]. For these reasons, a more commonly used uniform
correction of the GTD method is the Uniform Theory of Diffraction (UTD). It was developed in electromagnetics by
Kouyoumjian and Pathak [30] and extended to elastodynamics by Kamta Djakou et al. [31], with an application to the
scattering from a half-plane. This method is computationally efficient but still requires a trustworthy GTD diffraction
model in order to be applied.

In elastodynamics, a GTD solution to the 3D problem of plane wave diffraction by a stress-free half plane was
developed by Achenbach and Gautesen [28]. Gautesen [32, 33] also proposed a semi-analytical scheme of resolution
of the far-field scattering problem of a skew incident Rayleigh wave diffracted by a quarter-space (i.e. a wedge of angle
π
2 or 3π

2 ). Budaev also studied the problem of diffraction of a plane wave diffraction by a wedge [34–36] and reduced
it to a singular integral equation. However, no clear numerical scheme of resolution has been proposed. Budaev and
Bogy [37] have applied this method to the case of an incident Rayleigh wave and have proposed a corresponding
numerical resolution. Their theoretical development was incomplete and has been clarified by Kamotski et al. [38].
Budaev and Bogy’s method, called the Sommerfeld Integral (SI) method, and Gautesen’s method, called the Laplace
Transform (LT) method have both been extended by Gautesen and Fradkin [39] to the case of an elastic wave diffracted
by a stress-free wedge of angle lower than π. They offer a comparison of the two methods and an experimental
validation is given by Chapman et al. [40].

Another boundary integral approach was developed by Croisille and Lebeau [41] in the case of an acoustic plane
wave scattered by an immersed elastic wedge. This is called the spectral functions method and was described both the-
oretically and numerically for the case of an immersed wedge of angle lower than π [41]. In this method, the diffracted
displacement field is expressed as an integral in terms of two unknown functions called the spectral functions. These
functions are decomposed into two parts : one which can be computed analytically and the other which is approached
numerically using a collocation method. In the 2D case of an acoustic wave incident on a soft wedge of arbitrary angle
(lower or higher than π), the method has been developed numerically by Chehade et al. [42]. The spectral functions
method was also used by Kamotski and Lebeau [43] to prove the existence and uniqueness of the solution to the 2D
problem of a plane elastic wave diffracted by a stress free wedge of arbitrary angle. The corresponding numerical
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scheme of 2D resolution was given by Chehade et al. [44].
To our knowledge, no resolution scheme has been developed for the 3D problem of a skew incident longitudinal

or transversal plane elastic wave diffracted by an arbitrary-angled wedge. Therefore, it is the aim of this article.
In the first part of this paper, the problem is presented. Snell’s law for diffraction allows us to define the critical

angle in diffraction δc, which depends on the propagation medium. For incident transversal waves with skew angles
higher than this critical angle, there is no diffracted no diffracted longitudinal wave. In the second part, an integral
formulation of the solution is derived, depending on two unknown functions, called the spectral functions. The 3D
diffraction coefficient is defined and expressed with respect to these spectral functions. In the third part, the semi-
analytical evaluation of these functions is detailed. Finally, the corresponding code is tested numerically in the fourth
part.

2. Problem statement

Fig. 1: Geometry of the problem

Let us consider the problem of an elastic wave diffracted by a stress-free infinite wedge delimited by faces S1 and
S2. The geometry of the problem is shown on Fig. 1. Vector x = (r, θ, δ) is an observation point in the propagation
domain indexed by its spherical coordinates and the domain Ω is the inside of the wedge, defined by :

Ω = {(r cos θ cos δ, r sin θ cos δ, r sin δ) \ θ ∈]0, ϕ[, δ ∈] −
π

2
,
π

2
[} (2.1)

The outside of the wedge, in which no wave is propagated, is represented in gray.
The incident wave is a plane wave of the form

uinc(x, t) = Aαei(kinc
α ·x−ωt) (2.2)

where Aα is the amplitude vector of the incident wave and kinc
α is the incident wave vector. The type of the incident

wave is denoted by α (α =L for a longitudinal wave, TH for transverse horizontal and TV for transverse vertical).
(O; ex1 , ey1 , ez1 ) is a Cartesian coordinate system associated to faceS1 and (O; ex2 , ey2 , ez2 ) is a Cartesian coordinate sys-
tem associated to face S2. In all the following, vectors are expressed in the coordinate system x = (x′1, y

′
1, z
′
1)(ex1 ,ey1 ,ez1 ),

unless explicitly mentioned otherwise. In this system, the incident wave vector is given by :

kinc
α =

ω

cα

cos θinc cos δinc

sin θinc cos δinc

sin δinc

 (2.3)

cL =
√
λ + 2µ/ρ is the velocity of longitudinal waves and cT =

√
µ/ρ is the velocity of transverse waves.

The amplitude vector can be directed by three different two-by-two orthogonal vectors, depending on the incident
wave’s polarization. These unit polarization vectors are noted îα, where α = L,T H,TV and are given by Achenbach
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[28] :

îL =

cos θinc cos δinc

sin θinc cos δinc

± sin δinc

 , îTV =

∓ cos θinc sin δinc

∓ sin θinc sin δinc

cos δinc

 , îT H =

− sin θinc

cos θinc

0

 (2.4)

where the top sign gives the polarization of an incident wave and the bottom sign gives the polarization of a diffracted
wave.

For a homogeneous, isotropic material, the linear elasticity equation solved by the displacement field u is

µ∆u + (λ + µ)∇∇ · u = ρ
∂2u
∂t2 (2.5)

On each of the wedge faces, the displacement field verifies the zero-stress boundary conditions, expressed as :

(λ∇ · u.I3 + 2µε(u)).n = 0 (2.6)

where I3 is the identity matrix of the third order, n is the inward facing normal to the wedge face (n = y1 on S1
and n = y2 on S2) and λ, µ are the Lamé coefficients of the considered elastic medium. The deformations tensor is
expressed as:

ε(u) =
1
2



2
∂u1

∂x′1

∂u1

∂y′1
+
∂u2

∂x′1

∂u1

∂z′1
+
∂u3

∂x′1
∂u1

∂y′1
+
∂u2

∂x′1
2
∂u2

∂y′1

∂u2

∂z′1
+
∂u3

∂y′1
∂u1

∂z′1
+
∂u3

∂x′1

∂u2

∂z′1
+
∂u3

∂y′1
2
∂u3

∂z′1


(2.7)

Kamotski and Lebeau [43] have proven existence and uniqueness of the solution to this problem in the 2D the case.
We will assume that this is still true in the 3D case.

In all the following, bold characters will be reserved to matrices in order to simplify notations. The solutions
being time harmonic, the factor e−iωt will be implied but omitted everywhere. Furthermore, since there is no obstacle
to propagation in the z direction, ei ωcα sin δincz′1 is also a common factor to all the terms which appear in the solution.

The total field is written as the sum of an incident field uinc and a scattered field u0

u = u0 + uinc (2.8)

The dimensionless problem is obtained by applying the following variable change :

x =
ω

cL
x′, y =

ω

cL
y′, z =

ω

cL
z′ (2.9a)

u0(x′, y′, z′) = v(x, y)e−iνβ sin δβz (2.9b)

where β denotes the type of the diffracted wave and δβ is the angle of Snell’s cone of diffraction, visible on Fig. 2
(determined by Snell’s law of diffraction, given by (2.12)).

Fig. 2: Keller’s cone of diffraction
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The dimensionless Lamé parameters λ, µ are defined by

λ =
λ

ρc2
L

, µ =
µ

ρc2
L

, (2.10)

and parameters νL and νT are defined by
νL = 1 νT =

cL

cT
. (2.11)

Since eiνα sin δincz is a common factor to all the terms of the solution, we can deduce Snell’s law of diffraction :

να sin δinc = −νβ sin δβ (2.12)

To simplify notations, the following parameter τ is defined by :

τ = να sin δinc (2.13)

Note that we therefore always have τ ∈ [−να, να]. The z-dependency of u0 is entirely contained in the factor eiτz which
will be implied but omitted in all the following.

Substituting (2.8) and (2.9) into (2.5) and (2.6) and using (2.7) yields the dimensionless problem

(Pα)
{

(E + 1)v = 0 (Ω)
Bv = −Bvinc

α (S) (2.14)

where E and B are respectively the dimensionless linear elasticity operator and normal stress operator, given by:

Ev = µ(∆ − τ2)v + (λ + µ)


∂2vx
∂x2 +

∂2vy

∂x∂y + iτ ∂vz
∂x

∂2vx
∂x∂y +

∂2vy

∂y2 + iτ ∂vz
∂y

iτ
(
∂vx
∂x +

∂vy

∂y

)
− τ2vz

 (2.15)

and, noticing that λ + 2µ = 1,

Bv =


µ
(
∂vx
∂y +

∂vy

∂x

)
∂vy

∂y + λ
(
∂vx
∂x + iτvz

)
µ
(
∂vz
∂y + iτvy

)
 (2.16)

where (vx, vy, vz) are the components of vector v. The dimensionless incident field is given by

vinc
α (r, θ) = eirνα cos(θ−θinc) cos δinc îα, (2.17)

where vector îα is defined by (2.4). The first equation of system (2.14) is the dimensionless version of the linear
elasticity equation and the second equation is the dimensionless version of the stress-free boundary conditions.

3. Integral formulation of the solution

As in the acoustic and elastic 2D cases [42, 44], the first step to solving problem (Pα) is to formulate the solution
as an integral.

3.1. Limiting absorption principle
The limiting absorption principle is applied to (Pα). This means that it is considered as a special case (ε = 0) of

the problem

(Pαε )
{

(E + e−2iε)vε = 0 (Ω)
Bvε = −Bvinc

α (S) (3.1)

Following Kamotski and Lebeau [43], we will assume that the solution can be expressed as the sum of two contribu-
tions, corresponding to each of the wedge faces :

vε = vε1 + vε2 (3.2)
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6 Samar Chehade et al. / Journal of Computational Physics (2020)

where functions vεj are defined on all of R3 by

vεj = −(E + e−2iε)−1


α j

β j

γ j

 ⊗ δS j

 (3.3)

Distributions α j, β j, γ j are unknown and belong to the special classA defined by Kamotski and Lebeau [43] as:

Def. 3.1. The distribution f ∈ A if:

• f ∈ S′(R) (f is a tempered distribution)

• supp( f ) ⊂ [0,+∞[

• ∃C0 > 0 such that

sup
−π<θ<0

∫
ρ>C0

| f̂
(
ρeiθ

)
| dρ < ∞

where f̂ is the Fourier transform of f defined by f̂ (ξ) =
∫
R f (x)e−ixξ dx

• f̂ (ξ) is holomorphic near ξ = 1

We can now define the outgoing solution of (Pα) analogously to the 2D case :

Def. 3.2. v is called an outgoing solution of equation (2.14) if v is a solution of the form

v = v1|Ω + v2|Ω (3.4)

where, for j = 1, 2 :

vj = − lim
ε→0

(E + e−2iε)−1


α j

β j

γ j

 ⊗ δS j

 (3.5)

where α j, β j, γ j ∈ A and where δS1 and δS2 are the Dirac distributions associated to the wedge faces S1 and S2
respectively.

The following theorem was proven by Kamotski and Lebeau [43] in the 2D case. Demonstrating that their work
can be adapted to the 3D case is a complex problem which would require a separate publication. We will therefore
simply assume that this is the case and that the following theorem is still true.

Theorem 3.1. Equation (2.14) admits a unique outgoing solution.

Now that the outgoing solution has been defined, we will derive an integral formulation of this solution.

3.2. Integral formulation

The two-sided Fourier transform of a tempered distribution and its inverse are defined in the following manner :

f̂ (ξ, η) =

∫ ∫
R2

f (x, y)e−i(xξ+yη) dxdy (3.6a)

f (x, y) =
1

4π2

∫ ∫
R2

f̂ (ξ, η)ei(xξ+yη)dξdη (3.6b)

The first step in determining an integral formulation of the solution is to apply the two-sided Fourier transform to
(3.3). This is possible because all the distributions that appear in this equation are tempered distributions and they
therefore admit a Fourier transform. We then have :

v̂εj(ξ, η) = (M − e−2iεI3)−1Σ j(ξ), (3.7)
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Samar Chehade et al. / Journal of Computational Physics (2020) 7

where Σ j, j = 1, 2 are the unknown spectral functions, defined by :

Σ j(ξ) =

α̂ j(ξ)
β̂ j(ξ)
γ̂ j(ξ)

 (3.8)

and where M is the two-sided Fourier transform of operator E. Its expression is :

M(ξ, η) =

ξ
2 + µ(η2 + τ2) (λ + µ)ξη (λ + µ)ξτ

(λ + µ)ξη η2 + µ(ξ2 + τ2) (λ + µ)ητ
(λ + µ)ξτ (λ + µ)ητ τ2 + µ(ξ2 + η2)

 (3.9)

Substituting λ by 1 − 2µ and µ by 1/ν2
T in (3.9) yields

(M − e−2iεI3)−1 =

ξ
2 + ν2

T (η2 + τ2 − e−2iε) (1 − ν2
T )ξη (1 − ν2

T )ξτ
(1 − ν2

T )ξη η2 + ν2
T (ξ2 + τ2 − e−2iε) (1 − ν2

T )τη
(1 − ν2

T )ξτ (1 − ν2
T )τη τ2 + ν2

T (η2 + ξ2 − e−2iε)


(ξ2 + η2 + τ2 − e−2iε)(ξ2 + η2 + τ2 − ν2

T e−2iε)
(3.10)

Finally, the integral formulation of vj is obtained by inverting the two-sided Fourier transform applied in (3.7) :

vεj (xj, yj) =
1

4π2

∫
R2

eixjξ

(∫ +∞

−∞

eiyjη(M − e−2iεI3)−1 dη
)
Σj(ξ) dξ (3.11)

The poles of (M − e−2iεI3)−1 (which are the poles of the integrand of the inner integral on η in (3.11)) are located
at η = ±ζε∗(ξ) according to (3.10), where ∗ = L,T and

ζε∗(ξ) =

√
e−2iεν2

∗ − (ξ2 + τ2) (3.12)

Let us define ν̃∗, ∗ = L,T by

ν̃ε∗ =

√
e−2iεν2

∗ − τ2 (3.13)

If the incident wave is longitudinal, then, according to (2.13), τ = sin δinc and

ν̃0
L =

√
1 − sin2 δinc = cos δinc ∈ R (3.14a)

ν̃0
T =

√
ν2

T − sin2 δinc ∈ R, (3.14b)

since νL = 1 and νT = cL
cT
> 1. However, if the incident wave is transverse, then τ = νT sin δinc and we have

ν̃0
T =

√
ν2

T − ν
2
T sin2 δinc = νT cos δinc ∈ R, (3.15)

and for ν̃0
L, two cases may occur :

• if | sin δinc| ≤
νL

νT
, then ν̃0

L =

√
1 − ν2

T sin2 δinc ∈ R (3.16)

• if | sin δinc| >
νL

νT
, then ν̃0

L =

√
1 − ν2

T sin2 δinc = i
√
ν2

T sin2 δinc − 1 ∈ iR (3.17)

In the case described by (3.17), the presence of an imaginary branch point considerably complicates all complex
integral contour deformations used in the sequel. Some ideas on how to deal with this in practice are proposed in [45],
but a theoretical solution has yet to be found. In this paper, we will only deal with the case described by (3.16) and
we will hereon after assume that ν̃L ∈ R, which implies that the skew incident angle is smaller than a certain critical
angle δc. Physically, if we define a critical angle for diffraction δc by sin δc = νL

νT
, then the case described in (3.16)

corresponds to the case where the incident skew angle (the angle between the incident wave vector and the plane
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8 Samar Chehade et al. / Journal of Computational Physics (2020)

normal to the wedge edge) is lower than the critical angle. On the contrary, the case described by (3.17) corresponds
to the case where the incident skew angle is higher than this critical angle and, according to Snell’s law of diffraction
(2.12), there is no diffracted longitudinal wave. Going back to the poles ζε∗ given by (3.12), and substituting the
definition on ν̃ε∗ (3.13) we have:

ζε∗(ξ) =

√
(ν̃ε∗)2 − ξ2 (3.18)

The inner integral of (3.11) is computed using Cauchy’s residue theorem. The first step in doing so is to compute
the eigen vectors and eigen values of M. The three eigenvectors of M and their corresponding eigenvalues are :

M

ξη
τ

 = (ξ2 + η2 + τ2)

ξη
τ

 (3.19a)

M

−ηξ0
 =

ξ2 + η2 + τ2

ν2
T

−ηξ0
 (3.19b)

M

 −ξτητ
ξ2 + η2

 =
ξ2 + η2 + τ2

ν2
T

 −ξτητ
ξ2 + η2

 (3.19c)

These three vectors are linearly independent and constitute a vector basis of C3. This means that any vector of C3 can
be expressed as a linear combination of these three vectors. In particular:

Σ j =

α̂ j

β̂ j

γ̂ j

 =
ξα̂ j + ηβ̂ j + τγ̂ j

ξ2 + η2 + τ2

ξη
τ

 +
ξβ̂ j − ηα̂ j

ξ2 + η2

−ηξ0
 +

(ξ2 + η2)γ̂ j − τ(ξα̂ j + ηβ̂ j)
(ξ2 + η2)(ξ2 + η2 + τ2)

 −ξτητ
ξ2 + η2

 (3.20)

This allows us to write the term (M − e−2iεI3)−1Σ j as the sum of three contributions :

(M − e−2iεI3)−1Σ j =
ξα̂ j + ηβ̂ j + τγ̂ j

ξ2 + η2 + τ2 [(ξ2 + η2 + τ2) − e−2iε]−1

ξη
τ


+
ξβ̂ j − ηα̂ j

ξ2 + η2 [
ξ2 + η2 + τ2

ν2
T

− e−2iε]−1

−ηξ0


+
(ξ2 + η2)γ̂ j − τ(ξα̂ j + ηβ̂ j)

(ξ2 + η2)(ξ2 + η2 + τ2)
[
ξ2 + η2 + τ2

ν2
T

− e−2iε]−1

 −ξτητ
ξ2 + η2


(3.21)

Expression (3.21) therefore simplifies the evaluation of the residues of the integral on η in (3.11) at poles ±ζε∗(ξ),
yielding

vεj (xj, yj) =
i

4π
e2iε

∫
R

eixjξ
∑

∗=L,TH,TV

ei|yj |ζ
ε
∗ (ξ)Mε

∗(ξ, sgn yj)Σj(ξ) dξ (3.22)

where Mε
∗(ξ, t), ∗ = L,T H,TV are defined by

Mε
L(ξ, t) =


ξ2

ζεL
tξ ξτ

ζεL
tξ ζεL tτ
ξτ
ζεL

tτ τ2

ζεL

 (3.23a)

Mε
TV(ξ, t) =


ξ2τ2

ζεT (ξ2+ζε2T )
tξτ2

ξ2+ζε2T

−ξτ
ζεT

tξτ2

ξ2+ζε2T

ζεT τ
2

ξ2+ζε2T
−tτ

−ξτ
ζεT

−tτ ξ2+ζε2T
ζεT

 (3.23b)
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Mε
TH(ξ, t) =

1 +
τ2

ξ2 + ζε2T



ζεT −tξ 0
−tξ ξ2

ζεT
0

0 0 0

 (3.23c)

In order to simplify notations, let us define Mε
T = Mε

TH + Mε
TV,

Mε
T(ξ, t) =


ζεT + τ2

ζεT
−tξ −

ξτ
ζεT

−tξ ξ2+τ2

ζεT
−tτ

−
ξτ
ζεT

−tτ ζεT +
ξ2

ζεT

 (3.24)

Integral (3.22) is well defined for Imζε∗ > 0, so that the exponential in the integral decreases with the distance y j.
The branch cut for the square root in the definition of ζε∗ (3.18) is therefore:

ζε∗ =

 i
√
ξ2 − ν̃ε2∗ if |ξ| ≥ |ν̃ε∗|

−
√
ν̃ε2∗ − ξ2 if |ξ| < |ν̃ε∗|

(3.25)

For values of ε ∈]0, π[, the integration contour (real axis) of (3.22) never crosses the branch points of ζε∗ , which are
located at ±ν̃ε∗ (ν̃ε∗ is given by (3.13)), outside of the real axis.

According to Croisille et Lebeau [41], convergence in the 2D case is verified for ε → 0. We will assume that this
is still true in 3D. The integration contour R is deformed into contour Γ0, visible on Fig. 3.

In all the following, superscript ε = 0 will be omitted in order to alleviate notations. Finally:

vj(xj, yj) =
i

4π

∫
Γ0

eixjξ
∑
∗=L,T

ei|yj |ζ∗(ξ)M∗(ξ, sgn yj)Σj(ξ) dξ (3.26)

0
××

ν̃L ν̃T

××

−ν̃L−ν̃T (Γ0)

ξ1

ξ2

Fig. 3: Contour Γ0 in the complex plane ξ = ξ1 + iξ2

Integral formulation (3.26) is an expression of the solution in terms of the unknown spectral function Σ j. In the
next section, a far-field approximation of this integral is derived and the diffraction coefficient is defined.

3.3. Far field approximation
P = (x′1, y

′
1, z
′
1) = (r cos θ cos δβ, r sin θ cos δβ,−r sin δβ) is an observation point, indexed by its spherical coordi-

nates, visible on Fig. 1. In order for the diffracted field to be observable at this point, x is located on one of Keller’s
cones of diffraction, visible on Fig. 2. The observation skew angle δβ is set by Snell’s law of diffraction (2.12).

According to (2.9), the scattered field at point P is :

u0(x′1, y
′
1, z
′
1) = v(

ω

cL
r cos θ cos δβ,

ω

cL
r sin θ cos δβ)e−ikβ sin δβz′1 (3.27)

The far field parameter is R = ωr
cL

. The aim is to determine the asymptotic behavior of v(R cos θ cos δβ,R sin θ cos δβ)
when R→ +∞. The first step is to apply the following change of variables in integral (3.26):

ξ = ν̃∗ cosψ
dξ = −ν̃∗ sinψ dψ

(3.28)

yielding

v1(r, θ, δβ) =
i

4π

∫
C0

∑
∗=L,T

ν̃2
∗e

iν̃∗R cos δβ cos(ψ+θ̄)P∗(ψ, t)Σ1(ν̃∗ cosψ) dψ (3.29)
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where θ̄ is defined by

θ̄ =

{
θ if θ ≤ π

2π − θ if θ > π , (3.30)

and

PL(ψ, t) =


cos2 ψ −t cosψ sinψ τ

ν̃L
cosψ

−t cosψ sinψ sin2 ψ −t τ
ν̃L

sinψ
τ
ν̃L

cosψ −t τ
ν̃L

sinψ τ2

ν̃2
L

 (3.31a)

PT(ψ, t) =


sin2 ψ + τ2

ν̃2
T

t cosψ sinψ − τ
ν̃T

cosψ

t cosψ sinψ cos2 ψ + τ2

ν̃2
T

t τ
ν̃T

sinψ
− τ
ν̃T

cosψ t τ
ν̃T

sinψ 1

 , (3.31b)

where t = sgn sin θ and contour C0 is visible on Fig. 4. Note that contour C0 does not exactly follow ψ1 = π. This
corresponds to adding an infinitely small imaginary part to the axis Γ0 represented in Fig. 3, in order to avoid the
branch points ξ = ±ν̃∗ located at ψ = 0 and ψ = π, where ψ is given by (3.28).

ψ1

ψ2

π
0

ψs

C0γθ

×

θc

Fig. 4: Contour C0 and γθ in the complex plane ψ = ψ1 + iψ2. The stationary phase points are noted ψs and θc is the critical angle in reflection.

The far-field evaluation of integral (3.29) is obtained by applying the steepest descent method to it. To do so,
contour C0 is deformed into contour γθ, also visible in Fig. 4. This leads to

vj = vsing
j + vdiff

j (3.32)

where vsing
j is the contribution of all the singularities of the spectral functions crossed during the deformation from

C0 to γθ, corresponding to the reflected waves (for the poles of the spectral functions) and head waves (for the branch
points ψc of the function v1), and vdiff

j is the contribution of the stationary phase point ψs = π − θ. In the following, it
is assumed that the saddle point ψs does not coalesce with a branch point. The branch points of functions vj, j = 1, 2
are located at ξ = ±ν̃L and ξ = ±ν̃T . Applying (3.28), this means that :

ν̃∗ cosψs = −ν̃∗ cos θ = ±ν̃L (3.33a)

or ν̃∗ cosψs = −ν̃∗ cos θ = ±ν̃T (3.33b)

For ∗ = L, (3.33a) yields θ = 0 or θ = π, meaning that the direction of observation is grazing along the wedge’s face
S j. (3.33b) does not have a real solution for ∗ = L. For ∗ = T , (3.33a) yields θ = θc = acos(ν̃L/ν̃T) or θ = π − θc,
where θc is called the critical angle for reflection and corresponds to the diffracted bulk transverse component of
the head wave [18], and (3.33b) yields θ = 0 or θ = π, which corresponds to a grazing observation direction along
face S j. Borovikov [46] gives some clues as to how to treat the case where the stationary phase point coincides
with another singularity of the integrand but no high-frequency asymptotics prove satisfactory in some situations
of practical interest [47] and are not available when the critical transition zones overlap penumbras, that is when
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all three critical points (stationary, branch and pole) coalesce [48]. In the present work, only the stationary phase
contribution corresponding to the edge-diffracted waves will be computed. In order to simplify notations, we will
note P∗(ψ, 1) = P∗(ψ), using the fact that t = ±1 and P∗(ψ,−1) = P∗(−ψ). The contribution of diffracted waves is

vdiff
1 (r, θ, δβ) =

e−iπ/4

2
√

2π

∑
∗=L,T

ν̃2
∗

e−iν̃∗R cos δβ√
ν̃∗R cos δβ

P∗(π − θ)Σ1(−ν̃∗ cos θ) (3.34)

Analogously,

vdiff
2 (r, ϕ − θ, δβ) =

e−iπ/4

2
√

2π

∑
∗=L,T

ν̃2
∗

e−iν̃∗R cos δβ√
ν̃∗R cos δβ

P∗(π − (ϕ − θ))Σ1(−ν̃∗ cos(ϕ − θ)) (3.35)

Let us now isolate L, TH and TV diffracted waves in order to compute the corresponding diffraction coefficients,
defined by

vdiff
β (r, θ, δβ) = Dα

β (θ)
e−iν̃βR cos δβ√
ν̃βR cos δβ

vinc(r cos θ, r sin θ)îβ, (3.36)

using the expressions of the unit vectors given by (2.4). This yields:

Dα
β (θ) =

e−iπ/4

2
√

2π

∑
j=1,2

ν̃2
β

〈 (
Pβ(π − θ j) · îβ

)
,Σ j(−ν̃β cos θ j)

〉
(3.37)

where θ1 = θ and θ2 = ϕ − θ and 〈·, ·〉 denotes the dot product of two vectors.
In a far-field approximation, in order to determine the field diffracted by a wedge illuminated by an incident

plane wave, it is sufficient to compute the diffraction coefficient. This coefficient has been expressed in terms of two
unknown functions called the spectral functions. The semi-analytical computation of these functions is presented in
the following section

4. Semi-analytical evaluation of the spectral functions

The first step in computing the spectral functions is to determine a system of functional equations of which they are
a solution. We will then show that these functions can be decomposed into two parts : a singular function, computed
analytically, and a regular function, approached numerically.

4.1. Functional equations

In the previous section, the diffracted wave has been expressed in terms of two unknown functions called the
spectral functions. In this subsection, a system of functional equations satisfied by these functions is determined.

The first step in determining a system of functional equations verified by the spectral functions, is to substitute
decomposition (3.2) into the boundary conditions :{

B
(
v1(x1, 0) + v2(x2 cosϕ, x2 sinϕ)

)
= −Bvinc

α |S1

B
(
v2(x2, 0) + v1(x1 cosϕ, x1 sinϕ)

)
= −Bvinc

α |S2

(4.1)

Let us note (v1
j , v

2
j , v

3
j ) the coordinates of vj in the Cartesian coordinate system (x j, y j, z j), where (x1, y1, z1) is the

coordinate system associated with face S1 and (x2, y2, z2) is the coordinate system associated with face S2. These two
coordinate systems are linked by (for j = 1, 2):

x j = cosϕ.x3− j + sinϕ.y3− j

y j = sinϕ.x3− j − cosϕ.y3− j

z j = z3− j

(4.2)

Applying (4.2) to each line of (4.1) yields: {
B1(v1) + B2(v2) = −Bvinc

α |S1

B1(v2) + B2(v1) = −Bvinc
α |S2

(4.3)
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where

B1(v) =


µ
(
∂vx
∂y1

+
∂vy

∂x1

)
∂vy

∂y1
+ λ

(
∂vx
∂x1

+ ∂vz
∂z1

)
µ
(
∂vy

∂z1
+ ∂vz

∂y1

)
 (4.4)

and

B2(v) =


µ sin(2ϕ)

(
∂vx
∂x2
−

∂vy

∂y2

)
− µ cos(2ϕ)

(
∂vx
∂y2

+
∂vy

∂x2

)
(λ + 2µ sin2 ϕ) ∂vx

∂x2
+ (λ + 2µ cos2 ϕ) ∂vy

∂y2
− µ sin(2ϕ)

(
∂vx
∂y2

+
∂vy

∂x2

)
+ λ ∂vz

∂z2

µ sinϕ
(
∂vz
∂x2

+ ∂vx
∂z2

)
− µ cosϕ

(
∂vy

∂z2
+ ∂vz

∂y2

)
 (4.5)

Operator B1 is obtained by projecting B(v1) onto S1. This is immediate because v1 is defined on S1 and its compo-
nents (v1

1, v
2
1, v

3
1) are expressed in the associated Cartesian coordinate system (x1, y1, z1). Operator B2 is obtained by

projecting B(v2) onto S1. This is done by projecting its components (v1
2, v

2
2, v

3
2) onto S1 and by expressing (x1, y1, z1)

as functions of (x2, y2, z2), as v2 is only defined on S2. This is done using (4.2). The second equation of system (4.3)
is obtained in a similar manner, where the roles of v1 and v2 are reversed.

The functional equations system solved by the spectral functions is obtained by substituting the integral for-
mulation (3.26) of v1 and v2 into (4.3), evaluating the first equation of (4.3) at x1 ≥ 0, y1 = 0 and the second at
x2 ≥ 0, y2 = 0 and applying the Fourier transform to the result. This yields :∫ +∞

0
e−ixξB1(v1)(x) dx =

1
2

DM(Σ1)(ξ)

=
1
2

∫
Γ0

DM(ξ, ζ)Σ1(ζ) dζ
(4.6)

where

DM(ξ, ζ) =
1

2iπ
1

ξ − ζ
dm(ζ)

=
1

2iπ
1

ξ − ζ


−1 ζ

ζT
(1 − 2µQ(ζ)) 0

−
ζ
ζL

(1 − 2µQ(ζ)) −1 − τ
ζL

(1 − 2µQ(ζ))
0 τ

ζT
(1 − 2µQ(ζ)) −1

 ,
(4.7)

ζ∗, ∗ = L,T are defined by taking ε = 0 in (3.18) and

Q(ζ) = ζLζT + ζ2 + τ2 (4.8)

The evaluation of B2(v2) at x1 ≥ 0, y1 = 0 is the evaluation of B2(v2) at x2 = x cosϕ, y2 = x sinϕ, x ≥ 0. The Fourier
transform of the second term is therefore∫ +∞

0
e−ixξB2(v2)(x) dx =

1
2

TM(Σ2)(ξ)

=
1
2

∫
Γ0

TM(ξ, ζ)Σ2(ζ) dζ
(4.9)

where
TM(ξ, ζ) =

1
2iπ

∑
∗=L,T H,TV

D∗(ξ, ζ)tm∗(ζ, sgn sinϕ), (4.10)

D∗(ξ, ζ) =
1

ξ − (ζ cosϕ + ζ∗(ζ)| sinϕ|)
(4.11)

We note ε =sgn sin ϕ, and the following matrices tm∗, ∗ = L,T H,TV of rank 1 are defined :
tmL(ζ) =

[
ζ
ζL

fL ; ε fL ; τ
ζL

fL

]
fL =

 µ[cos(2ϕ)(2εζζL) − sin(2ϕ)(ζ2 − ζ2
L)]

−λ + 2µ[sin(2ϕ)(εζζL) − ζ2 sin2 ϕ − ζ2
L cos2 ϕ]

−2µτ[ζ sinϕ − εζL cosϕ]

 , (4.12)
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tmT H(ζ) = [−t fT H ; ζ

ζT
fT H ; 0]

fT H = µ
(
1 + τ2

ζ2+ζ2
T

) sin(2ϕ)(2εζζT ) + cos(2ϕ)(ζ2 − ζ2
T )

sin(2ϕ)(ζ2 − ζ2
T ) − cos(2ϕ)(2εζζT )

τ[εζT sinϕ + ζ cosϕ]

 (4.13)

and 
tmTV (ζ) = [ ζτ

ζT (ζ2+ζ2
T ) fTV ; ετ

ζ2+ζ2
T

fTV ; − 1
ζT

fTV ]

fTV = µ


τ cos(2ϕ)(2εζζT ) − τ sin(2ϕ)(ζ2 − ζ2

T )
2τ[sin(2ϕ)(εζζT ) − ζ2 sin2 ϕ − ζ2

T cos2 ϕ](
τ2 − ζ2 + ζ2

T

)
[εζT cosϕ − ζ sinϕ]

 (4.14)

In the following, let us note for simplification:

tmT = tmT H + tmTV (4.15)

It has been checked that setting τ = 0 in the explicit expressions of DM and TM operators leads to the same
expressions as those found in the 2D case and given by Chehade et al. [44].

Finally, the Fourier transform of the boundary conditions on the wedge faces is obtained by summing (4.6) and
(4.9). The right-hand side of the system is obtained by taking the Fourier transform of −Bvinc

α |Sj , j = 1, 2, where B
is defined by (2.16) and the incident field is given by (2.17). The final system of functional equations solved by the
spectral functions is 

DM(Σ1) + TM(Σ2) =
Wα

1

ξ − να cos θinc cos δinc

TM(Σ1) + DM(Σ2) =
Wα

2

ξ − να cos(ϕ − θinc) cos δinc

(4.16)

where

WL
1 = −2

 µ cos2 δinc sin(2θinc)
1 − 2µ(cos2 θinc cos2 δinc + sin2 δinc)

µ sin(2δinc) sin(θinc)

 WL
2 = −2

 µ cos2 δinc sin(2ϕ − 2θinc)
1 − 2µ(cos2(ϕ − θinc) cos2 δinc + sin2 δinc)

µ sin(2δinc) sin(ϕ − θinc)


WTV

1 = 2νTµ


1
2 sin(2θinc) sin(2δinc)

sin(2δinc) sin2 θinc

− sin θinc cos(2δinc)

 WTV
2 = 2νTµ


1
2 sin(2ϕ − 2θinc) sin(2δinc)

sin(2δinc) sin2(ϕ − θinc)
− sin(ϕ − θinc) cos(2δinc)


WT H

1 = −2νTµ

cos δinc cos(2θinc)
sin(2θinc) cos δinc

cos θinc sin δinc

 WT H
2 = 2νTµ

cos δinc cos(2ϕ − 2θinc)
sin(2ϕ − 2θinc) cos δinc

cos(ϕ − θinc) sin δinc



(4.17)

Thanks to these functional equations, the spectral functions can be decomposed into two parts : a singular function
and a regular function. The evaluation of each of these parts is described in the following.

4.2. Singular part
The first step in evaluating the spectral functions is to determine their poles and corresponding residues. This is

done by a recursive procedure, using the following translation function which appears in (4.11) (for ∗ = L,T ) :

T∗(ξ = ν̃∗ cos θ) = ξ cosϕ + ζ∗(ξ) sin ϕ̃ = ν̃∗ cos(θ + ϕ̃) (4.18)

where ϕ̃ is defined by

ϕ̃ =

ϕ if 0 < ϕ < π
2π − ϕ if π < ϕ < 2π

(4.19)

This translation operator is defined on subspace Ω+
∗ , represented on Fig. 5 :

ξ ∈ Ω+
∗ = {ξ = ν̃∗ cos θ, 0 ≤ Reθ < π − ϕ̃} (4.20)
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×
ν̃∗

× ×
−ν̃∗

∂Ω∗

−ν̃∗ cosϕ

Ω+
∗

Fig. 5: Contour ∂Ω∗ and domain Ω+
∗ . The curved arrows show deformation of contour Γ0 onto ∂Ω∗.

×
0

× ×
ν̃L ν̃T

××
−ν̃L−ν̃T

Γ1

Fig. 6: Contour Γ1 in the complex plane. The arrow shows the deformation of contour Γ0 into Γ1.

In order to determine the action of operator DM on a simple pole z, Imz ≥ 0, contour Γ0 in (4.6) is deformed into
contour Γ1. Contour Γ1 is visible in Fig. 6 and Cauchy’s residue theorem can then be applied for Imz ≥ 0, Imξ < 0
with z ∈ C\(] −∞,−ν̃L] ∪ {±ν̃L,±ν̃T }), yielding :∫

Γ0

DM(ξ, ζ).
1

ζ − z
dζ =

dm(z)
ξ − z

+ Dp(z, ξ), (4.21)

where
Dp(z, ξ) =

∫
Γ1

DM(ξ, ζ)
ζ − z

dζ (4.22)

Similarly, in order to determine the action of operator TM on a simple pole z, Imz ≥ 0, contour Γ0 in (4.9) is
deformed into contour ∂ΩL for the L terms and ∂ΩT for the T terms, both of which are visible in Fig. 5. Cauchy’s
residue theorem is applied, yielding, for Imz ≥ 0, Imξ < 0 with z ∈ C\(] −∞,−ν̃L] ∪ {±ν̃L,±ν̃T }) :∫

Γ0

TM(ξ, ζ).
1

ζ − z
dζ =

∑
∗=L,T

tm∗(z)
ξ − T∗(z)

1Ω∗ (z) + Tp(z, ξ) (4.23)

where 1Ω∗ (z) = 1 if z ∈ Ω∗ and 1Ω∗ (z) = 0 elsewhere and

Tp(z, ξ) =
1

2iπ

∑
∗=L,T

∫
∂Ω∗

D∗(ξ, ζ).
tm∗(ζ)
ζ − z

dζ (4.24)

It is important to note that in all the aforementioned contour deformations, no branch points ±ν̃L or ±ν̃T of the
integrands are crossed. Therefore, it is assumed that Croisille and Lebeau’s [41] proof that Dp(z, ·) and Tp(z, ·) belong
to a special class of functions H3 can be adapted to the 3D case. It will therefore be assumed that Dp(z, ·) ∈ H3 and
Tp(z, ·) ∈ H3 whereH is defined hereafter

Def. 4.1. H+ is the space of functions f which are analytical in {z ∈ C, Imz < 0} and verify :

sup
c>0

∫ +∞

−∞

| f (x − ic)|2 dx < +∞ (4.25)

Def. 4.2. H is the space of the functions f analytical in C\] −∞,−ν̃L] such that ∀ε ∈]0, π[, f (eiε·) ∈ H+.

The poles and corresponding residues of the spectral functions are extracted by recursively injecting decomposi-
tions (4.21) and (4.23) into the system of functional equations (4.16). The procedure is analogous to the one detailed
in [44] and will not be repeated here. In the end, we have, for Imξ < 0

Σ j(ξ) = Y j(ξ) + X j(ξ) (4.26)
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where

Y j(ξ) =
∑

k

∑
∗=L,T

V (k)
j,∗

ξ − Z(k)
j,∗

, (4.27)

with
Z(0)

1 = να cos θinc cos δinc, Z(0)
2 = να cos(ϕ − θinc) cos δinc

Z(k+1)
j,L = TL(Z(k)

3− j,∗) Z(k+1)
j,T = TT (Z(k)

3− j,∗)
(4.28)

and
V (0)

j = dm−1(Z(0)
j ).Wα

j

V (k+1)
j,L = −dm−1(Z(k+1)

j,∗ ).tmL(Z(k)
3− j,∗).V

(k)
3− j,∗.1ΩL (Z(k)

3− j,∗)
V (k+1)

j,T = −dm−1(Z(k+1)
j,∗ ).tmT (Z(k)

3− j,∗).V
(k)
3− j,∗.1ΩT (Z(k)

3− j,∗)
(4.29)

where Wα
j is given by (4.17). The recursive procedure stops when no more poles can be found by deforming contour

Γ0 into ∂ΩL or ∂ΩT . In the 2D case, Croisille and Lebeau [41] have shown that this defines a finite number of poles.
The sequence of poles generated in the 3D case being similar to the ones generated in the 2D case (parameters νL

and νT in the 2D case are replaced by parameters ν̃L and ν̃T ), their demonstration is still valid here. Physically, this
means that any incident ray leaves the wedge after a finite number of reflections. We have thus extracted all the poles
from the spectral functions and have computed them analytically using (4.28), along with their corresponding residues
(4.29) to completely determine the singular part (4.27) of the spectral functions.

4.3. Regular Part

The singular parts Y j of the spectral functions having been determined, two new regular functions X1 and X2 are
defined by (4.26). In the following, a numerical approximation method for X j is proposed. In order to do so, a system
of functional equations solved by X1, X2 is derived by subtracting vector(

DM(Y1) + TM(Y2)
TM(Y1) + DM(Y2)

)
, (4.30)

from both sides of (4.16), where Y1 and Y2 are given by equations (4.27) to (4.29) :{
DM(X1)(ξ) + TM(X2)(ξ) = u1(ξ)
TM(X1)(ξ) + DM(X2)(ξ) = u2(ξ) , (4.31)

with, for j = 1, 2
u j(ξ) = −

∑
k

∑
∗=L,T

[
Dp(Z(k)

j,∗ , ξ).V
(k)
j,∗ + Tp(Z(k)

3− j,∗, ξ).V
(k)
3− j,∗

]
(4.32)

It is assumed that Kamotski and Lebeau’s [43] proof that this system has a unique solution can be adapted to the 3D
case, meaning that system (4.31) has a unique solution (X1, X2) in H3 where H is defined by Def. 4.2. A numerical
approximation of the regular parts X j will be computed using Galerkin’s collocation method.

The functional space H is approached by the finite-dimension subspace generated by basis functions (ϕk)1≤k≤N

defined as:

ϕk(ξ) =

√
ak

π

1
ξ + ak

, (ak)1≤k≤N ∈ ([ν̃L,+∞[)N (4.33)

For a point ak ∈ [ν̃L,+∞[, the corresponding Galerkin function ϕk will have a pole at −ak ∈] − ∞,−ν̃L]. The basis
(ϕk)1≤k≤N therefore generates a subspace of functions analytical in C\] −∞,−ν̃L].

Functions X j are approximated in the adapted finite dimension subspace by :

X j(ξ) ≈
N∑

k=1

X̃k
jϕk(ξ), X̃k

j ∈ C
3 (4.34)

Galerkin approximation (4.34) is substituted into (4.31) and the variable change ζ = iy is applied in the resulting
system. This system is then evaluated at collocation points ξ = b1, ..., bN (in practice, these collocation points are
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chosen to be located right below points ak in the complex plane, see (5.1)). This leads to a linear system of equations
which can be written in matrix form : (

D T
T D

) (
X1
X2

)
=

(
U1
U2

)
, (4.35)

where matrices D and T are defined by 3 × 3 blocks:

Dlk =

∫ +∞

−∞

DM(bl, iy)eak (y) dy =
1

2iπ

∫ +∞

−∞

dm
bl − iy

√
ak

π

1
y − iak

dy

= −

√
ak

2π
√
π

 D1(ak, bl) DT
2 (ak, bl) 0

−DL
2 (ak, bl) D1(ak, bl) −DL

3 (ak, bl)
0 DT

3 (ak, bl) D1(ak, bl)

 =

√
ak

2π
√
π
D(ak, bl)

(4.36)

where functions eak are defined by

eak (y) =

√
ak

π

1
y − iak

, 1 ≤ k ≤ N. (4.37)

The explicit expressions of coefficients of matrix D(a, b) and their values are computed in Appendix A.
The other matrices involved are, for 1 ≤ l, k ≤ N

Tlk =

∫ +∞

−∞

TM(bl, iy)eak (y) dy =
1

2iπ

∫ +∞

−∞

∑
∗=L,T

tm∗(iy, sgn sinϕ)
bl − T∗(iy)

√
ak

π

1
y − iak

dy

=
1

2iπ

√
ak

π

∑
∗=L,T

∫ +∞

−∞

tm∗(iy, ε)
[bl − (iy cosϕ + ζ∗(iy)| sinϕ|)](y − iak)

dy,

(4.38)

where ε = sgn(sinϕ). Let us define

Tlk =
1

2iπ

√
ak

π

∑
∗=L,T H,TV

T
∗
1 (ak, bl) T ∗2 (ak, bl) T ∗3 (ak, bl)
T ∗4 (ak, bl) T ∗5 (ak, bl) T ∗6 (ak, bl)
T ∗7 (ak, bl) T ∗8 (ak, bl) T ∗9 (ak, bl)

 =
1

2iπ

√
ak

π
T(ak, bl) (4.39)

The explicit expressions of operators T ∗i , 1 ≤ i ≤ 9, ∗ = L,T H,TV and their values are computed in Appendix B.
Finally:

X j =


X̃1

j
...

X̃2N
j

 U j =


u j(b1)
...

u j(b2N)

 (4.40)

where u j(ξ) is given by (4.32). Applying variable change ζ = iy to the definition of Dp given by (4.21) and substituting
(4.36) in the result gives

Dp(z, ξ) =
1

2π
D(−z, ξ) −

dm(z)
ξ − z

(4.41)

Similarly, applying variable change ζ = iy to (4.23) and substituting (4.39) in the result yields

Tp(z, ξ) =
1

2iπ
T(−z, ξ) −

∑
∗=L,T

tm∗(z, ε)
b − T∗(z)

1Ω∗ (z) (4.42)

Equations (4.41) and (4.42) are substituted into (4.32). The singular terms cancel each other, except those of the initial
poles Z(0)

j , and the remaining terms are :

u j(ξ) = −
1

2iπ

∑
k

∑
∗=L,T

(
iD(−Z(k)

j,∗ , ξ).V
(k)
j,∗ + T(−Z(k)

3− j,∗, ξ).V
(k)
3− j,∗

)
+

Wα
j

ξ − Z(0)
j

(4.43)

Using these results, the linear system (4.35) is implemented and solved numerically using the C++ library Eigen,
and an evaluation of the regular part of the spectral functions is obtained. However, for values of ξ lying in certain
parts of the complex plane, this evaluation is not sufficiently accurate. The technique used to solve this problem is
called the propagation of the solution.
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4.4. Propagation of the solution

The method called propagation of the solution is used to propagate the accuracy of the numerical approximation
of the regular functions X1 and X2 from parts of the complex plane where they are evaluated accurately to parts of the
complex plane where they are not. The validity domains in the complex plane will be detailed hereafter.

The first step of this procedure is to deform contour Γ0 (visible in Fig. 3) in operator DM into contour Γ2 in
functional system (4.31). Contour Γ2 is visible on Fig. 7. During this deformation, the half-plane Imξ < 0 is crossed.
The pole ζ = ξ is crossed during this contour deformation when Imξ < 0. Its contribution is given by Cauchy’s
residue formula : ∫

Γ0

DM(ξ, ζ)X j(ζ) dζ =

∫
Γ2

DM(ξ, ζ)X j(ζ) dζ + dm(ξ).X j(ξ) (4.44)

×
0

×
ν̃L

×
ν̃T

×
−ν̃L

×
−ν̃T Γ2Γ0

Fig. 7: Integration contour Γ2. The curved arrow indicates the contour deformation from Γ0 to Γ2.

The next step is to define the inverse translation operator T−1
∗ : Ω−∗ → C, ∗ = L,T :

T−1
∗ (ξ = ν∗ cos θ) = ξ cos ϕ̃ − ζ∗(ξ) sin ϕ̃ = ν∗ cos(θ − ϕ̃). (4.45)

cos θ is well defined for 0 ≤ Reθ ≤ π, therefore this operator is defined on subspace Ω−∗ , visible on Fig. 8 and defined
as

Ω−∗ = {ξ ∈ C, ξ = ν̃∗ cos θ, ϕ̃ ≤ Re(θ) ≤ π} (4.46)

Using these definitions, contour Γ0 in operator TM is deformed into contour ∂Ω−∗ , visible on Fig. 8. The contours are
represented in Fig. 8, and the deformation from Γ0 to ∂Ω−∗ (represented by the arrows on the figure) only spans the
bottom half of domain Ω−∗ . The poles ζ of the integrand are ζ = T−1

∗ (ξ), Imξ < 0. These poles are crossed if and only
if ξ ∈ Ω−∗ and Imξ < 0, where domain Ω−∗ is represented in grey on Fig. 8. Their contribution is determined thanks to
Cauchy’s residue theorem :∫

Γ0

TM(ξ, ζ)X j(ζ) dζ =
∑
∗=L,T

∫
∂Ω−∗

tm∗(ζ)
ξ − T∗(ζ)

.X j(ζ) dζ + M∗(ξ).X j(T−1
∗ (ξ))1Ω−∗ (ξ), (4.47)

where 1Ω−∗ (ξ) = 1 when ξ ∈ Ω−∗ and Imξ < 0 and 1Ω−∗ (ξ) = 0 elsewhere and

M∗(ξ = ν̃∗ cos θ) = −
sin(θ − ϕ̃)

sin θ
tm∗(T−1

∗ (ξ)) (4.48)

The recursive system of functional equations solved by the regular part is obtained by substituting (4.44) and
(4.47) into (4.31): 

X1(ξ) = g1(ξ) − dm−1(ξ).
∑
∗=L,T

M∗(ξ).X2(T−1
∗ (ξ))1Ω−∗ (ξ)

X2(ξ) = g2(ξ) − dm−1(ξ).
∑
∗=L,T

M∗(ξ).X1(T−1
∗ (ξ))1Ω−∗ (ξ)

, (4.49)

where, for j = 1, 2

g j(ξ) = dm−1(ξ)
(
u j(ξ) −

∫
Γ2

DM(ξ, ζ)X j(ζ) dζ −
∫
∂Ω−∗

TM(ξ, ζ)X3− j(ζ) dζ
)

(4.50)

System (4.49) is called the recursive system because it uses the value of the regular function X2 at points T−1
∗ (ξ),

where the numerical approximation for the regular part may be valid, to compute the value of X1 at the point ξ where
the approximation is not valid (and vice-versa). If the translation from ξ to T−1

∗ (ξ) is not sufficient to reach the domain
C\Ω−∗ where the approximation is valid, then the use of the formula is repeated as many times as necessary until
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×

ν̃∗

×
−ν̃∗

∂Ω−∗

ν̃∗ cos ϕ̃

recursive
evaluation

direct
evaluationΩ−∗

Fig. 8: Domain Ω−∗ and contour ∂Ω−∗ . The arrows show the deformation from contour Γ0 to contour ∂Ω−∗ .

domain C\Ω−∗ is reached. In order to apply this new recursive system to evaluate the spectral functions in the domain
W = {Im(ξ) < 0, ξ < Ω−∗ }, functions g j must be evaluated numerically.

Each of the integrals appearing in the definition of g j are evaluated separately using the approximation of the
regular part (4.34) for the computation of terms X j(ζ) and X3− j(ζ).

Substituting (4.36) into (4.44) yields :∫
Γ2

DM(ξ, ζ)ϕk(ζ) dζ =

∫
Γ0

DM(ξ, ζ)ϕk(ζ) dζ − dm(ξ).ϕk(ξ) =
1

2π

√
ak

π
D(ak, ξ) − dm(ξ).ϕk(ξ) (4.51)

and substituting (4.39) into (4.47) yields:∫
∂Ω−∗

TM(ξ, ζ)ϕk(ζ) dζ =

∫
Γ0

TM(ξ, ζ)ϕk(ζ) dζ −
∑
∗=L,T

M∗(ξ).ϕk(T−1
∗ (ξ))

=
1

2iπ

√
ak

π
T(ak, ξ) −

∑
∗=L,T

M∗(ξ).ϕk(T−1
∗ (ξ))1Ω−∗ (ξ)

(4.52)

Finally, (4.51) and (4.52) can be injected into (4.50) :

dm(ξ).g j(ξ) = u j(ξ) −
2N∑
k=1

√
ak

π

(
ND(ak, ξ).X̃k

j + NT(ak, ξ).X̃k
3− j

)
, (4.53)

where
ND(a, b) =

1
2π

D(a, b) −
dm(b)
a + b

(4.54)

and
NT(a, b) =

1
2iπ

T(a, b) −
∑
∗=L,T

M∗(b)
T−1
∗ (b) + a

. (4.55)

Using system (4.49), the value of the regular part of the spectral functions in domain Ω−∗ , visible Fig. 8, is calcu-
lated with respect to its value in the domain ξ < Ω−∗ , where the numerical approximation (4.34) is valid. To do so,
functions g j, j = 1, 2 are evaluated numerically using (4.53). The accuracy of the numerical evaluation in domain
ξ < Ω−∗ is therefore propagated to domain Ω−∗ .

This concludes the semi-analytical computation of the spectral functions. The L, TH and TV diffraction coeffi-
cients can now be computed using (3.37). Numerical testing is presented in the following.

5. Numerical Tests

The spectral functions are evaluated numerically using the semi-analytical scheme described in the previous sec-
tions. This is achieved by, first, computing the poles and residues of the spectral functions analytically using the
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recursive algorithm described in subsection 4.2. Then, the regular parts of the spectral functions are approached nu-
merically by solving (4.31) thanks to the Galerkin collocation method described in subsection 4.3. In the case where
ν̃L ∈ R, the Galerkin parameters are set to:

ak = 1.001 + 0.05ek log 10
4 − 1, bk = ak − 0.1i, 1 ≤ k ≤ 20 (5.1)

Finally, the solution is rendered accurate in the entire complex domain by applying the recursive procedure called
the propagation of the solution described in subsection 4.4.

Following these steps, the diffraction coefficients have been computed using (3.37) and tested numerically.

5.1. Comparison to the 2D code

The first test on the 3D code is to check that when δα = 0, the results obtained using the 3D code are the same
as those obtained using the 2D code presented and validated numerically in [44] and experimentally by Chehade in
her thesis [45], using the measurements made by Chapman et al. [40]. This has been checked for the theoretical
computations and must also be verified numerically.

The spectral functions are evaluated at ξ = ν̃L cos θ − i10−6 (a small negative imaginary part is added to ensure
Im ξ < 0) every 0, 5o for 0 ≤ θ ≤ ϕ and at δα = 0o, using the 3D code. The L and TH diffraction coefficients are
computed using (3.37), for an elastic wave propagating in a steel wedge (cL = 5700m.s−1, cT = 3200m.s−1). For the
3D problem, TH waves defined by (2.4) correspond to the T waves of the 2D problem. The results are compared to
the diffraction coefficients obtained using the 2D elastic code presented in [44].

(a) Diffracted and incident L waves. (b) Diffracted T wave and incident L wave.

Fig. 9: Diffraction coefficients for ϕ = 140o, θinc = 70o

Figs. 9 and 10 show the absolute value of the diffraction coefficients obtained using the 2D and 3D codes for
a wedge of angle ϕ = 140o illuminated by an L wave incident with an angle θinc = 70o and for a wedge of angle
ϕ = 250o illuminated by a T wave incident with an angle θinc = 65o.

In Figs. 9a-10a and Figs. 9b-10b, representing the L and T diffraction coefficients respectively, the thick blue line
represents the results obtained using the 2D code and the dashed lines (cyan and green respectively) represent the
results obtained using the 3D code.

In all of these figures (and in all other tested configurations) the 2D and 3D plots are perfectly overlapping. When
δα = 0o, the 3D code yields exactly the same results as the 2D code, which is in accord with the theoretical formula-
tions. This validates the computation of the “2D terms” (meaning the terms that are not canceled by setting δα = 0o)
of the 3D code. The following numerical test, comparison of the 3D elastic code to Sommerfeld’s analytical expres-
sion for an incident acoustic wave, validates a different set of terms (the ones that are purely 3D and longitudinal)
computed by the spectral functions method.
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(a) Diffracted L wave and incident T wave. (b) Diffracted and incident T waves.

Fig. 10: Diffraction coefficients for ϕ = 250o, θinc = 65o

5.2. Acoustic limit
Sommerfeld [1] provides an analytical expression for the diffracted field in the case of an acoustic wave incident

on a wedge with Dirichlet or Neumann boundaries. This expression is valid for 3D incidences, and the corresponding
GTD field is provided by Keller [14]. In the case of a wedge with Dirichlet boundaries, we have :

vac,di f f (r, θ) = DDir(θ)
e−ik0r

√
k0r cos δα

(5.2)

where vac,di f f is the acoustic diffracted field, k0 is the acoustic wave number and DDir is the diffraction coefficient:

DDir(θ) =
e−i π4

2N
√

2π

[
cot

(
π + (θ + θinc)

2N

)
+ cot

(
π − (θ + θinc)

2N

)
− cot

(
π + (θ − θinc)

2N

)
− cot

(
π − (θ − θinc)

2N

)]
, (5.3)

where N = ϕ/π.
Note that for an acoustic wave, the diffraction coefficient does not depend on the incident skew angle δα. The

dependency of the diffracted field with respect to this parameter is fully contained in the term (k0r cos δα)−1/2 in (5.2).
The case of an acoustic wave incident on a wedge with Dirichlet boundary conditions can be mimicked using the

elastic code. By setting cL = 1 and cT → 0 and considering incident L waves, the L diffraction coefficient should
behave like the diffraction coefficient of an acoustic wave.

In the 3D elastic code, the wave velocities are set to cL = 1m.s−1 and cT = 10−7m.s−1 and the incident wave
is longitudinal. The spectral functions are evaluated at ξ = ν̃L cos θ − i10−6 every 0, 5o for 0 ≤ θ ≤ ϕ and for
−90o ≤ δα ≤ 90o and the L diffraction coefficient is deduced using (3.37).

The diffraction coefficients are computed for various incident skew angles δα to check that the SF diffraction
coefficient is independent of this parameter, as it should be in the acoustic case. The diffraction coefficients can
therefore be plotted for a single skew angle, without loss of generality. The results are compared to the analytical
expression of the Sommerfeld diffraction coefficients for a wedge with Dirichlet boundary conditions.

Figs. 11 and 12 respectively show the absolute value and the angular phase of the diffraction coefficient, plotted
for δα = 0o for a wave incident with an angle θα = 40o on a wedge of angle ϕ = 160o (see Figs. 11a and 12a) and for
a wave incident with an angle θα = 240o on a wedge of angle ϕ = 280o (see Figs. 11b and 12b).

In all four figures, the thick blue line is the solution computed using Sommerfeld’s analytical expression and the
dashed red line is the result obtained using acoustic limit of the 3D SF code.

Both lines are perfectly overlapping, except for some discrepancies in the angular phase, for observation directions
near the wedge faces.

The “acoustic limit” of the 3D elastic code is thus validated for wedge angles lower and higher than π. This shows
that the terms appearing in the evaluation of the spectral functions that depend on ν̃T tend to 0 when transversal wave
velocity tends to 0 (as they should) and that the terms that depend on ν̃L are computed correctly.
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(a) ϕ = 160o, θinc = 40o (b) ϕ = 280o, θinc = 240o

Fig. 11: Absolute value of the diffraction coefficient computed with the spectral functions and with the Sommerfeld method for δinc = 0o.

(a) ϕ = 160o, θinc = 40o (b) ϕ = 280o, θinc = 240o

Fig. 12: Angular phase of the diffraction coefficient computed with the spectral functions and with the Sommerfeld method for δinc = 0o.

5.3. Verification of the regular part for an infinite plane

In the case where ϕ = π, the wedge degenerates into an infinite plane and there is no edge diffracted wave. The reg-
ular part of the spectral functions, which is determined by system (4.35) and is the part of the solution corresponding
to the diffraction phenomena, vanishes and we should have, for j = 1, 2 :

||U j|| = 0 (5.4)

where U j is the right-hand side of system (4.35) and is given by (4.40). Verifying that this is the case provides a check
on the lengthy computations of the explicit expressions of operators D(·, ·) and T(·, ·). According to (4.40), the value
of ||U j|| does not depend on the observation angle θ, therefore in our tests, only the skew incidence angle δα varies.

Fig. 13 shows ||U j||, j = 1, 2 for incident L (Fig. 13a), TH (Fig. 13b) and TV (Fig. 13c) waves with an angle
θinc = 50o on an infinite plane. In the case of incident T waves, the results are only plotted for δα < δc ≈ 34o in the
case of a steel wedge. The thick blue line represents ||U1|| and the dashed red line represents ||U2||. As expected, ||U1||

and ||U2|| are very small, of the order of the numerical computation error. This numerical computation error can be
estimated by evaluating the resolution error of linear system (4.35) for various test cases.

MD173534
Zone de texte 



22 Samar Chehade et al. / Journal of Computational Physics (2020)

(a) Incident L wave (b) Incident TH wave (c) Incident TV wave

Fig. 13: ||U j ||, j = 1, 2 for ϕ = 180o and θinc = 50o

5.4. Example of 3D diffraction coefficients
The 3D spectral functions method has been validated in the special case of a 2D incidence, in the case of an

incident acoustic wave and in the case where the wedge is degenerated into an infinite half-plane. Let us now consider
the results obtained in a more general case.

Figs. 14 and 15 show the absolute value of the diffraction coefficients obtained using the SF code. The L, TH and
TV diffraction coefficients are computed using (3.37) for two steel wedges (cL = 5700m.s−1 and cT = 3200m.s−1) of
angles ϕ = 150o and ϕ = 200o illuminated by an incident L wave with an angle θinc = 65o and θinc = 40o respectively.
The spectral functions are evaluated at ξ = ν̃β cos θ− i10−6 every 0, 5o for 0 ≤ θ ≤ ϕ and for −90o ≤ δα ≤ 90o. In both
figures, the horizontal axis corresponds to the observation angle θ, the vertical axis corresponds to the incident skew
angle δα and the magnitude of the diffraction coefficient is represented in color in the (θ, δα) plane. Figs. 14a and 15a
show the L diffraction coefficients, Figs. 14b and 15b show the TH diffraction coefficient and Figs. 14c and 15c show
the TV diffraction coefficient (note that this coefficient is cancelled in the 2D case corresponding to δα = 0o).

(a) Diffracted L wave (b) Diffracted TH wave (c) Diffracted TV wave

Fig. 14: Absolute value of the diffraction coefficient computed for an incident L wave on a wedge of angle ϕ = 150o with θinc = 65o

(a) Diffracted L wave (b) Diffracted TH wave (c) Diffracted TV wave

Fig. 15: Absolute value of the diffraction coefficient computed for an incident L wave on a wedge of angle ϕ = 200o with θinc = 40o
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Conclusion

Using the spectral functions method, the elastic wave diffracted by a skew incident plane wave on an infinite stress-
free wedge has been studied. In cases where Snell’s law of diffraction yields a propagative wave for both longitudinal
and transversal diffracted waves, a semi-analytical 3D computation method is developed theoretically and numerically,
for all wedge angles. The corresponding 3D code has been tested in three different manners (by comparison to the
2D elastic code for 2D configurations, by testing the acoustic limit of the code and by computing the regular part
in the case of reflection on an infinite plane), yielding promising results, but has yet to be validated (numerically or
experimentally) for all 3D elastic cases. Further works should focus on the 3D diffraction of a transverse wave with
skew angle above the critical one. The current work could also be extended for dealing with wedges of finite edge
length [49].

Appendix A. Computation of the Dl,k matrix coefficients

The integral computations that are necessary to compute the coefficients of the matrices D and T which appear
in the regular part of the spectral functions (see equations (4.36) and (4.39)) are given here. In all the following,
∗ = L,T .

We begin by computing the coefficients of matrix D(a, b) defined by (4.36). The first step is to determine the value
of a useful integral.

Appendix A.1. Integral
∫ 1
−1

λt+ρ
Q(t) dt

The following integral has already been computed in [42] and in [44]. The details of the computation will therefore
not be repeated here, as they are a bit lengthy. We therefore only state the result, which is:∫ 1

−1

λt + ρ

Q(t)
dt =

∫ 1

−1

λt + ρ

iat2 + 2ν̃∗t − ia
dt =

λ

ν̃∗
sog(

a
ν̃∗

) + i
ρ

ν̃∗
rog(

a
ν̃∗

), (A.1)

where rog and sog are two special functions defined for a > 1 by :

rog(a) =

∫ 1

−1

dx
a(1 − x2) + 2ix

=
1

√
a2 − 1

log(a +
√

a2 − 1) (A.2)

and
sog(a) =

1
a

(π
2
− rog(a)

)
(A.3)

These functions may be extended to holomorphic functions on C\{−1}. Their properties are detailed in [42]. This
result is used to determine the values of integrals I∗1 to I∗6 which appear in the coefficients of matrix D(a, b).

Appendix A.2. Integral I∗1
Integral I∗1 is defined by :

I∗1 =

∫ +∞

−∞

y

(y + ib)(y − ia)
√
ν̃2
∗ + y2

dy

=
1

a + b

∫ +∞

−∞

b

(y + ib)
√
ν̃2
∗ + y2

dy +

∫ +∞

−∞

a

(y − ia)
√
ν̃2
∗ + y2

dy

 (A.4)

This can be computed by applying the following variable change

y = 2ν̃∗ t
1−t2

√
ν̃2
∗ + y2 = ν̃∗

(
1+t2

1−t2

)
dy = 2ν̃∗ 1+t2

(1−t2)2 dt (A.5)

and using formula (A.1):

I∗1 =
2ia

(a + b)ν̃∗
rog(a/ν̃∗) −

2ib
(a + b)ν̃∗

rog(b/ν̃∗) (A.6)

MD173534
Zone de texte 



24 Samar Chehade et al. / Journal of Computational Physics (2020)

Appendix A.3. Integral I∗2
Integral I∗2 is defined by :

I∗2 =

∫ +∞

−∞

y
√
ν̃2
∗ + y2

(y + ib)(y − ia)
dy = ν̃2

∗I
∗
1 + I∗3 (A.7)

where integrals I∗1 and I∗3 are defined by equations (A.4) and (A.8) and their expressions are given by (A.6) and (A.12)
respectively.

Appendix A.4. Integral I∗3
Integral I∗3 is defined by :

I∗3 =

∫ +∞

−∞

y3

(y + ib)(y − ia)
√
ν̃2
∗ + y2

dy

=
b

a + b

∫ +∞

−∞

y2

(y + ib)
√
ν̃2
∗ + y2

dy +
a

a + b

∫ +∞

−∞

y2

(y − ia)
√
ν̃2
∗ + y2

dy
(A.8)

Each of these terms can be computed using variable change (A.5) :∫ +∞

−∞

y2

(y − ia)
√
ν̃2
∗ + y2

dy =

∫ 1

−1

8ν̃2
∗t

2

(1 − t2)2(2ν̃∗t − ia(1 − t2))
dt (A.9)

The simple elements decomposition of the integrand is :

8ν̃2
∗t

2

(1 − t2)2(2ν̃∗t − ia(1 − t2))
=

ia
1 − t

+
ia

1 + t
+

ν̃∗

(1 − t)2 −
ν̃∗

(1 + t)2 −
2a2

2ν̃∗t − ia(1 − t2)
(A.10)

Using (A.1), we obtain

a
a + b

∫ +∞

−∞

y2

(y − ia)
√
ν̃2
∗ + y2

dy =
2ia2

a + b
log

(
1 + tν̃∗
1 − tν̃∗

)
−

2ia3

ν̃∗(a + b)
, (A.11)

where tν̃∗ → 1 is the upper bound of integral (A.9) after variable change (A.5) and will be discussed in the following.
The value of

∫ +∞

−∞

y2

(y+ib)
√
ν̃2
∗+y2

dy can be obtained in a similar manner. Finally:

I∗3 = 2i(a − b) log
(

1 + tν̃∗
1 − tν̃∗

)
−

2ia3

ν̃∗(a + b)
rog(a/ν̃∗) +

2ib3

ν̃∗(a + b)
rog(b/ν̃∗) (A.12)

Note the appearance of the term log
( 1+tν̃∗

1−tν̃∗

)
which diverges when tν̃∗ → 1. This term will be compensated by another

in the final expressions (Eqs. (A.25)-(A.28)) of the coefficients of matrix D. In fact, (A.5) leads to :

2tν̃∗
1 − t2

ν̃∗

=
A
ν̃∗

and A→ +∞ when tν̃∗ → 1 (A.13)

Furthermore,

1 − tν̃∗ =
(1 − tν̃∗ )(1 + tν̃∗ )

1 + tν̃∗
∼
ν̃∗
A

(A.14)

so that, when computing IL
3 − IT

3 (for instance), the following term appears

log
(

1 + tν̃L

1 − tν̃L

)
− log

(
1 + tν̃T

1 − tν̃T

)
∼ log(ν̃T /ν̃L) (A.15)
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Appendix A.5. Integral I∗4
Integral I∗4 is defined by :

I∗4 =

∫ +∞

−∞

dy

(y + ib)(y − ia)
√
ν̃2
∗ + y2

(A.16)

For a + b , 0,
1

(y + ib)(y − ia)
=
−i

a + b

(
1

y − ia
−

1
y + ib

)
(A.17)

Substituting the above decomposition in (A.16) yields

I∗4 =
i

a + b

∫ +∞

−∞

 1

(y + ib)
√
ν̃2
∗ + y2

−
1

(y − ia)
√
ν̃2
∗ + y2

 dy (A.18)

These integrals are computed using (A.1):

I∗4 =
2

ν̃∗(a + b)
(
rog (a/ν̃∗) + rog (b/ν̃∗)

)
(A.19)

Appendix A.6. Integral I∗5
Integral I∗5 is defined by :

I∗5 =

∫ +∞

−∞

y2

(y + ib)(y − ia)
√
ν̃2
∗ + y2

dy (A.20)

Using decomposition (A.17) yields

I∗5 =
i

a + b

∫ +∞

−∞

 y2

(y + ib)
√
ν̃2
∗ + y2

−
y2

(y − ia)
√
ν̃2
∗ + y2

 dy (A.21)

These integrals have been computed at section Appendix A.4. Applying formula (A.11) yields:

I∗5 = 2 log
(

1 + tν̃∗
1 − tν̃∗

)
−

2
ν̃∗(a + b)

[b2rog (b/ν̃∗) + a2rog (a/ν̃∗)] (A.22)

Appendix A.7. Integral I∗6
Integral I∗6 is defined by :

I∗6 =

∫ +∞

−∞

√
ν̃2
∗ + y2

(y − ia)(y + ib)
dy = ν̃2

∗I
∗
4 + I∗5 (A.23)

where integrals I∗4 and I∗5 are defined by equations (A.16) and (A.20) and their expressions are given by (A.19) and
(A.22).

Appendix A.8. Dlk matrix coefficients

The first coefficient can be computed using Gauss’ integral formula :

D1(a, b) =

∫ +∞

−∞

dy
(y + ib)(y − ia)

=
2π

a + b
(A.24)

The two other coeffcients are linear combinations of integrals I∗1 to I∗6 :

DL
2 (a, b) =

∫ +∞

−∞

iy[1 − 2µ(ζL(iy)ζT (iy) − y2 + τ2)]
(y + ib)(y − ia)ζL(iy)

dy

= −i(1 − 2µτ2)IL
1 + 2iµ(IT

2 − IL
3 )

(A.25)
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DT
2 (a, b) =

∫ +∞

−∞

iy[1 − 2µ(ζL(iy)ζT (iy) − y2 + τ2)]
(y + ib)(y − ia)ζT (iy)

dy

= −i(1 − 2µτ2)IT
1 + 2iµ(IL

2 − IT
3 )

(A.26)

DL
3 (a, b) = τ

∫ +∞

−∞

1 − 2µ(ζL(iy)ζT (iy) − y2 + τ2)
(y + ib)(y − ia)ζL(iy)

dy

= −τ(1 − 2µτ2)IL
4 − 2µτIL

5 + 2µτIT
6

(A.27)

DT
3 (a, b) = τ

∫ +∞

−∞

1 − 2µ(ζL(iy)ζT (iy) − y2 + τ2)
(y + ib)(y − ia)ζT (iy)

dy

= −τ(1 − 2µτ2)IT
4 − 2µτIT

5 + 2µτIL
6

(A.28)

This concludes computation of matrix coefficients Dlk.

Appendix B. Computation of the Tl,k matrix coefficients

Let us now compute the coefficients of matrix T(a, b), defined by (4.39). A number of the integrals which appear
in these coefficients (specifically integrals J∗1 to J∗5) have already been defined and computed in the article concerning
the 2D elastic case [44]. As the computations are quite lengthy, only the results will be stated here and we only detail
the computations for the integrals which have not appeared before.

As a first step, an additional integral is defined and its value will be used in the subsequent computations.

Appendix B.1. Integral
∫ 1
−1

ηt+ψ
P(t) dt

Let us define the following integral, which has been computed in [42] and [44]:∫ 1

−1

ηt + ψ

P(t)
dt =

∫ 1

−1

ηt + ψ

(ν̃∗ sin ϕ̃ − b)t2 − 2iν̃∗t cos ϕ̃
=

iη
ν̃∗ sin ϕ̃ − b

[ϕ̃ −
π

2
+ cos ϕ̃ rog(

b
ν̃∗

)] +
ψ

ν̃∗
rog(

b
ν̃∗

) (B.1)

Let us now use these results to compute some more complex integrals.

Appendix B.2. Integral J∗1
Integral J∗1 is defined by :

J∗1 =

∫ +∞

−∞

y(ν̃2
∗ + y2)

(y − ia)[b − iy cosϕ +
√
ν̃2
∗ + y2 sin ϕ̃)]

√
ν̃2
∗ + y2

dy = ν̃2
∗J
∗
5 + J∗4 (B.2)

where integral J∗4 and J∗5 are defined by equations (B.15) and (B.19) and their expressions are given (B.18) and (B.22)
respectively.

Appendix B.3. Integral J∗2
Integral J∗2 is defined by :

J∗2 =

∫ +∞

−∞

y2

(y − ia)[b − iy cos ϕ̃ +
√
ν̃2
∗ + y2 sin ϕ̃)]

dy (B.3)

Once more, the variable change (A.5) is applied :

J∗2 = 8ν̃3
∗

∫ 1

−1

t2(t2 + 1)
(1 − t2)2[b(1 − t2) − 2ν̃∗it cos ϕ̃ + sin ϕ̃ν̃∗(1 + t2)](2ν̃∗t − ia(1 − t2))

dt (B.4)

The simple elements decomposition of the integrand is :

8ν̃3
∗t

2(1 + t2)
(1 − t)2(1 + t)2P(t)Q(t)

=
be−2iϕ̃ − ae−iϕ̃

1 − t
+

aeiϕ̃ − be2iϕ̃

1 + t
+
ν̃∗ei(π/2−ϕ̃)

(1 − t)2 +
ν̃∗ei(π/2+ϕ̃)

(1 + t)2 +
η2t + ψ2

P(t)
+
λ2t + ρ2

Q(t)
(B.5)
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where Q and P are defined by (A.1) and (B.1).
Let N(t) be a third degree polynomial such that :

ηt + ψ

P(t)
+
λt + ρ

Q(t)
=

N(t)
P(t)Q(t)

(B.6)

Then the coefficients of the simple elements decomposition are given by :η = 1
p+−p−

[
N(p+)
Q(p+) −

N(p−)
Q(p−)

]
ψ =

N(p+)
Q(p+) − ηp+

and

λ = 1
q+−q−

[
N(q+)
P(q+) −

N(q−)
P(q−)

]
ρ =

N(q+)
P(q+) − λq+

, (B.7)

where p± and q± are respectively the roots of polynomials P and Q and are defined by:

q± =
1
a

(iν̃∗ ±
√

a2 − ν̃2
∗) (B.8)

and

p± =
ν̃∗i cos ϕ̃ ±

√
b2 − ν̃2

∗

ν̃∗ sinϕ − b
(B.9)

η2, ψ2, λ2 and ρ2 are obtained using (B.5) and (B.7). The final result is obtained using (A.1) and (B.1) :

J∗2 ∼ 2i cos ϕ̃A + 2i(a sin ϕ̃ − b sin(2ϕ̃)) ln
(

1 + tν̃∗
1 − tν̃∗

)
+

8iη2ν̃
2
∗

b/ν̃∗ − sin ϕ̃

(
π

2
− ϕ̃ − cos ϕ̃ rog(

b
ν̃∗

)
)

+ 8ν̃2
∗ψ2rog(

b
ν̃∗

) + 8ν̃2
∗

(
λ2sog(a/ν̃∗) + iρ2rog(a/ν̃∗)

)
, (B.10)

where A→ +∞ and tν̃∗ → 1. These diverging terms will be compensated by others when the contributions of T T and
T L will be summed, according to (A.15).

Appendix B.4. Integral J∗3
J∗3 is defined by :

J∗3 =

∫ +∞

−∞

1

(y − ia)[b − iy cos ϕ̃ +
√
ν̃2
∗ + y2 sin ϕ̃]

dy (B.11)

Variable change (A.5) is applied:

J∗3 = 2ν̃∗

∫ 1

−1

1 + t2

(2ν̃∗t − ia(1 − t2))(b(1 − t2) − 2iν̃∗t cos ϕ̃ + ν̃∗ sin ϕ̃(1 + t2))
dt (B.12)

The simple elements decomposition is of the form

1 + t2

P(t)Q(t)
=
η3t + ψ3

P(t)
+
λ3t + ρ3

Q(t)
(B.13)

The coefficients are computed using (B.7), yielding :

J∗3 =
2iη3

b/ν̃∗ − sin ϕ̃

(
π

2
− ϕ̃ − cos ϕ̃ rog(

b
ν̃∗

)
)

+ 2ψ3rog(
b
ν̃∗

) + 2
(
λ3sog(a/ν̃∗) + iρ3rog(a/ν̃∗)

)
(B.14)

Appendix B.5. Integral J∗4
J∗4 is defined by :

J∗4 =

∫ +∞

−∞

y3

(y − ia)
√

y2 + ν̃2
∗(b − iy cos ϕ̃ +

√
ν̃2
∗ + y2 sin ϕ̃)

dy (B.15)
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Variable change (A.5) is applied :

J∗4 = 16ν̃3
∗

∫ 1

−1

t3

(2ν̃∗t − ia(1 − t2))(1 − t2)2(b(1 − t2) − 2iν̃∗t cos ϕ̃ + ν̃∗(1 + t2) sin ϕ̃)
dt (B.16)

The simple elements decomposition is

16ν̃3
∗t

3

(1 − t2)2P(t)Q(t)
=

be−2iϕ̃ − ae−iϕ̃

1 − t
+

be2iϕ̃ − aeiϕ̃

1 + t
+
ν̃∗ei(π/2−ϕ̃)

(1 − t)2 +
ν̃∗ei(ϕ̃−π/2)

(1 + t)2 +
η4t + ψ4

P(t)
+
λ4t + ρ4

Q(t)
, (B.17)

Coefficients η4, ψ4, λ4, ρ4 are determined using (B.7), and finally :

J∗4 ∼ 2A sin ϕ̃ + 2(b cos(2ϕ̃) − a cos ϕ̃) ln
(

1 + tν̃∗
1 − tν̃∗

)
+

16iη4ν̃
2
∗

b/ν̃∗ − sin ϕ̃

(
π

2
− ϕ̃ − cos ϕ̃ rog(

b
ν̃∗

)
)

+ 16ν̃2
∗ψ4rog(

b
ν̃∗

) + 16ν̃2
∗

(
λ4sog(a/ν̃∗) + iρ4rog(a/ν̃∗)

)
(B.18)

Appendix B.6. Integral J∗5
J∗5 is defined by

J∗5 =

∫ +∞

−∞

y

(y − ia)
√
ν̃2
∗ + y2[b − (iy cos ϕ̃ + ζ∗(iy) sin ϕ̃)]

dy (B.19)

Variable change (A.5) is applied :

J∗5 = 4ν̃∗

∫ 1

−1

t
P(t)Q(t)

dt (B.20)

The simple elements decomposition is of the form

t
P(t)Q(t)

=
η5t + ψ5

P(t)
+
λ5t + ρ5

Q(t)
(B.21)

The coefficients η5, ψ5, λ5, ρ5 are computed using (B.7), yielding:

J∗5 =
4iη5

b/ν̃∗ − sin ϕ̃

(
π

2
− ϕ̃ − cos ϕ̃ rog(

b
ν̃∗

)
)

+ 4ψ5rog(
b
ν̃∗

) + 4
(
λ5sog(a/ν̃∗) + iρ5rog(a/ν̃∗)

)
(B.22)

Appendix B.7. Integral J∗6
Integral J∗6 is defined by

J∗6 =

∫ +∞

−∞

y
(y − ia)[b − (iy cos ϕ̃ + ζ∗(iy) sin ϕ̃)]

dy (B.23)

Variable change (A.5) is applied

J∗6 = 4ν̃2
∗

∫ 1

−1

t(1 + t2)
(1 − t2)P(t)Q(t)

dt (B.24)

The simple elements decomposition is of the form

t(1 + t2)
(1 − t2)P(t)Q(t)

=
ei(π/2−ϕ̃)

4ν̃2
∗(1 − t)

+
e−i(π/2−ϕ̃)

4ν̃2
∗(1 + t)

+
η6t + ψ6

P(t)
+
λ6t + ρ6

Q(t)
(B.25)

Subtracting the first two terms of the simple elements decomposition from both sides of this equation yields

η6t + ψ6

P(t)
+
λ6t + ρ6

Q(t)
= −

(sin ϕ̃ + i cos ϕ̃t)
2ν̃2
∗P(t)Q(t)

(
b(2ν̃∗t − ia(1 − t2)) − aν̃∗(2 cos ϕ̃t + i sin ϕ̃(1 + t2))

)
+

cos2 ϕ̃.t + i sin ϕ̃ cos ϕ̃.t2

P(t)Q(t)

(B.26)

The final coefficients are determined using (B.7). Finally:

J∗6 = 2 sin ϕ̃ ln
(

1 + tν̃∗
1 − tν̃∗

)
+

4iη6ν̃∗
b/ν̃∗ − sin ϕ̃

(
π

2
− ϕ̃ − cos ϕ̃ rog(

b
ν̃∗

)
)

+ 4ν̃∗ψ6rog(
b
ν̃∗

) + 4ν̃∗
(
λ6sog(a/ν̃∗) + iρ6rog(a/ν̃∗)

)
(B.27)
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Appendix B.8. Integral J∗7
Integral J∗7 is defined by

J∗7 =

∫ +∞

−∞

y2

(y − ia)
√
ν̃2
∗ + y2[b − (iy cos ϕ̃ + ζ∗(iy) sin ϕ̃)]

dy (B.28)

Variable change (A.5) is applied

J∗7 = 8ν̃2
∗

∫ 1

−1

t2

(1 − t2)P(t)Q(t)
dt (B.29)

The simple elements decomposition is of the form

t2

(1 − t2)P(t)Q(t)
=

ei( π2−ϕ̃)

8ν̃2
∗(1 − t)

+
ei( π2 +ϕ̃)

8ν̃2
∗(1 + t)

+
η7t + ψ7

P(t)
+
λ7t + ρ7

Q(t)
(B.30)

The remaining terms are

η7t + ψ7

P(t)
+
λ7t + ρ7

Q(t)
= −

(i cos ϕ̃ + sin ϕ̃t)
4ν̃2
∗P(t)Q(t)

[b(2ν̃∗t − ia(1 − t2)) − aν̃∗(2 cos ϕ̃t + i sin ϕ̃(1 + t2))]

+
sin2 ϕ̃t2 − i cos ϕ̃ sin ϕ̃t

2P(t)Q(t)

(B.31)

The final coefficients are determined using (B.7). Finally:

J∗7 ∼ 2i cos ϕ̃ log
(

1 + tν̃∗
1 − tν̃∗

)
+

8iη7ν̃∗
b/ν̃∗ − sin ϕ̃

(
π

2
− ϕ̃ − cos ϕ̃ rog(

b
ν̃∗

)
)

+ 8ν̃∗ψ7rog(
b
ν̃∗

) + 8ν̃∗
(
λ7sog(a/ν̃∗) + iρ7rog(a/ν̃∗)

)
(B.32)

Appendix B.9. Integral J∗8
Integral J∗8 is defined by

J∗8 =

∫ +∞

−∞

dy

(y − ia)
√
ν̃2
∗ + y2[b − (iy cos ϕ̃ + ζ∗(iy) sin ϕ̃)]

(B.33)

Variable change (A.5) is applied

J∗8 = 2
∫ 1

−1

1 − t2

P(t)Q(t)
dt (B.34)

The simple elements decomposition is of the form

1 − t2

P(t)Q(t)
=
η8t + ψ8

P(t)
+
λ8t + ρ8

Q(t)
(B.35)

The final coefficients are determined using (B.7). Finally:

J∗8 =
2iη8

b − ν̃∗ sin ϕ̃

(
π

2
− ϕ̃ − cos ϕ̃ rog(

b
ν̃∗

)
)

+ 2
ψ8

ν̃∗
rog(

b
ν̃∗

) +
2
ν̃∗

(
λ8sog(a/ν̃∗) + iρ8rog(a/ν̃∗)

)
(B.36)

Appendix B.10. Tkl matrix coefficients

The coefficients of matrices Tlk are linear combinations of integrals J∗1 to J∗8 . These linear combinations are given
in the sequel.
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Appendix B.10.1. L terms
We begin by computing the terms derived from tmL, defined by (4.12).

T L
1 (a, b) = µ

∫ +∞

−∞

iy[2iε cos(2ϕ).yζL(iy) + sin(2ϕ)(y2 + ζ2
L(iy))]

(y − ia)ζL(iy)[b − (iy cosϕ + ζL(iy) sin ϕ̃)]
dy

= −2εµ cos(2ϕ)JL
2 − iµ sin(2ϕ)(JL

1 + JL
4 ) (B.37)

T L
2 (a, b) = µ

∫ +∞

−∞

2i cos(2ϕ).yζL(iy) + ε sin(2ϕ)(y2 + ζ2
L(iy))

(y − ia)[b − (iy cosϕ + ζL(iy) sin ϕ̃)]
dy

= −2iµ cos(2ϕ)JL
1 + εµ sin(2ϕ)(2JL

2 + ν̃2
LJL

3 ) (B.38)

T L
3 (a, b) = µτ

∫ +∞

−∞

2iε cos(2ϕ).yζL(iy) + sin(2ϕ)(y2 + ζ2
L(iy))

(y − ia)ζL(iy)[b − (iy cosϕ + ζL(iy) sin ϕ̃)]
dy

= µτ[2iε cos(2ϕ)JL
6 − sin(2ϕ)(2JL

7 + ν̃2
LJL

8 )] (B.39)

T L
4 (a, b) = (2µ − 1)

∫ +∞

−∞

iy
(y − ia)ζL(iy)[b − (iy cosϕ + ζL(iy) sin ϕ̃)]

dy

+ 2µ
∫ +∞

−∞

iy[iε sin(2ϕ).yζL(iy) − ζ2
L(iy) cos2 ϕ + y2 sin2 ϕ]

(y − ia)ζL(iy)[b − (iy cosϕ + ζL(iy) sin ϕ̃)]
dy

= i(1 − 2µ)JL
5 + 2iµ cos2 ϕJL

1 − 2εµ sin(2ϕ)JL
2 − 2iµ sin2 ϕJL

4 (B.40)

T L
5 (a, b) = (2µ − 1)

∫ +∞

−∞

ε

(y − ia)[b − (iy cosϕ + ζL(iy) sin ϕ̃)]
dy

+ 2µ
∫ +∞

−∞

i sin(2ϕ).yζL(iy) − ε cos2 ϕζ2
L(iy) + ε sin2 ϕy2

(y − ia)[b − (iy cosϕ + ζL(iy) sin ϕ̃)]
dy

= ε(2µ − 1 − 2µν̃2
L cos2 ϕ)JL

3 − 2iµ sin(2ϕ)JL
1 − 2εµ cos(2ϕ)JL

2 (B.41)

T L
6 (a, b) =

∫ +∞

−∞

τ(2µ − 1)
(y − ia)ζL(iy)[b − (iy cosϕ + ζL(iy) sin ϕ̃)]

dy

+ 2µτ
∫ +∞

−∞

iε sin(2ϕ).yζL(iy) − cos2 ϕζ2
L(iy) + sin2 ϕy2

(y − ia)ζL(iy)[b − (iy cosϕ + ζL(iy) sin ϕ̃)]
dy

= τ(λ + 2µν̃2
L cos2 ϕ)JL

8 + 2µτ[iε sin(2ϕ)JL
6 + cos(2ϕ)JL

7 ] (B.42)

T L
7 (a, b) = −2µτ

∫ +∞

−∞

εiyζL(iy) cosϕ + y2 sinϕ
(y − ia)ζL(iy)[b − (iy cosϕ + ζL(iy) sin ϕ̃)]

dy

= −2µτ(sinϕJL
7 − iε cosϕJL

6 ) (B.43)

T L
8 (a, b) = −2µτ

∫ +∞

−∞

iεy sinϕ − ζL(iy) cosϕ
(y − ia)[b − (iy cosϕ + ζL(iy) sin ϕ̃)]

dy

= −2µτ[iε sinϕJL
6 + cosϕ(JL

7 + ν̃2
LJL

8 )] (B.44)

T L
9 (a, b) = 2µτ2

∫ +∞

−∞

iy sinϕ − εζL(iy) cosϕ
(y − ia)ζL(iy)[b − (iy cosϕ + ζL(iy) sin ϕ̃)]

dy

= 2µτ2[i sinϕJL
5 + ε cosϕJL

3 ] (B.45)
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Appendix B.10.2. TH terms
Let us now compute terms derived from tmT H , defined by (4.13).

T T H
1 (a, b) = µ

1 +
τ2

ν̃2
T

 ∫ +∞

−∞

−2i sin(2ϕ).yζT (iy) + ε cos(2ϕ)(y2 + ζ2
T (iy))

(y − ia)[b − (iy cosϕ + ζT (iy) sin ϕ̃)]
dy

= µ

1 +
τ2

ν̃2
T

 [2i sin(2ϕ)JT
1 + ε cos(2ϕ)(2JT

2 + ν̃2
T JT

3 )] (B.46)

T T H
2 (a, b) = µ

1 +
τ2

ν̃2
T

 ∫ +∞

−∞

iy[2iε sin(2ϕ).yζT (iy) − cos(2ϕ)(y2 + ζ2
T (iy))]

(y − ia)ζT (iy)[b − (iy cosϕ + ζT (iy) sin ϕ̃)]
dy

= µ

1 +
τ2

ν̃2
T

 [−2ε sin(2ϕ)JT
2 + i cos(2ϕ)(JT

1 + JT
4 )] (B.47)

T T H
4 (a, b) = µ

1 +
τ2

ν̃2
T

 ∫ +∞

−∞

2i cos(2ϕ).yζT (iy) + ε sin(2ϕ)(y2 + ζ2
T (iy))

(y − ia)[b − (iy cosϕ + ζT (iy) sin ϕ̃)]
dy

= µ

1 +
τ2

ν̃2
T

 [−2i cos(2ϕ)JT
1 + ε sin(2ϕ)(2JT

2 + ν̃T JT
3 )] (B.48)

T T H
5 (a, b) = µ

1 +
τ2

ν̃2
T

 ∫ +∞

−∞

−iy[2iε cos(2ϕ).yζT (iy) + sin(2ϕ)(y2 + ζ2
T (iy))]

(y − ia)ζT (iy)[b − (iy cosϕ + ζT (iy) sin ϕ̃)]
dy

= µ

1 +
τ2

ν̃2
T

 [2ε cos(2ϕ)JT
2 + i sin(2ϕ)(JT

1 + JT
4 )] (B.49)

T T H
7 (a, b) = µτ

1 +
τ2

ν̃2
T

 ∫ +∞

−∞

sinϕζT (iy) + iε cosϕ.y
(y − ia)[b − (iy cosϕ + ζT (iy) sin ϕ̃)]

= −µτ

1 +
τ2

ν̃2
T

 [iε cosϕJT
6 − sinϕ(JT

7 + ν̃2
T JT

8 )] (B.50)

T T H
8 (a, b) = µτ

1 +
τ2

ν̃2
T

 ∫ +∞

−∞

cosϕ.y2 − iε sinϕ.yζT (iy)
(y − ia)ζT (iy)[b − (iy cosϕ + ζT (iy) sin ϕ̃)]

= µτ

1 +
τ2

ν̃2
T

 [iε sinϕJT
6 + cosϕJT

7 ] (B.51)

In addition, we have
T T H

3 = T T H
6 = T T H

9 = 0

Appendix B.10.3. TV terms
Finally, we compute terms derived from tmTV , defined by (4.14).

T TV
1 (a, b) = µ

τ2

ν̃2
T

∫ +∞

−∞

iy[2iε cos(2ϕ).yζT (iy) + sin(2ϕ)(y2 + ζ2
T (iy))]

(y − ia)ζT (iy)[b − (iy cosϕ + ζT (iy) sin ϕ̃)]
dy

= −µ
τ2

ν̃2
T

[2ε cos(2ϕ)JT
2 + i sin(2ϕ)(JT

1 + JT
4 )] (B.52)
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T TV
2 (a, b) = µ

τ2

ν̃2
T

∫ +∞

−∞

2i cos(2ϕ).yζT (iy) + ε sin(2ϕ)(y2 + ζ2
T (iy))

(y − ia)[b − (iy cosϕ + ζT (iy) sin ϕ̃)]
dy

= µ
τ2

ν̃2
T

[−2i cos(2ϕ)JT
1 + ε sin(2ϕ)(2JT

2 + ν̃2
T JT

3 )] (B.53)

T TV
3 (a, b) = −µτ

∫ +∞

−∞

2iε cos(2ϕ).yζT (iy) + sin(2ϕ)(y2 + ζ2
T (iy))

(y − ia)ζL(iy)[b − (iy cosϕ + ζT (iy) sin ϕ̃)]
dy

= µτ[sin(2ϕ)(2JT
7 + ν̃2

T JT
8 ) − 2iε cos(2ϕ)JT

6 ] (B.54)

T TV
4 (a, b) = 2µ

τ2

ν̃2
T

∫ +∞

−∞

iy[iε sin(2ϕ).yζT (iy) − ζ2
T (iy) cos2 ϕ + y2 sin2 ϕ]

(y − ia)ζT (iy)[b − (iy cosϕ + ζT (iy) sin ϕ̃)]
dy

= 2µ
τ2

ν̃2
T

[i cos2 ϕJT
1 − ε sin(2ϕ)JT

2 − i sin2 ϕJT
4 ] (B.55)

T TV
5 (a, b) = 2µ

τ2

ν̃2
T

∫ +∞

−∞

i sin(2ϕ).yζT (iy) − ε cos2 ϕζ2
T (iy) + ε sin2 ϕy2

(y − ia)[b − (iy cosϕ + ζT (iy) sin ϕ̃)]
dy

= −2µ
τ2

ν̃2
T

[i sin(2ϕ)JT
1 + ε cos(2ϕ)JT

2 + ν̃2
T cos2 ϕJT

3 ] (B.56)

T TV
6 (a, b) = −2µτ

∫ +∞

−∞

iε sin(2ϕ).yζT (iy) − cos2 ϕζ2
T (iy) + sin2 ϕy2

(y − ia)ζT (iy)[b − (iy cosϕ + ζT (iy) sin ϕ̃)]
dy

= −2µτ[ν̃2
T cos2 ϕJT

8 + iε sin(2ϕ)JT
6 + cos(2ϕ)JT

7 ] (B.57)

T TV
7 (a, b) = µτ

1 − τ2

ν̃2
T

 ∫ +∞

−∞

iε cosϕ.yζT (iy) + sinϕy2

(y − ia)ζT (iy)[b − (iy cosϕ + ζT (iy) sin ϕ̃)]
dy

= −µτ

1 − τ2

ν̃2
T

 [iε cosϕJT
6 − sinϕJT

7 ] (B.58)

T TV
8 (a, b) = µτ

1 − τ2

ν̃2
T

 ∫ +∞

−∞

cosϕ.ζT (iy) − iε sinϕy
(y − ia)[b − (iy cosϕ + ζT (iy) sin ϕ̃)]

dy

= µτ

1 − τ2

ν̃2
T

 [cosϕ(JT
7 + ν̃2

T JT
8 ) + iε sinϕJT

6 ] (B.59)

T TV
9 (a, b) = −µ(ν̃2

T − τ
2)

∫ +∞

−∞

ε cosϕ.ζT (iy) − i sinϕy
(y − ia)ζT (iy)[b − (iy cosϕ + ζT (iy) sin ϕ̃)]

dy

= µ(ν̃2
T − τ

2)[ε cosϕJT
3 + i sinϕJT

5 ] (B.60)

This concludes computation of coefficients of matrix Tkl. It has been verified that all diverging terms that appear
in integrals J∗1 to J∗8 compensate each other when the L, TH and TV terms are summed.
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