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Abstract—In-Memory Computing (IMC) aims at solving the
performance gap between CPU and memories introduced by
the memory wall. However, general-purpose IMC does not
consider the optimization of data transfers for patterns such as
stencils and convolutions. This paper proposes a new Instruction
Set Architecture (ISA) and a novel pattern encoding for IMC
to transfer and organize data streams in order to perform
efficiently computation. This instruction set is implemented on
the Data-locality Management Unit (DMU) as a subset of the
Computational SRAM (C-SRAM) Instruction Set Architecture.
A programming model to interact with the DMU at language-
level is also presented in this paper. This DMU ISA is evaluated
on six applications run on three different system nodes. These
system nodes are based on existing RISC-V cores and range from
embedded to high-performance computing domain. Experiments
show on average a speed-up of ×8.81, an energy reduction factor
of ×6.81 and an improvement of the number of operations per
cycle of ×4.59, for The C-SRAM architecture integrating the pro-
posed ISA of the DMU compared to a reference implementation
on embedded systems. Results also show an improvement of the
number of operations per cycle of ×2.99 compared to a reference
implementation on all system nodes.

Index Terms—Instruction Set Architecture; In-Memory Com-
puting; Stencil; Convolution; Pattern; Programming Model; Non-
Von Neumann; Performance Analysis

I. INTRODUCTION

Architectures based on the von Neumann model present
performance limitations due to the main memory. This per-
formance bottleneck manifests itself through two phenomena.
The first is the Memory Wall, the performance gap in terms
of latency between the Processing Elements (PEs) and the
memories of a given architecture. The second is the Energy
wall, the energy gap between the arithmetical operation of
PEs and the data transfers required to perform it. The case
studied in [1] shows that this gap can reach ×100 for L1
cache memories and up to ×10000 for DRAM memory.
These bottleneck phenomena become critical for highly data-
dependent applications such as Computer Vision (CV), Image
Processing (IP) and numerical analysis. A paradigm shift in
architecture is then necessary for better computation efficiency
[2]. One of the proposed alternatives is In-Memory Com-
puting (IMC), a solution to implement non-von Neumann
architectures and mitigate the Memory Wall by integrating
computation in memory units. By their design, bandwidth
usage at destination for IMC units is reduced for an overall

energy reduction. However, efficient implementation of data
processing solutions on IMC requires input data structures to
be transferred and organized with alignment constraints for
correct computation. Classical memory operations in general-
purpose computing architectures show limited functionality
to transfer complex access patterns such as convolutions or
stencil codes, which are common in data processing solutions.
Even so, the efficiency of these instructions becomes critical
for the performance of IMC at system level. While various
works of the State of the art propose stencil-specialized IMC
architectures with efficient bandwidth usage, their application-
specific design make them unsuitable for current general-
purpose computing and future, unexplored, workload classes.
On the other hand, general-purpose computing architectures
can benefit from software frameworks to efficiently program
and implement stencil codes, but often at the cost of data
redundancy and an inefficiency of bandwidth usage.

We propose in this paper an Instruction Set Architecture
(ISA) to automatically transfer multiple data streams according
to programmable memory access patterns such as stencils or
convolutions, and automatically organize them upon arrival to
efficiently perform vector IMC. Our proposed ISA is based
on the specifications of the Data-locality Management Unit
(DMU), a memory controller designed to be tightly coupled
to IMC architectures and provide memory instructions. We
also present a novel feature we call Pattern Stream Encoding
(PSE), a compact format to generate multiple data streams and
automatically leverage data reuse opportunities from a single
instruction. In this paper, our DMU ISA is dimensionned
and integrated as an instruction subset of the Computational
SRAM (C-SRAM)[3], an IMC architecture based on SRAM
technology. Our evaluation methodology bases itself on three
different system nodes ranging from embedded to high-
performance computing, and six applications in the scope of
linear algebra, Computer Vision and Image Processing. The
evaluation of DMU ISA shows on average a speed-up of
×8.81, an energy reduction factor of ×6.81 and an improve-
ment of the number of operations per cycle of ×4.59, compared
to a reference implementation using the cache hierarchy to
transfer data on embedded systems. Our results also show a
×2.99 improvement of Matrix multiplication for all system
nodes.
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for i in 0 to height-1 by 1
do
for j in 0 to width-1 by 1
do
G’[i][j] = -1*G[i-1][j  ]

-1*G[i ][j-1]
+4*G[i ][j  ]
-1*G[i ][j+1]
-1*G[i+1][j  ];

done
done 
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Fig. 1: Implementation of a discrete Laplacian operator as ISL.
Left: pseudo-code of the ISL. Right: graphical representation
of the stencil.

The rest of this paper is organized as follows. Section II
presents the background and motivations behind this work.
Section III presents the related work of the State of the art.
Section IV introduces the DMU and presents our proposed
instruction set. Section V presents a programming model for
C-SRAM & DMU architectures. Section VI describes our
evaluation methodology and our metrics of interest. Section
VII presents and describes our obtained results. Finally, Sec-
tion VIII concludes the paper and exposes future works.

II. BACKGROUND

A. Iterative Stencil Loops

Iterative Stencil Loops (ISLs) are a class of data processing
subprograms which solve numerical problems by the iterative
update of regular data grids according to two main attributes:
a stencil, i.e the pattern describing the neighborhood needed
at each point for the latter to be updated and an update
function taking as parameters the neighborhood mapped onto
the stencil.

Implementing numerical problems using ISLs offers the
benefit of easier discrete implementation of sometimes com-
plex numerical solutions. They can be used to implement
differential equation solvers in destination of physics mod-
elling such as Navier-Stokes solvers[4] or Lattice-Boltzmann
Methods[5]. Image processing applications also make use of
ISLs to implement filters to perform tasks such as extract-
ing edge features[6], detecting curves[7] or perform color
interpolation on single-channel images[8]. Also, Convolutional
Neural Networks (CNNs) are a popular class of artificial neural
networks (ANNs), often used to extract features from an input
image. The convolution operator CNNs are based on can be
classified as an ISL. Furthermore we note that an important
number of data processing operators, such as the Laplace
operator shown on Figure 1, are part of standardized Applica-
tion Programming Interfaces (APIs) such as OpenCV[9] and
OpenVX[10].

B. In-Memory Computing

In-Memory Computing (IMC) is an architectural paradigm
where memories are enhanced with computation abilities.
In the majority of the solutions presented in the literature,
IMC performs parallel computation to improve the overall
throughput achievable by its host CPU and reducing the band-
width usage by substituting data exchanges with instructions.

Fig. 2: Interface between C-SRAM and host CPU to exchange
data and send instructions.

IMC can be based on various memory technologies such
as DRAM[11][12], SRAM[13][14] or even ReRAM[15], and
can implement either Single-Instruction Multiple-Data (SIMD)
or Multiple-Instruction Multiple Data (MIMD) to achieve
different levels of parallelism. The design of a given IMC
architecture, e.g the integration of arithmetic operations to its
base memory architecture, has a significant impact on how
data must be arranged in the storage space dedicated to IMC
to correctly compute data. Various publications present tech-
nological characterizations of IMC architectures with different
memory technologies. Most of these papers describe accu-
rately the physical implementation of arithmetical operations,
but present no concrete Instruction Set Architecture (ISA)
which can be used at system-scale. Furthermore, even when
these solutions are effectively implemented on a test-chip, they
primarily focus on the physical characterization of their design
to evaluate and estimate its peak throughput without taking
into account the data movements required across the system
to fetch and send data. It is important to note, though, that
most publications make use of IMC as application-specific
accelerators[16][17], which justifies that such considerations
are not addressed.

Our reference IMC architecture for the rest of this papier
will be the Computational SRAM (C-SRAM) is an IMC
architecture based on SRAM memory, with logical and 8-
bit up to 32-bit integer vector operations. Figure 2 shows the
interface model between C-SRAM and a 32-bit host CPU.
The C-SRAM does not integrate an autonomous instruction
flow. Instead, C-SRAM instructions are encoded and sent by
the host CPU on both the data and address buses in form
of "store-word" instructions, making them 64 bits wide. By
this interface model, a single execution flow interleaves scalar
CPU operations and C-SRAM vector operations. Moreover,
the instruction set of the host architecture does not need to be
modified for tightly-coupled system integration of C-SRAM,
making it architecture-agnostic and easy to integrate in existing
and future systems.

Figure 3 shows the instruction set encoding of C-SRAM
architecture. The host CPU can use C-SRAM in two operating
modes: computing mode and memory mode. Each mode of C-
SRAM is toggled by the host CPU using the most significant
bit of the address bus set to one. In consequence, C-SRAM
owns two regions in the virtual address space: one for memory
mode and the other for computing mode, i.e for encoding
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Fig. 3: Encoding of C-SRAM instructions on 32-bit host
system.

C-SRAM instructions. In computing mode, three instruction
formats are available: R-format with 2-rows operands, I-
format for 1-row-1-immediate operands and U-format for 1-
immediate operand. All three formats take a row as destination
parameter.

III. RELATED WORKS

A. Stencil computing on IMC architectures

Our overview of the State of the art focuses primarily
on IMC solutions, with a particular interest to the following
criteria: how these architectures are integrated to a host ar-
chitecture, what interface model they use to for the former
to interact with them, what programming model they provide
and what memory instructions they implement. By our focus
on ISLs, we are more particularly interested in whether or
not these architectures can be programmed to issue intensive
data transfers, and ideally with the ability to reorganize data
transfers according to specific patterns.

Previous solutions of the literature proposed IMC architec-
tures designed as application-specific accelerators for sten-
cil computation. The Processing-In-Memory accelerator for
Stencils (PIMS) for example is an IMC stencil accelerator
implemented on a Hybrid Memory Cube to benefit from its
3D-stacked design and its high bandwidth[18]. According to
the interface model presented in the original paper, each PE
of PIMS is connected to a given memory bank, meaning that
data needs to be stored in specific locations in memory to
be computed. The PIMS architecture proposes no dedicated
instructions for developers to manage data movements prior
stencil computation, though elaborate communication and
buffer mechanisms are implemented to seamlessly maximize
transfer efficiency. The evaluation of PIMS showed interesting
results regarding the pressure reduction on the memory banks
of the Hybrid Memory Cube, by isolating metrics relevant
to their architecture. CASPER, another stencil-specific IMC
accelerator which shows promising performance results, pro-
posed a programming model in the form of a dedicated API
to issue data streams and trigger stencil computation[19]. In
a manner similar to PIMS, seamless data reuse mechanisms
are put into place to reuse data without any knowledge of
developers. We note, however that the paper does not present
the instruction set of this architecture, which is understandable
as its design is specialized in any case for stencil computation.

These solutions show the interest of investigating stencil
computation accelerator through IMC. However, we note that

they may be too specialized to be programmed for other
workloads. For these reasons, we also integrate in our overview
general-purpose IMC architectures, and look at their provided
transfer mechanisms. We retained from our analysis of the
literature two architectures representative of the domain : the
Duality Cache and the UPMEM architecture. The Duality
Cache enhances the Last Level Cache (LLC) of its host
architecture with a Very-Long Instruction Word (VLIW) ex-
ecution model to perform MIMD programming[20]. Its DC-
PTX ISA is based on a subset of Nvidia’s PTX ISA to be
retro-compatible with already existing code projects targeting
CUDA applications and Nvidia Graphics Processing Units
(GPUs). By this partial retro-compatibility, existing ISLs tar-
geting Nvidia GPUs can be reused on the Duality Cache, with
the condition of using compatible instructions. By its design
specifications, the Duality Cache is more tightly coupled to the
host architecture than a GPU, and takes advantages of its re-
sources, e.g bandwidth, main memory, cache slices, to reduce
data transfers compared to a conventional GPU. Load-store
operations of PTX are redefined in DC-PTX to target cache
slices and the main memory instead of an intermediate device-
exclusive memory. Because the Duality Cache performs bit-
serial computation, the input data need to be translated and
organized along the same bit-lines in internal memory instead
of along the same word-lines. To prevent the disruption of
their ISA, a Transpose Memory Unit (TMU) is implemented to
seamlessly perform data transposition and reorganization. The
UPMEM architecture takes another approach by implementing
Data-Processing Units (DPUs) directly in DRAM modules,
making the execution model of this architecture MIMD. Each
DPU owns a local memory to store instructions and data,
and can also access a global memory shared with the host
CPU. The UPMEM instruction set implements the special-
ized instructions ldma, ldmai, and sdma to exchange data
between local and global memory. These instructions can be
parameterized to transfer a single stream of contiguous bytes
per instruction.

B. Software frameworks for ISL programming

While not fit for stencil computation by design, these
general-purpose IMC architectures could be programmed
through high-level software frameworks to efficiently im-
plement ISLs. The authors of the paper introducing the
PIMS architecture mentioned Physis, an implicitly parallel
programming model in destination of GPUs to implicitly
describe parallel stencil computation[21]. We retained from
our overview of the State of the art regarding Domain-Specific
Languages (DSLs) and Application Programming Interfaces
(APIs) multiple solutions specialized on implementing ISLs,
for image processing pipelines[22][23][24] or general-purpose
numerical solutions[25][26][27]. A consequential amount of
software solutions to leverage the implementation of Machine
Learning (ML) applications were also proposed. These solu-
tions include high-level frameworks such as TensorFlow[28],
Torch[29] and N2D2[30], low-level APIs such as FANN[31]
and mlpack[32], and ML-specific compiler frameworks such
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Fig. 4: System integration of DMU block to an IMC architec-
ture, here C-SRAM.

as TVM[33] and MLIR[34]. We note that the majority of these
frameworks either targets GP-CPUs and GPUs, or application-
specific accelerators in destination of ML. Regarding the
former case, specific data layouts such as im2col are required
to implement convolutional layers into matrix multiplications,
which scales better with parallel computation architectures and
high-bandwidth memory subsystems[35]. However, former
investigations show that the overhead of im2col transfor-
mation induces a significant overhead in bandwidth pressure,
thus aggravating the Energy Wall phenomenon due to the
von Neumann bottleneck[36][37]. As discussed earlier, ML
accelerators have hardware mechanisms to seamlessly perform
data reuse and mitigate data redundancy, but they lack the
flexibility to perform general-purpose stencil computation.

C. Observations

To conclude our overview of the literature, we found no
solution proposing an ISA compatible with general-purpose
stencil computation and accessible to general-purpose IMC.
We believe that the amount of software solutions using ISLs is
a compelling motivation to propose a data transfer mechanism
dedicated to efficient stencil computation. Our proposition for
this challenge is an instruction set that can be programmed
to transfer data according to any arbitrary access pattern. The
stencil data are re-arranged, duplicated and organized upon
arrival in the IMC storage to perform parallel energy-efficient
stencil computation. This proposed ISA is implemented as a
transfer, block tightly coupled to an IMC architecture and
a bus between it and main memory, and as such can be
integrated into any IMC architecture with minimal to no
required modifications.

IV. DATA-LOCALITY MANAGEMENT UNIT (DMU)

In this section, we introduce the Data-locality Management
Unit (DMU), a memory controller designed to be tightly
coupled to IMC architectures and provide memory instructions
for efficient data transfers. In [38], the authors presented the
base specification of the DMU architecture and evaluated its
integration to an IMC architecture on an embedded system
for three applications. The results showed that the system
integration of DMU improves the performance of IMC on
an embedded architecture implementing C-SRAM and, more
specifically, can be used to reduce bandwidth usage on data-
dependent applications such as stencils and convolutions. In
this paper, we propose for the DMU an instruction set to

WAIT100000

SETR
SETW100000 IN_WIDTH

OUT_WIDTH
IN_ADDR
OUT_ADDR

00

READ0
WRITE0100000 IMC.LINE REGION.YREGION.X00

READ1
WRITE1100000 LEN PAT

IDSRC_STRIDE DST_STRIDE00 EL
SIZE

16 6 41934 032505864

Address bus Data bus

Fig. 5: Encoding of DMU instruction set on a 32-bit host
system.

automatically transfer multiple data streams according to a
programmable memory access patterns, and organize them
upon arrival to efficiently perform vector IMC. The ISA
we propose in this paper rests on the primary specifications
presented in [38] and adds a novel feature we call Pattern
Stream Encoding (PSE), to generate multiple data streams
from a single instruction and automatically leverage data reuse
opportunities.

A. DMU Instruction Set

By the definition of ISLs discussed in Section II-A, we iden-
tify the following parameters as necessary to implement the
data transfers of a given ISL using the DMU instruction set:
the input references containing the base address of the input
data structure and [X,Y ] starting coordinates to read data
from, and the output references containing the base address
of the output data structure and [X,Y ] starting coordinates
to write data at. Using relative coordinates instead of virtual
addresses only is important to identify the elements mapped
in the parameterized stencil shape for the upcoming transfer.
From these observations, we identify two main operations
to exchange data between C-SRAM and the main memory,
labeled read and write. The read operation transfers
streams of stencils according to the parameterized stencil
shape, using respectively the input references and a C-SRAM
row identifier to parameter where to start reading stencils from
and writing them at. By symmetry, the write operation uses
a C-SRAM row identifier and output references to parameter
where to transfer data fro mC-SRAM in destination of DRAM.

We decide to implement the instruction set formats of our
DMU instruction set using C-SRAM as a base, so that it can be
integrated as an instruction subset in the C-SRAM ISA. This
choice allows us to implement 64 bits wide instructions on 32-
bit architecture systems to program the DMU. Figure 5 shows
the DMU instruction set formats, obtained after performing
parameter scaling according to the C-SRAM instruction set
formats.

Because an ISL often targets a single pair of input/output
data structures, certain parts of the input/output references such
as their base address and their width are consistent for each
data transfer generated during the execution. To benefit from
this redundancy and reducing the quantity of bits required to
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Fig. 6: Example usage of setr and setw instructions to
target In and Out data structures, both stored in DRAM
memory.

algorithm READ(IN_ADDR, IN_WIDTH,
X, Y, IMC_LINE,
SRC_STRIDE, DST_STRIDE,
EL_SIZE, LEN)

begin
for i := 0 to LEN-1
do

SRC = IN_ADDR+IN_WIDTH*ELSIZE*X
+ ELSIZE*Y*SRC_STRIDE;

DST = ADDR_OF(IMC_LINE)+i*ELSIZE*DST_STRIDE;
for j := 0 to EL_SIZE-1
do

DST[j] = SRC[j];
done

done
end

Fig. 7: Algorithm of the behaviour of read instruction with
no parametered PSE, (i.e PSE identifier equals 0).

parameter data transfers, we implement the setr and setw
instructions to persistently store the widths and base addresses
of the input and output data structures respectively. Figure
6 shows an example usage of setr and setw instructions
targeting "In" and "Out" to perform 2D filtering. The formats
of the setr and setw instructions are based on the U-
format of C-SRAM instructions, allowing 32-bit addresses
and 16-bit width parameters. These parameters are identified
as IN_ADDR/IN_WIDTH and OUT_ADDR/OUT_WIDTH for
setr and setw respectively. By this scaling, the entirety of
a 32-bit logical memory space can be addressed by the set
instructions. However it is possible to implement platform-
specific variants of these instructions, based on the actual size
of the physical memory space for a given platform.

After scaling to the C-SRAM instruction set, the read and
write operations are split into two instructions: read0 (resp.
write0) and read1 (resp. write1). The parameters taken
by read0 and write0 are the C-SRAM row index and [x, y]
coordinates relative to the targeted data structure. read1 and
write1 take as parameters the source and destination stride
to which data should be read and written, the PSE identifier,

Fig. 8: Each bit of a PSE bitmap represents a neighbor
according to a reference13-point 2D stencil encoded as a PSE
bitmap.

Byte# Minimum base address Maximum base address
0 @IN_ADDR[x + 3][y − 4] @IN_ADDR[x + 3][y + 3]
1 @IN_ADDR[x + 2][y − 4] @IN_ADDR[x + 2][y + 3]
2 @IN_ADDR[x + 1][y − 4] @IN_ADDR[x + 1][y + 3]
3 @IN_ADDR[x][y − 4] @IN_ADDR[x][y + 3]
4 @IN_ADDR[x − 1][y − 4] @IN_ADDR[x − 1][y + 3]
5 @IN_ADDR[x − 2][y − 4] @IN_ADDR[x − 2][y + 3]
6 @IN_ADDR[x − 3][y − 4] @IN_ADDR[x − 3][y + 3]
7 @IN_ADDR[x − 4][y − 4] @IN_ADDR[x − 4][y + 3]

TABLE I: Table of generable source base addresses by a PSE
bitmap.

the number of elements to transfer for each stream generated
by the PSE and their size in bytes. The former provides the first
part of the transfer parameters, while the latter provides the
second part and triggers the DMU transfer. Figure 7 describes
the behavior expected of read instruction. In this example, no
particular PSE bitmap is programmed yet to transfer multiple
streams at once, which is selected with the PSE identifier #0.

Since both instructions are non-blocking, a wait instruc-
tion is implemented to block the host CPU until completion
of the overall transfer, i.e the entire set of streams generated
from the PSE identifier.

B. Functionality of DMU instruction set

1) DMU Pattern Stream Encoding: To program stencil
neighborhoods in a reasonably compact manner, we propose
an encoding format we call Pattern Stream Encoding (PSE).
We implement PSE primarily to automatically align multiple
data streams in C-SRAM according to its vector computation
scheme, and improve the efficiency of data transfers triggered
by read instructions. As of now, PSE is exclusively used for
read instructions, as we the applications we investigate use
reducers – such as convolutions – as ISL update functions. PSE
identifier #0 being used by default to perform single-stream
transfers. We plan on investigating on the interest of writing
data from IMC to other memories, according to complex
access patterns, in the near future. Figure 8 shows an example
PSE bitmap to transfer multiple data streams according to the
memory access pattern of a 13-point 2D stencil code.
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Fig. 9: Left : PSE bitmap to transfer 16 1-byte 1D stencil.
Right : data layout obtained in C-SRAM storage, each stencil
window has its elements aligned to correctly perform com-
putation. Highlighted in green aer the elements which were
copied directly from C-SRAM storage.

Each bit in a PSE bitmap encodes a specific address
relative to the [x, y] coordinates, according to Table I. From a
structural point of view, PSE bitmaps can be used to generate
addresses in an 8 × 8 window around [x, y]. The address set
generated by PSE bitmaps was defined to cover the access
patterns encountered in our applicative study cases, but it also
provides the flexibility to program it for arbitrary patterns.

2) Automatic data reuse: To seamlessly leverage data reuse
opportunity when transferring data with DMU, streams be-
longing to the same PSE row – aka generated from the same
byte of a given PSE bitmap – are partially copied directly
from C-SRAM when possible, instead of read from the input
data structure. The missing elements of the stream are then
read from source memory, improving the latency and energy
efficiency of the overall DMU transfer. To determine when
data reuse possibilities are accessible, we use the PSE bitmap
itself is used as a hint to detect for each stream of a given PSE
row the initial stream, whose data have not been previously
transferred in C-SRAM, and the subsequent streams, whose
data are already partially transferred but need to be copied in
the appropriate location in C-SRAM. Figure 9 shows as exam-
ple the transfer of 16 3-point stencils of element size 1-byte.
The PSE bitmap necessary for this access pattern will generate
in consequence 3 data streams. The first stream is loaded in the
nth row in C-SRAM with all its data read exclusively from
the input data structure, while the (n + 1)th and (n + 2)th
streams are partially copied from data already transferred in
C-SRAM, then completed by reading the missing data from
the input data structure. The resulting data layout in C-SRAM
storage is each stencil window correctly aligned across the
destination rows to perform stencil computation.

Figure 10 shows the interface model between the host CPU
and DMU. The host CPU writes PSE bitmaps into a memory-
mapped PSE buffer, indexed by the PSE identifier field of
read instructions. This field being 4 bits wide, the PSE buffer
is defined to store 16×64 bitmaps, or 128 bytes of raw data.
The first double-word of this buffer is reserved to use single-
stream DMU transfers, which is defined by the PSE bitmap of
value 0, leaving 15 programmable bitmaps to the host CPU.

V. C-SRAM & DMU PROGRAMMING MODEL

CPU

DMU
controller

Address bus
(32-bit)

Data bus
(32-bit)

PSE
Mem.

0 (reserved)
pse_bitmap #1
pse_bitmap #2
pse_bitmap #3

64-bit

...
pse_bitmap #15

Fig. 10: Interface model between Host CPU and DMU, with
its PSE memory.

/* PSE buffer initialization */
#define 5PT_STEN_PSE 0x81C080000
#define 5PT_STEN_IDX 1
_pse_buffer[5PT_STEN_IDX] = 5PT_STEN_PSE;
/* Variable declarations */
unsigned short coef [1, 1, -4, 1, 1];
unsigned short *imc_coef, *imc_stenc, *imc_res;
/* (1) Alloc. / init. of C-SRAM memory */
imc_coef = imc_alloc(5);
imc_stenc = imc_alloc(5);
imc_res = imc_alloc(1);
imc_init_rows(imc_coef, coef, 5);
/* (2) Setting target regions */
dmu_setr(width, In);
dmu_setw(width, Out);
/* Main iteration loop */
for (int i = 1; i < height-1; i += 1)
{
for (int j = 1; j < width-1; j += 8)
{

/* (3) Input transfer of 5-point stencil*/
dmu_read0(imc_coef, i, j);
dmu_read1(8, 1, 2, szof(char), 5PT_STENC_PSE);

/* (4) In-Memory Computation */
....

/* (5) Input transfer of single stream*/
dmu_write0(imc_res, i, j);
dmu_write1(8, 2, 1, szof(char), 0);

}
}

Fig. 11: Implementation of discrete laplacian operator using
DMU instruction set.

As of now, the programming models implemented for C-
SRAM make use of explicit vectorization at high level[39],
[40]. Following this, we implement for this paper the support
of DMU instructions as an explicit programming model using
C macros. Figure 11 shows an example code implementing
a discrete laplacian operator using the resulting programming
model. We define an imc_alloc() routine to implement
stack allocation in C-SRAM, and an imc_init_rows()
to initialize all the rows of an allocated region using the
_cm_bcast C-SRAM instruction.

Figure 12 shows the data layout after completing the first
iteration of the innermost loop in the example code shown
in Figure 11. The convolution windows of center points [i, j]
up to [i, j + 7] are transferred according to the 5-point stencil
pattern programmed in the PSE buffer. The streams generated
by the read instructions are read from the target region at
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16 bytes

1 1 1 1 1 1 1 1
-4 -4 -4 -4 -4 -4 -4 -4
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

Ini�alized with _cm_bcast16

Read from memory Wri�en to memory

1 1 1 1 1 1 1 1
-4 -4 -4 -4 -4 -4 -4 -4
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

In0,1 In0,2 In0,3 In0,4 In0,5 In0,6 In0,7 In0,8
In1,0 In1,1 In1,2 In1,3 In1,4 In1,5 In1,6 In1,7

In1,8
In1,9

In2,1 In2,2 In2,3 In2,4 In2,5 In2,6 In2,7 In2,8

In1,1 In1,2 In1,3 In1,4 In1,5 In1,6 In1,7
In1,8In1,2 In1,3 In1,4 In1,5 In1,6 In1,7

1 1 1 1 1 1 1 1
-4 -4 -4 -4 -4 -4 -4 -4
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

In0,1 In0,2 In0,3 In0,4 In0,5 In0,6 In0,7 In0,8
In1,0 In1,1 In1,2 In1,3 In1,4 In1,5 In1,6 In1,7

In1,8
In1,9

Out0,1 Out0,2 Out0,3 Out0,4 Out0,5 Out0,6 Out0,7 Out0,8

In2,1 In2,2 In2,3 In2,4 In2,5 In2,6 In2,7 In2,8

In1,1 In1,2 In1,3 In1,4 In1,5 In1,6 In1,7
In1,8In1,2 In1,3 In1,4 In1,5 In1,6 In1,7

1 2 3

Fig. 12: Data layout obtained in C-SRAM architecture through the example code shown in Figure 11, obtained after 1st

iteration of the innermost loop.. (1) The weights of the convolution filter are initalized with imc_init_rows(). (2) Input
data is transfered through the read instructions. (3) Atfer using IMC, the data t be written in Out are transfered using write
instructions.

stride 1 and written in C-SRAM at stride 2 to perform byte
extension for 16-bit computation. After that, IMC arithmetic
operations are used to compute the convolution of the input
windows and clip them to 8-bit values – e.g between 0 and 255.
Respectively, the streams generated by write instructions are
read from C-SRAM at stride 2 and written in the target region
at stride 1 for proper data organization.

While this programming model is efficient at programming
DMU, it requires developers to be familiar with internal and
unconventional hardware features. We are currently working
on a solution to implement the full support of DMU and PSE
at high level, and plan soon on publishing a paper presenting
our results.

VI. EXPERIMENTAL METHODOLOGY

In this section, we present our experimental methodology
to evaluate the integration of C-SRAM/DMU ISA in a host
architecture. Our goal is to evaluate the behavior of different
applications implemented in this system, depending on the
performance of its memory subsystem. We use an emulation
framework based on QEMU[40] to evaluate the ISA at system-
level, as opposed to micro-benchmarking. The energy and
latency costs of cache memories and DRAM are obtained
using [41] while the costs of C-SRAM are taken from [42].

A. Experimental system nodes

We base our methodology around the RISC-V architecture,
as its specification is open-source and backed by major indus-
trial and academic actors. At the time of writing this paper,
various cores designed by SiFive were implemented in various
products. As such, we model our three system nodes based
on three implemented SiFive cores to evaluate our proposed
ISA in a realistic setting. Our selection includes the E31[43],
E76[44] and U74[45] cores, each targeting different systems
ranging from Internet-of-Things (IoT) to High-Performance

E31-based
384MHz

E76-based
800MHz

U74-based
1GHz

Latency
(cycles)

Energy
Cost

Latency
(cycles)

Energy
Cost

Latency
(cycles)

Energy
Cost

8KB C-SRAM 1 31.74pJ 2 31.74pJ 3 31.74pJ

L1 I$ 1
R: 19pJ
W: 25pJ 1

R: 19pJ
W: 25pJ 1

R: 24pJ
W: 24pJ

L1 D$ 1
R: 34pJ
W: 34pJ 1

R: 34pJ
W: 34pJ 1

R: 24pJ
W: 24pJ

L2 $ 12
R: 52pJ
W: 52pJ

DRAM 7
R: 8.17nJ
W: 8.04nJ 24

R: 14.45nJ
W: 14.35nJ 48

R: 39nJ
W: 37.5nJ

TABLE II: Model parameters for experimental system nodes.

Computing (HPC). However, none of these cores implement
the RISC-V Vector (RVV) extension to support wide-SIMD
computation. We plan on evaluating comparisons with RISC-
V processors supporting RVV as soon as the State of the art
will be able to provide performance characterizations.

Figure 13 shows the memory hierarchies of the system
nodes for our experiments. Both E31 and E76-based nodes
have a single level of cache hierarchy, with the same 16KB
instruction cache. The E31-based node uses a 32KB 2-way
data cache, while the E76-based node implements a 16KB 4-
way data cache. The U74-based node implements a two-level
cache hierarchy, with 32KB 4-way L1 caches and a 128KB
8-way L2 cache. The E31-based node uses data write-through
policy while both the E76 and U74 use data write-back policy.
Table II shows the energy and latency parameters selected to
model each system node.

B. Applications

Table III presents the five applications implemented on the
C-SRAM architecture. The criteria we retain to evaluate the
results of our experimentation are their algorithmic complexity
and their vector element size, as both have an impact on the
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E31

16KB I$
2-way 32KB D$

2-way

128MB DRAM

8KB
C-SRAM
DMU

E76

16KB I$
2-way

16KB D$
2-way

512MB DRAM

8KB
C-SRAM
DMU

U74

32KB I$
4-way

32KB D$
4-way

2GB DRAM

8KB
C-SRAM
DMU

128KB L2$
8-way

Write-through cache Write-back cache Main memory

Fig. 13: Memory hierarchies of the system nodes modeled for our experimental methodology.

Application
Vector

element
size

Complexity Pattern
type

Average
data

redundancy

Frame
difference [46] 8-bit O(n)

On-load:
row-major
On-store:
row-major

1

Laplace
filter [47] 16-bit O(n)

On-load:
stencil (5-pt)

On-store:
row-major

≈ 5

Sobel
filter [6] 16-bit O(n)

On-load:
stencil (9-pt)

On-store:
row-major

≈ 18

Matrix
multiplication
(squares) [48]

32-bit O(n3)

On-load:
row/col-major

On-store:
row-major

n2

Demosaicking
(AoS / SoA) [49] 16-bit O(n)

On-load:
stencil (13-pt)

On-store:
irr.→row-major

≈ 26

TABLE III: List of Applications with their Characteristics for
Experimental Evaluation.

arithmetic complexity of the applications and whether or not
the main generated access pattern is regular or complex. We
also define for each application their average data redundancy
factor, e.g. the number of times an input element is accessed
during the entire life cycle of the application:

a) Frame difference: computes the saturated subtraction
of two consecutive frames to highlight their differences. It is
often used in CV for motion detection[46].

b) Laplace filter: is a discrete Laplacian operator imple-
mented as a 5-point stencil code. It can be used in CV as an
edge detection operator[47].

c) Sobel filter: is another edge detection operator, im-
plemented as two 3 × 3 convolution kernels[6]. Both kernels
are applied on the same inputs, and as such must be spanned
across all compute lanes using broadcast instructions.

d) Matrix-matrix multiplication: is a cornerstone of lin-
ear algebra and various workloads in Computer Sciences, often
used as the gemm operator[50]. We implement a tiled version
of Matrix multiplication to maximize the data reuse and
the throughput. To prevent the need for matrix transposition
before computation, we use a vectorization scheme resting on
broadcast instructions.

e) Demosaicking: is a digital image process to recolor
an image sampled from an image sensor with a color filter
array. The algorithm used as a baseline for the implementation
is the Malvar-He-Cutler demosaicking algorithm[49]. This im-
plementation uses eight 5x5 filters divided into two categories:
red-row and blue-row filters. To maximize throughput, we
compute multiple convolutions at once by arranging alterna-
tively different stencils in C-SRAM. This data layout could
be compared to weight-stationary layouts for Neural Network
Computation[35]. We evaluate two variants: one targeting a
Struct-of-Array (SoA) output, and the other targeting an Array-
of-Struct (AoS) output. The impact of this difference lies in
how to organize data after computation to efficiently write
them to the output structure. In the SoA variant, bit masking
can be used in C-SRAM to reorganize the color components
and in the AoS variant, the CPU has to sequentially reorganize
components as consecutive pixels using load and stores in C-
SRAM.

The variety of this selection in terms of complexity and data
reuse generates various distinct run-time behaviors to analyze.
All three applications were retained for their importance and
relevance to domains such as image processing and computer
vision. Most are defined as standard functions in Domain-
Specific APIs such as OpenVX [10].

C. Performance metrics

For our experimental methodology, we use metrics com-
monly found in the State of the art as well as novel metrics
to evaluate the quality of generated software. To compare the
impact of integrating our DMU instruction set on a given for
a given application, we measure the speed-up and the energy
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reduction relative to the baseline execution of the application
on the node by using its cache hierarchy instead of the DMU
to transfer data. We also measure for each application and on
each system node the average number of operations per cycle
for each application on each system node. Finally, we study the
percentage of C-SRAM usage time between actively waiting
for transfers to finish and computing data, and the percentage
of C-SRAM and CPU instructions.

VII. EVALUATION RESULTS

Figure 14 shows for each application on each system node
the speed-up and the energy reduction of C-SRAM when
transferring data through DMU, relative to a baseline code
implementation. This baseline implementation uses the cache
hierarchy of the host CPU to transfer data from DRAM to
C-SRAM, to evaluate the impact of the integration of DMU
to each system node. We note that both the performance
and the energy efficiency of C-SRAM are improved on av-
erage by the integration of DMU on the E31-based node
by ×8.81 and ×6.81 respectively, and every application was
improved individually. On the E76 and U74-based nodes, these
(speed-up/energy-reduction) factors are (×1.51/ × 1.28) and
(×0.67/×1.175). Across all system nodes, the application that
was consistently improved in terms of both energy reduction
and speed-up is Matrix multiplication. We also note that
starting a 2-level cache hierarchy – e.g on the U74-based node,
the energy efficiency is more improved than the speed-up. Our
conclusion is that the integration of DMU to C-SRAM with its
current host/interface model is more interesting for embedded
systems. The efficient integration of DMU and C-SRAM in
higher-end nodes require different architectural approaches,
such as increasing the degree of parallelism achievable while
keeping C-SRAM tightly coupled to the host CPU[39], or
moving C-SRAM further up in the memory hierarchy, past
DRAM memory and close to lower-latency memories to
improve C-SRAM-memory communication[51]. We plan to
investigate and evaluate on the impact of DMU on these
different integration paradigms.

Figure 15 shows for each application on each system node
the average number of operations per cycle measured by the
end of execution. Next to each bar, an annotated star indicates
for a given system node whether the variant with or without
DMU is more efficient in terms of operations per cycle. We
note that due to its low arithmetic intensity, Frame difference
shows the lowest number of operations per cycle on every
system node – 0.09, 0.18, and 0.37 operations per cycle,
respectively for the E31-based, E76-based and U74-based
node. These results show that C-SRAM by itself amortizes
the cost of memory access on most systems and applications.
The first application to be amortized is the Laplacian filter
with 2.72 operations per cycle on the E31-based node and
the last is Matrix multiplication with 10.15 operations per
cycle. This trend is also observed on the E76-based and U74-
base nodes. We observe on average a ×4.59 improvement
of the numbers of operation for every application run on
E31-based node, effectively improving its performance. On

the E76 and U74-based nodes, the memory hierarchy of the
host architecture is efficient enough to efficiently transfer data
to C-SRAM without using DMU. The number of operations
per cycle on Matrix multiplication is consistently improved
by the integration of DMU on every system node by ×2.99
on average, the improvement factors ranging from ×1.18 on
U74-based node to ×5.41 on E31-based node. This is because
in order to perform loop tiling of matrix multiplication, the
no-DMU variant reads data of the first operand matrix to
be broadcasted from the cache hierarchy instead directly
transferring them to the C-SRAM, making the performance of
matrix multiplication sensitive to cache misses and evictions.

Figure 16 shows for each application on E31-based node the
distribution of C-SRAM usage time between computation and
the active wait for data using the _dmu_wait instruction.
We can observe that computation makes for 26.753% of
the active usage time of C-SRAM for matrix multiplication,
and for 12.823% on average for 2D filtering applications,
e.g Laplacian filter, Sobel filter, and Demosaicking. As both
these types of kernels are often used in applications such as
Machine Learning, these data give us a preliminary estimation
of how much C-SRAM can be actively used with DMU in a
synchronous process. We are currently studying the impact
of the asynchronous use of DMU to improve the percentage
of active C-SRAM computation time, and plan to publish the
results in the near future.

Figure 17 shows for each application the percentage of
CPU and C-SRAM instructions executed at run-time. These
results are identical for each system node since the number of
executed instructions is only dependent on the compilers which
generate the implemented code. We observe that C-SRAM
instructions make on average 5% of the executed instructions,
meaning that the compiled software generates on average 1 C-
SRAM instruction every 19 CPU instructions. The percentage
of CPU instructions could be reduced by optimizing further
the generation of C-SRAM instructions, which make for the
majority of executed instructions in a C-SRAM-specialized
code.

VIII. CONCLUSION

We presented in this paper, a new instruction set for DMU,
a memory controller designed to efficiently transfer data
between main memory and C-SRAM. We implemented this
instruction set to automatically organize and optimize multiple
data streams thanks to a feature called Pattern Stream Encod-
ing (PSE). The experimental methodology we used to evaluate
the proposed approach is based on three different system nodes
ranging from embedded to high-performance computing, and
six applications in the scope of Linear Algebra, Computer
Vision and Image Processing. For a system using proposed
DMU instruction set, experiments show on average a ×8.81
speed-up, a ×6.81 energy reduction and a ×4.59 improvement
of the number of operations per cycle compared to a reference
implementation using the cache hierarchy to transfer data on
embedded systems. Our results also show on average a ×2.99
improvement of Matrix multiplication for all system nodes.
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(a) E31-based node. (b) E76-based node. (c) U74-based node.

Fig. 14: Speed-up and energy reduction relative to baseline implementation @1280× 720 image resolution and 4MB matrices
on every node and application.

Fig. 15: Average number of operations per cycle @1280 ×
720 image resolution and 4MB matrices on every node and
application.

The results obtained on high-performance system nodes are
good insight for future IMC designs and integration. As future
work, we aim to consider a system with asynchronous use
of DMU instruction set to perform data transfers in parallel
to computation in the C-SRAM. In addition we plan to
implement a full-fledge programming model which efficiently
leverages the features of C-SRAM and DMU.
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