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Highlights

Thermal boundary layer modelling for heat flux prediction of bubbles at saturation: a priori analysis based on fully-resolved
simulations

Mathis Grosso , Guillaume Bois , Adrien Toutant

• The numerical method of TrioCFD, a Front-Tracking code
developed at CEA, is exposed for direct resolution of heat
transfer problems in bubbly flows at saturation.

• The gradient correction approaches, developed for chemi-
cal species transport phenomena, are re-employed and in-
vestigated for temperature gradient correction in the bub-
bles’ interface vicinity.

• A priori assessment of a radial sub-resolution method on
steady-state fully resolved simulations results produced
promising results at moderate Reynolds and Prandtl num-
bers.

• A local post-processing shows that the tangential convec-
tive term contribution is significant and could be modelled
to further enhance the local sub-layer temperature predic-
tion.
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Abstract

This study presents and investigates uni-directional thermal sub-layer enhancement techniques within the context of an interface
tracking method for simulating bubbly flows at saturation. Current discretisation methods on structured and fixed Cartesian grids
tend to spread the bubbles’ interface region, creating a trade-off between the freely moving nature of the bubble to the detriment of
accurately capturing the discontinuous aspect of the interface and variations of properties and fluxes crossing it. Although robust
techniques have been described in the literature to ensure energy conservation, less research has been undertaken to develop a
methodology to retrieve the non-linear behaviour of quantities in the interface vicinity at a reasonable computational cost. In this
study, the discretised bubble surface is used as a basis for adressing several quasi-static radial sub-problems that are bounded by an
interfacial constant saturation temperature and a CFD temperature field value. A first approach, based on an analytical solution fitted
at each time step using underlying Eulerian field values, has been developed to incorporate near-interface physics. This includes the
tangential effect, incoming fluid velocity, and local mean curvature (first order surface approximation). A semi-analytical approach
needs to meet certain assumptions to be valid. This is due to its derivation from a simplified plane boundary-layer development or
from a spherical diffusion problem which limits its applicability range. Therefore, a second approach based on a uni-directional
sub-resolution fed carefully by interpolated velocity and tangential source terms demonstrates promising results as it aligns with the
principal variations of the solution. Both methodologies have been applied onto DNS data of a steady rising bubble configuration
at low and moderate Reynolds {3.6; 62.5} and Prandtl {1; 2.5; 5} numbers with a constant interfacial temperature after an extensive
analysis of the advection-diffusion terms hierarchy. The key aspects to maximise the effectiveness of the sub-resolution method
have been clearly identified and discussed. The Sub-resolution shows better applicability to our case study on moderately large
thermal layers. The newly predicted interfacial temperature gradient and temperature profile could be re-employed for Eulerian
fluxes correction.
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Nomenclature

aΓ Interfacial area

Ar Archimedes number

CFL Courant number U∆t∆x

Fo Fourier number α∆t/∆x2

Ja Jakob number

Mo Morton number

Nu Nusselt number

Oh Ohnesorge number

Pe Peclet number

Pr Prandtl number

Re Reynolds number

We Weber number

α Thermal diffusivity

χk Phase indicator function: phase k

∆t Time step

δΓ Dirac function at the bubble interface

∆d Length of a cell’s diagonal

∆d∗ One length and a half of a cell’s diagonal

∆x,y,z Spatial resolutions

Γ, ·Γ, ·Γ Interface related parameter

κ Mean curvature

λ Thermal conductivity

µ Dynamic viscosity

ν Kinematic viscosity

φ Azimuthal coordinates: φ ∈ [0, 360] °

ρ Density

σ Surface tension

Θ Dimensionless temperature

θ Elevation coordinates: θ ∈ [0, 180] °

·(c) Continuous variable

·(d) Discretised variable

·k Parameter related to phase k

ei Dual basis vector

ei Natural basis vector

ẽi Normalised basis vector

·|l Variable · evaluated at location l

[[·]] Jump of property

〈·〉 Average value

Db Bubble diameter

Rb Bubble radius

g Gravity norm

Ik Discrete indicator function: phase k

Lvap Latent heat of vaporisation

ṁ Mass flow rate per unit area

nk Normal unit vector pointing outward phase k

p Pressure

T θ
δ Probe’s tip temperature for non-dimensionalisation

T θ
∞ Local temperature for non-dimensionalisation

T∞ Global temperature for non-dimensionalisation

T Temperature

t Time

u Velocity vector field

u Velocity component in the x-direction

v Velocity component in the y-direction

w Velocity component in the z-direction

ur Velocity component in the radial direction

uθ Velocity component in the tangential direction

uφ Velocity component in the azimuthal direction
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1 Introduction

Direct Numerical Simulations (DNS) of two-phase flows have
been widely developed and enhanced since the last decade to
simulate growing complexity problems. It starts from boiling
[1, 2], evaporation of droplets [3–6], free surface flow [7] to
simulations involving species reactions [8].

One of the key issues when simulating two-phase flows with
sharp interfaces is to capture properly the discontinuity of prop-
erties (density and viscosity jumps

[[
ρ
]]

Γ and
[[
µ
]]

Γ). Capturing
these strong interfacial property variations is partially related
to momentum and energy conservation but it also determines
how accurately the strong variations of physical quantities like
temperature will be captured near the interface.

The Front-Tracking method [9, 10], used extensively in this
article, provides an accurate representation of the interface
topology. The interface is represented by discrete Lagrangian
markers from which the surface tension force ∝ σκ can be com-
puted accurately. However, this approach needs particular at-
tention to remain conservative (compared to Volume Of Fluid
approaches [2, 11, 12]) as the marker’s advection at each time
step could lead to an accumulation of the marker’s position er-
ror [13].

Research groups have been focusing on conservative aspects
of numerical methods in interfacial cells. However, it does not
ensure that the variation of quantities is well captured near the
interface. One of the key aspects of the numerical simulations
is the interfacial conditions which can have a large influence on
the results. In two-phase flow simulations, jump or transmis-
sion conditions are essential. At the interfaces, they are often
implicitly taken into account by considering averaged proper-
ties, which are obtained through arithmetic or harmonic averag-
ing of the two fluids’ properties. It causes a lower convergence
rate compared to boundary-fitted methods (such as Arbitrary
Lagrangian-Eulerian methods [14–16]).

Moreover, if global conservation is aimed, diffusion opera-
tors are still defined in a Finite-Difference (FD) manner on a
stencil straddling the interface. Patankar [17], Tryggvason et
al. [18] or Toutant [10] have already underlined the necessity of
using a direction-dependant viscosity across the interface (both
arithmetic and harmonic mean viscosity weighted by the void
fraction). At viscosity ratios µv/µl close to unity, either viscosity
calculation will be valid and lead to decent results. The same
issue arises in the heat flux prediction and the calculation of the
thermal conductivity λ.

One can notice that the viscosity ratio of water liquid-vapour
at saturation is relatively close to unity so the convergence of
the velocity field can be obtained without much effort for var-
ious types of realistic flows using the so-called one-fluid ap-
proach. However, when solving for the energy i.e. the temper-
ature, it becomes much more difficult to perform an accurate
simulation at a low cost. Considering phase change, it can be
noticed that the temperature at the interface will remain con-
stant as the process takes place at saturation temperature (con-
sidered constant in this work). As a consequence, it is nec-
essary to impose a constant Dirichlet boundary condition (one
for each phase) at the exact position of the interface. As pre-

viously introduced methods are spreading the interface over a
cell, it remains extremely difficult to impose such interfacial
conditions accurately (Sec. 2.1.3 will discuss the numerical ap-
proaches deeper). A so-called Ghost Fluid Method (GFM) is
then used [19].

Various papers have implemented such methods. However,
their simulations are performed on test cases or on single bub-
bles to answer problematic often linked to isolated nucleation:
• Stefan flow - 1D [2].
• Static bubble expansion (Scriven) - 2D axisymmetric and

3D [1, 2].
• Single rising bubble evaporating in an initially quiescent

fluid [20].
• Single nucleating bubble - 2D axisymmetric [21].

These cases are very demanding and highly refined meshes are
then required. 2D simulations of such complex phenomena
have shown very promising results but going one dimension
higher will not likely be accessible without any sub-grid scale
modelling strategy.

In addition to this particular treatment of the temperature
field, it is necessary to understand that in the presence of
phase change, the dynamics and the temperature evolutions are
coupled. An inaccurate prediction of the temperature varia-
tions close to the interface will inevitably lead to an inaccu-
rate prediction of the interface velocity due to phase change
(δuΓ ∝ [[λ∇T · nΓ]]Γ). Integral measures of error such as the
bubble growth rate are then converging at a very low rate and
extremely refined meshes are needed.

Various strategies have emerged in the literature to better cap-
ture the strong temperature variations in a given interface vicin-
ity and at high Prandtl numbers (i.e. when the thermal diffusiv-
ity is lower than the momentum diffusivity). Strong tempera-
ture variations are not only observed in bubbly flows. They are
present in single-phase flows near heated walls. In fact, some
research groups [28] have been using a finer secondary mesh
to resolve the temperature in single-phase flows. If the velocity
is sufficiently converged (i.e. for a Prandtl number Pr > 1 in
the presence of a non-slip wall), it can be interpolated onto the
finer mesh to transport the temperature. Both the temperature
strong variations appearing near walls and temperature fluctua-
tions due to turbulence can thus be captured at a moderate cost.

Some noticeable approaches applied to the dynamic of par-
ticles (Particle-Resolved DNS) such as in the work of Vreman
[22] are also interesting. In his work, Vreman uses a highly
refined particle-attached mesh lying on a less refined Eulerian
grid (see Fig. 1.a). A spherical coordinate system has been
used to take advantage of the rigid particle aspect. He is finally
able to capture accurately the velocity boundary layer which
is demanding regarding the no-slip boundary condition. This
method could be straightforwardly applied to predict the tem-
perature evolution for a fixed particle at a constant temperature.
For a weakly deformable bubble, the equation should be re-
formulated in curvilinear coordinates attached to the interface.
Derivation of such equations may be cumbersome and implies
the use of scale factors (metrics). Their application remains
limited to small deformations.

Adaptive Mesh Refinement (AMR) techniques tend to be
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(a) (b) (c)

(e)

VoF 
simulation

(d)
Figure 1: (a) Particle-attached mesh in polar coordinates (2D) from [22], (b) Adaptive Mesh Refinement from [23, 24],

(c) VoF to single-phase simulation framework developed by Weiner [25], (d) Analytical profile fitted on the first mesh average concentration value: quasi-static
approach of [26] (figure re-adapted from [26]), (e) Transient boundary layer approach developed by Aboulhasanzadeh et al. [27]

popular in the field of bubble dynamics and two-phase flows.
Some researchers have taken advantage of Cartesian discretisa-
tion to implement AMR. It benefits from the multilevel octree
representation which can be optimised to achieve better perfor-
mance than classical uniformly refined meshes. State-of-the-
art open source code like Basilisk [23] has been extensively
used to perform phase change of droplets and bubbles [24] (see
Fig. 1.b). However, as there is a dependency between the spa-
tial scales and the time scale, refining the mesh locally implies
penalising the overall time step. There is then always a com-
promise between accuracy and time calculation so there is still
a need for sub-grid (in the manner of Large Eddy Simulations)
and boundary layer modelling to capture most information of
the flow fields.

Another novel approach developed by Weiner during his the-
sis, as detailed in [25], is interesting for single-rising objects
and species transport. Briefly, the undertaken framework con-
sists of realising a simulation of bubble dynamics in an axisym-
metric configuration to capture its rising velocity, the local in-
terfacial velocity and its shape. The latter parameters are re-
introduced in a single-phase (ALE) simulation (see Fig. 1.c).
The rising velocity plays the role of an inlet velocity while the
interfacial velocity is applied as a Boundary Condition. The

shape is imposed over time and the mesh is adapted accord-
ing to it through common ALE techniques. Several Artificial
Neural Networks are used as surrogate models to represent the
interface-related parameters over time. This approach allows
a very high level of refinement at a low cost. This method is
only applicable if the velocity field is already converged i.e.
if the vapour-to-liquid viscosity ratio is kept low at moderate
Reynolds numbers.

Finally, a new class of methods has aroused a growing inter-
est in the scientific community of chemical transport phenom-
ena (passive and reactive scalars). Liquid-gas systems involved
in industrial applications are characterised by noticeably high
mass diffusivity (high Schmidt numbers) and high levels of tur-
bulence (high Reynolds numbers). The concentration boundary
layer thickness as well as the degree of variation of the concen-
tration near a reactive interface are directly related to the prod-
uct of these two numbers (Peclet number Peb). The reaction
rate is related to the normal concentration jump at the interface
which is very similar to phase change physics. Concentration
and temperature can be treated as two passive scalars as long as
the phase change impact on velocity, as well as chemical reac-
tions, are neglected.

To solve accurately these boundary layers using interface
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tracking and capturing methods, dynamical regimes are some-
times chosen to be low. Some studies have been done at creep-
ing flow (Re << 1) to access high Peclet numbers (up to
2 × 104) [26, 29].

Understanding that spatial scales taking place at the interface
are much smaller and distinct from the scales involved in the
mean flow, a local correction in the interface vicinity has been
explored by many authors and can be classified into two cate-
gories:

• A quasi-static approach based on instantaneous fitting of
the temperature field [26, 29–31].

• A transient method to track the energy contained in the
temperature boundary layer over time [27, 32, 33].

These methods have been exposed and alleviate the problem of
spatial refinement.

Both methods rely on an analytical solution or a form of so-
lution to describe the scalar boundary layer. The solutions may
have a physical justification or convenient properties to describe
the strong scalar variation at the interface. One of the key as-
pects of these methods is that they rely on the fitting of a free
parameter δwhich is closely related to the thickness of the layer.

The quasi-static approach, also referred to as SGS model by
its original authors [30], consists of fitting the free parameter
at each time step to accommodate either a local scalar value
or integral quantities (the amount of the corresponding exten-
sive quantity inside the interfacial cell on the respective phase).
Moreover, fluxes need to be corrected on all faces in a Finite
Volume approach in order to obtain optimal results [26] (see
Fig. 1.d). The application of the SGS model, featuring analyt-
ical profile functions, has also been employed to study mass
transfer involving local volume changes in [34].

On the contrary, the unsteady approach integrates the profile
over time which is appealing in the context of an unsteady sim-
ulation (i.e. governed by an unsteady PDE). The latter tracking
of the mass (or energy) contained in the boundary layer know-
ing the shape of the concentration (or temperature) profile can
lead to the deduction of the free parameter.

For the first class of methods, once the profile has been fit-
ted, it is possible to enhance the scalar gradient prediction and
eventually correct the fluxes in the neighbouring cells. On the
contrary, the unsteady approach, described in Fig. 1.e, is unfor-
tunately not a two-way coupling as the boundary layer is in-
sensible to the incoming fluid. Further details concerning both
methods are given in Sec. 3. Unifying the two approaches or at
least obtaining a two-way coupling for the temperature is our
current research’s main objective.

Using such approaches in the presence of phase change is
reasonable at moderate Jakob number Ja . 1 (defined in
Eq. (1)). This dimensionless number characterises the phase
change magnitude and the compression (evaporation) or dilata-
tion (condensation) of the boundary layer as the interface is
moving relatively to both fluids to accommodate the density
difference.

Ja =
ρlCpl∆T∞

ρv

[
Lvap +

(
Cpl −Cpv

)
∆T∞

] (1)

The current paper explores thermal boundary layer modelling
that will be re-employed in phase change simulations or bubbly
flows at saturation. However, to separate physical phenomena
and to be able to compare solutions on several meshes (simi-
lar bubble mesh topology), the interfacial mass flow rate is ne-
glected. In other words, the latent heat of vaporisation is as-
sumed to be infinite which leads to the asymptotic Jakob num-
ber Ja → 0 (more details about this hypothesis are given in
Sec. 2.1.1 and Sec. 2.1.2). The numerical treatment of the tem-
perature field remains the same. On the other hand, the normal
temperature gradient ∇T · nΓ from which the mass flow rate ṁv

is derived is no longer coupled to the velocity field.
The current paper first exposes the numerical method imple-

mented in the software TrioCFD (see Sec. 2). Then, reference
results on a single rising bubble in a sub-cooled liquid are pre-
sented. Global and local convergences on the Nusselt number
are discussed depending on the grid resolution in Sec. 2.5. Two
strategies consisting of enhancing the temperature gradient pre-
diction are discussed and compared (see Sec. 3). New adapta-
tions to thermal sub-resolutions are proposed. Finally, these ap-
proaches are applied to coarse-grained DNS results without the
thermal fluxes’ feedback onto the macroscopic solution on our
steady-state simulations to assess their capabilities and compare
them (see Sec. 4). The essential components for optimising the
efficiency of the sub-resolution method are meticulously iden-
tified and thoroughly examined in this study. Sec. 5 draws the
main conclusions of this work.

2 Direct Numerical Simulations

2.1 Numerical method

2.1.1 Mathematical formulation
The continuous formulation used to describe the local and in-
stantaneous conservation of quantities i.e. mass, momentum,
and temperature is the so-called one-fluid formulation. A single
set of equations is obtained for the entire liquid-vapour domain.
It is obtained using an indicator function χk ∈ {0; 1} to locate
each phase. The system of equations involves one-fluid vari-
ables which are defined at every point of space. Any one-fluid
parameter φ is expressed as follows:

φ =
∑

k∈(v, l)

χkφk (2)

The overall system of equations is written in its conserva-
tive form in Eq. (3). Physical properties are considered to
be constant per phase, and surface tension variations, also re-
ferred to as the Marangoni effect, are neglected, i.e., σ is
constant. The assumptions are realistic considering the in-
volvement of a phase change process at moderate sub-cooling
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(∆T = 〈Tv〉 − 〈Tl〉 ≤ 5K in liquid at saturation and at 155 bar
leads to Jakob number value Ja < 1).

∇ · u = − ṁv

(
1
ρv
−

1
ρl

)
δΓ (3a)

∂t(ρu) + ∇ · (ρu ⊗ u)

= ∇ · (Du − pI) + ρg + κσnvδΓ (3b)

∂t

(
ρCpT

)
+ ∇ ·

(
ρCpuT

)
= ∇ · (λ∇T ) + ṁvδΓL

vap (3c)
∂tχv + uΓ · ∇χv = 0 (3d)
TΓ = T |Γ = T sat = const (3e)

uΓ = ul −
ṁv

ρl
nv (3f)

ṁv =ρv(uv − uΓ) · nΓ (3g)

To avoid cumbersome notations, T represents the difference in
temperature to the saturation one. Depending on the sign of T ,
we are dealing with a sub-cooled or super-heated fluid (i.e. the
bulk fluid is below or above the saturation temperature).
Du is the one-fluid diffusion tensor, constructed to eliminate

the velocity jump at the interface (∝ ṁv). In fact, in the presence
of phase change, the velocity field u is embedding the disconti-
nuity. This discontinuity results in a Dirac delta function δΓ in
the expression of the one-fluid velocity gradient (see Eq. (4))
i.e. the equations are valid in the sense of the distributions.

∇u = χv∇uv + χl∇ul − (uv − ul) ⊗ nvδΓ

= χv∇uv + χl∇ul − ṁv

(
1
ρv
−

1
ρl

)
nv ⊗ nvδΓ

(4)

The viscous term of the N-S equations is obtained by a diver-
gence operator (∇ · Du ≡ ∇Du .. I). As a consequence,
the discontinuity should be removed from the one-fluid diffu-
sion tensor before applying the divergence operator as shown
in Eq. (5) as the gradient of a Dirac delta function is not math-
ematically defined.

Du = µ

[
∇u + T∇u + 2ṁv

(
1
ρv
−

1
ρl

)
nv ⊗ nvδΓ

]
(5)

In practice, the term used to annihilate the discontinuity due
to phase change (last term proportional to ṁv in Eq. (5)) is not
added to the diffusion operator Du; so the actual discretised
one-fluid diffusion tensor Du embeds a discontinuity. Here, in
the limit of Ja → 0, the effect of the phase change rate is ne-
glected so this particular treatment has no impact on our results.

The conservation of entropy s, as well as the inequality con-
dition on the entropy source ∆s ≥ 0, are translated into an inter-
facial temperature TΓ equal to the saturation temperature T sat at
the interface. The additional hypothesis to derive this condition
is to consider reversible interfacial transfers.

2.1.2 Velocity discretisation and Front-Tracking algorithm
The momentum and temperature equations are not numerically
treated in the same manner. For the momentum equation, the

non-conservative form is employed and discretised over a stag-
gered grid [35] (see Fig. 2). A concession is made on the dis-

Continuity - Scalar X velocity Momentum Y velocity Momentum

Figure 2: Marker and cells or Staggered grid discretisation: the interface is
represented by Lagrangian markers (Red crosses) which are advected over

time.

cretisation of the momentum equation to facilitate the numer-
ical treatment of the discontinuity. There is no ideal solution
yet and some other authors tend to separate the fluid veloc-
ity fields by building divergence-free velocity extensions [1–3].
They thus avoid the implicit treatment of the discontinuity in
the Poisson equation but they have to consider it accurately.

The mixed cells are a convenient approach to make the nu-
merical implementation much easier and give realistic results
at reasonable jumps of properties. However, the meshes need
to be highly refined in the interfacial regions which cause the
computational cost to shoot up (hundred of cells per diameter).

In this work, an infinite latent heat, denoted as Lvap, is con-
sidered. This hypothesis is realistic at low Jakob numbers (≤ 1),
as the velocity scales in the bubbles’ wakes are much larger than
that of shrinking due to condensation. This will also allow us to
achieve a steady heat transfer configuration. For deeper exam-
ples of numerical methods involving treatment of the velocity
discontinuity, the reader may be interested in [1, 2, 36–39].

The major steps of the momentum solver are listed below:
• An intermediate velocity u(∗) is predicted explicitly with-

out the pressure gradient term. This intermediate velocity
does not respect mass conservation.

u(∗) = u(n) + ∆t
[

1
ρ(n)∇ · D

(n)
u − ∇ ·

(
u(n)
⊗ u(n)

)
− g +

σ

ρ(n) κ
(n)n(n)

v ∇χv
(n)

] (6)

• A pressure correction step is undertaken to project u∗ onto
the space of zero divergence:

∇ ·

(
1
ρ(n)∇p(n+1)

)
= ∇ · u(∗) (7)

Conservation of the momentum is not ensured as the den-
sity at time t(n) is used in the Poisson equation and the
surface tension force is not conservative.
• The interface is advected by the velocity field u(n+1), inter-

polated at each marker’s location.
• To ensure mass conservation, a discrete Eulerian indica-

tor function is advected algebraically. Markers are then
shifted in an iterative process until the overall vapour vol-
ume is conserved [13].
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• To conserve the topology of the interface and a uni-
formly distributed surface mesh, several routines are used.
Smoothing, point addition and removal are performed to
satisfy an empirical ideal length criterion and ensure a
smooth curvature locally and a correct aspect ratio. The
number of markers is limited voluntarily to avoid the es-
tablishment of a zig-zag surface [10, 13].

To reduce parasitic currents as much as possible, the curva-
ture is computed using a differential approach. Computing the
curvature is a key aspect of the numerical stability of the in-
terface. Early work of Mathieu [9] proved the existence of a
discrete equilibrium by considering that the potential energy of
deformation is balancing with the surface energy i.e. coming
from the Laplace pressure jump. Volume and surface differen-
tials are calculated using normed vectors associated with each
facet’s markers and this method has proved to be effective for
various problems.

The diffusion operator is 2nd-order (centred) whereas a
QUICK advection scheme is employed. The temporal scheme
is an Euler explicit. The time step is kept low to ensure sta-
bility. As a consequence, it remains smaller than the Courant
(CFL) and Fourier (Fo) time steps. Many stability criteria are
available to avoid non-physical high-frequency noise on the in-
terfacial mesh [40]. For the finest mesh at 90 cells per bub-
ble diameter (Reb = 62.5), the surface-tension related time-step
[41] writes:

∆tσ =

√
ρv + ρl

2π

∆3
x,y,z

σ
≈ 1 × 10−4s (8)

Such criterion will be later investigated in the presence of
phase-change which can intensify the instabilities due to the
velocity jump.

2.1.3 A special treatment for temperature: the ghost fluid ap-
proach

Contrary to the treatment of velocity discretisation, there is a
clearer consensus regarding the treatment of temperature in in-
terface tracking methods. Because bubbles commonly have a
lower viscosity than the liquid, the velocity converges faster
than the temperature due to the low shear at the bubbles’ inter-
face. The viscosity ratio plays an important role in the velocity
variations in the vicinity of the interface. Unlike wall-bounded
flows (where there is no slip velocity), the Peclet number Pe is
insufficient to connect the velocity and thermal boundary layer
thicknesses. A Peclet number of unity does not yield the same
numerical error for both velocity and temperature, depending
on the viscosity jump and on the thermal interfacial condition
(for instance saturation).

Authors are usually solving for two separated and extended
fields in the presence of phase change [1–3]. Numerical meth-
ods benefit from the constant saturation temperature condition
which allows linking both temperature fields. As the physi-
cal process of phase change in bubbles after wall departure is
almost at a constant temperature, the vapour temperature varia-
tions are often negligible. In the rest of this work, only the liq-
uid temperature Tl is resolved. Numerical configurations in line

with this hypothesis are later discussed in Sec. 2.2 and Sec. 4
and are presented in Tab. 1 and Tab. 2.

Some authors such as Bothe et al. or Cai et al. [26, 31]
use geometric VoF advection which enables the resolution of
two-phase variables within mixed cells (cut-cells approach).
The adaptation to Front-Tracking, however, presents specific
challenges concerning the advection step, particularly in cases
where an interface portion is either entering or exiting a cell
(fluxes reconstruction).

Solving the temperature fields separately raises new require-
ments in terms of numerical methods as the employed meshes
are not fitted to the interface. The common single-phase con-
vection and diffusion operators are very convenient to use. They
involve large stencils which thus straddle the interface even if
one wants to use them for one phase only. Consequently, a
spreading procedure is necessary to populate, on a finite thick-
ness, the mixed cells and the neighbouring phase domain re-
ferred to as the ”ghost” domain (superscript ·g). Continuous ex-
tended liquid velocity uext

l and temperature T ext
l are expressed

as follows:

uext
l =ulχl + ug

l χv (9a)
T ext

l =Tlχl + T g
l χv (9b)

The temperature equation written in terms of extended fields
writes:

∂T ext
l

∂t
+ ∇ ·

(
uext

l T ext
l

)
= αl∆T ext

l
(10)

The interfacial saturation condition is implicitly imposed on
the liquid temperature at the interface during a spreading pro-
cedure. This procedure is a key aspect of the method. Several
steps are necessary to extend the temperature. They can be sum-
marised as follows:
• Pure liquid cells and mixed cells neighbours are localised.
• To avoid an excessive amount of computational time, the

normal vector as well as the distance function, associated
with a pure cell, are computed approximately in a certain
interface vicinity. The normal vectors nΓ are first com-
puted in the mixed cells. Then, nΓ values are spread out
iteratively from near to far by a neighbourhood averaging
procedure.
• The distance to the interface is not calculated in the form

of a minimisation problem di = min
xΓ,nΓ

(xc − xΓ) ·nΓ. Instead,

the normal distance is calculated iteratively starting from
mixed cells and sweeping the space inward and outward
of the bubble. The Cartesian grid spacing is used to de-
termine the normal distance once projected in the normal
direction.
• A continuous field of mean curvature can be established

using the normal vector field as in Level-Set approaches
(LS):

κ = −∇ · nΓ = −Tr(∇n) = κ1 + κ2 (11)

• We define a local radial coordinate system with a varying
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parameter ř such that r = ř + R and ∂n
ř ≡ ∂n

r , ∀n ∈ N.
ř = 0 locates the interface position while R is the equiva-
lent bubble radius related to the curvature by κ = 2/R. The
normal temperature gradient at the interface is computed
in these first cells using the saturation temperature and the
pure liquid cell temperature located at distance ř = di. In-
stead of considering the first-order evaluation of this nu-
merical derivative i.e. at the interface, we are considering
its second-order evaluation at ř = di/2 (see Fig. 3). Then,

Γ

O r

di
2

di
2

∂T

∂r

∣∣∣∣
di
2

Ti

R

ř

Ǒ

Figure 3: Normal temperature gradient calculation in the vicinity of the mixed
cell. The coordinate system is such that r = R + ř and ∂n

ř ≡ ∂
n
r , ∀n ∈ N. The

cell size is exaggerated to emphasize the procedure.

a sub-grid pure diffusion model ∆sphT = 0 written in the
local spherical coordinate system (see Eq. (12)) is used
to correct the temperature gradient evaluated at the inter-
face. The Dirichlet boundary condition is thus implicitly
imposed at this particular step.

∆sphT =
2

R + ř
∂T
∂r

+
∂2T
∂r2 ≈ κ

∂T
∂r

+
∂2T
∂r2 = 0 (12)

The analytical solution for the temperature gradient is
straightforwardly found and approximated for numerical
evaluation by Eq. (13).

∂T
∂r

(ř) =
∂T
∂r

∣∣∣∣∣ di
2

e−κ
(
ř− di

2

)
≈

Ti − Tsat

di
e−κ

(
ř− di

2

)
(13a)

∂T
∂r

(ř) =
Ti − Tsat

di
×

[
1 − κ

(
ř −

di

2

)]
+ o (ř) (13b)

∂T
∂r

∣∣∣∣∣
Γ

=
∂T
∂r

∣∣∣∣∣
r=R

=
∂T
∂r

∣∣∣∣∣
ř=0

(13c)

• Pure liquid cells can then be populated with the corrected
interfacial gradient ∂T

∂r

∣∣∣
Γ
. A spreading procedure similar to

the curvature is undertaken to store the interfacial gradient
in a finite thickness including the interface. This procedure
is illustrated in Fig. 4.
• Once a continuous field of the gradient has been con-

structed, the temperature in the ghost field can be com-

1st step 2nd step

Figure 4: Spreading procedure to populate the interface neighbouring cells
with the normal temperature gradient ∂T

∂r

∣∣∣
Γ
. ∂T

∂r

∣∣∣
Γ

is initially evaluated locally
for pure liquid cells (Green). Then the neighbouring mixed cells (Red) are
populated with an average value of the normal temperature gradient. The

spreading procedure keeps going in the ghost domain.

puted according to Eq. (14).

T (ř) =Tsat +
1
κ

∂T
∂r

∣∣∣∣∣
Γ

(
1 − e−κř

)
(14a)

T (ř) =Tsat + ř
∂T
∂r

∣∣∣∣∣
Γ

×

[
1 −

κř
2

+
κ2ř2

6
+ o(ř2)

]
(14b)

• A discrete divergence-free velocity field ug(d)

l is established
in presence of phase change. At Ja → 0, the one-fluid
velocity is continuous across the interface (not its deriva-
tives) and the pure vapour (subscript ·v) or mixed cells
(subscript ·m) velocity fields are used as an extension:

uext(d)

l = u(d)
l ∪ ug(d)

l = u(d)
l ∪ u(d)

v ∪ u(d)
m (15)

High-order convection schemes (Quick) are favoured to
ensure the capture of strong variations in the interface
vicinity.

Once the temperature has been properly extended, the convec-
tion and diffusion can be evaluated at time (n) and the tempera-
ture is then advanced to the next time step straightforwardly:

T (n+1)
l = T ext

l
(n)

+∆t
[
αl∆T ext

l
(n)

−∇ ·
(
uext

l
(n)T ext

l
(n))] (16)

One can note that the temperature field T (n+1)
l is only valid

in pure liquid cells. In mixed cells, the temperature field is ex-
tended at each time step. Such systematic correction can be
referred to as a quasi-static approach because the local temper-
ature field near the interface is then the solution to the steady
diffusion equation ∆sphT = 0. Seeing that the sub-grid model is
pure diffusion, the flux balance in the ghost cells is, in a sense,
not predicted.

When the interface is leaving a cell, the temperature incre-
ment is not necessarily predicted well. There may still be a
need to correct both the convective and diffusive fluxes as well
as the mixed temperature values.
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In other words, the cell is almost fully liquid before becom-
ing pure.

Many authors rely on other methods such as the Aslam nth

order extrapolation [42]. It necessitates solving for nth sup-
plementary advection equations over a pseudo-time τ, starting
from the highest-order normal derivative. The saturation tem-
perature should then be imposed through an implicit diffusion
scheme [1] which takes into account the interface position. It
involves particular schemes to keep convenient matrix proper-
ties [37].

2.2 Numerical configurations
To perform temperature boundary layer modelling, it is neces-
sary to generate DNS reference results that are fully converged:
both global (integral) and local high-order quantities (gradients,
second-order tensors) must be converged.

A bubble kept at a constant temperature and rising in a finite
domain has been simulated until steady-state. Outflow bound-
ary conditions for velocity and temperature are necessary to ob-
tain a steady solution. They assume the normal diffusive fluxes
are zero at the domain boundaries (i.e. the momentum and the
heat flux are only transported outside the domain).

Moderate Reynolds and Prandtl numbers are aimed for our
study. Instead of working directly with the Reynolds number,
the modified Archimedes number Ar∗b also referred to as the
Galilei number is used. In dispersed two-phase flows, the char-
acteristic velocity is often chosen to be the terminal velocity of
the dispersed phase. The rising velocity is not imposed by a
boundary condition but is determined a posteriori . To observe
the convergence of the velocity field and interfacial shear de-
pending on the increasing spatial refinement, the Archimedes
number defined in Eq. (17) is used.

Arb = g
ρl − ρv

ρl

D3
b

ν2
l

= Ar∗b
2 (17)

This dimensionless number combines the viscous and buoyancy
contributions. Ar∗b reveals to be the same order of magnitude as
the bubble Reynolds number in practice.

A set of two Archimedes numbers is used: Ar∗ ∈ {10; 50}.
Several liquid Prandtl numbers Prl ∈ {1; 2.5; 5} are simulated
to observe the effect of the boundary layer thickness on the in-
terfacial quantities and the ability of the method to correct the
local temperature gradient profiles. For the sake of compari-
son, it is worth noting that sub-grid approaches have been rig-
orously evaluated across a Prandtl number spectrum spanning
from 1 × 101 to 1 × 107 in various works, as evidenced by stud-
ies conducted by Bothe et al. and Weiner et al. [26, 29]. In this
work, larger boundary layers are considered. The Eötvos num-
ber, which determines the bubble aspect ratio (deformation), is
chosen to be low (Eo = 0.1) to keep the bubble spherical. We
expect that the stall behind the bubble will appear faster for an
oblate spheroid (later for a prolate spheroid) as the fluid stream-
lines will be increasingly perturbed by the rising object.

The other dimensionless numbers that influence the transfer
are chosen such that the vapour-liquid combination corresponds
to water at saturation at 155 bar [43]. The physical parameters

are summarised in Tab. 1. The ratio of density does not directly
influence the results as shown by the work of Feng et al. [44, 45]
on translating viscous spheres. In realistic scenarios, the ratio of
density for a fixed bubble size is conditioning the rising velocity
and the Reynolds number.

Table 1: Dimensionless parameters for the set of simulations Ar∗ ∈ {10; 50},
Prl ∈ {1; 2.5; 5}

Dimensionless

Parameters
Notation Expression Values - Range

Archimedes Ar∗b =
√

Arb

(
gDb

ρl − ρv

ρl

)1/2 Db

νl
=

Upred
termDb

νl
{10; 50}

Prandtl Prl
αl

νl
=

λl

µlCpl
{1; 2.5; 5}

Jakob Jab
ρlCpl∆T
ρvL

vap → 0

Eötvos Eob = f (We, Fr, ρv)
∆ρgD2

b

σ
=

We
Fr∗
−
ρvgD2

b

σ
0.1C

on
tr

ol
le

d

Morton Mob
We3

b

Fr∗bRe4
b

=
gµ4

l (ρl − ρv)

ρ2
l σ

3

{
1.0 × 10−7; 1.6 × 10−10

}
Reynolds Reb

ρlUtermDb

µl
=

UtermDb

νl
{3.6; 62.5}

Weber Web
ρlU2

termDb

σ
{0.013; 0.16}

M
ea

su
re

d

Froude Fr∗b = Fr2
b

U2
term

gDb
{0.3; 1.14}

Table 2: Geometrical and physical parameters for the set of simulations
Ar∗ ∈ {10; 50}, Prl ∈ {1; 2.5; 5} 0. Liquid-vapour at saturation and at 155

bars.

Parameters Notation Unit Values - Range

Bubble diameter Db mm 2

Cells per bubble
diameter

Db

∆x,y,z
-

[12, 16, 24, 33, 48] ; Ar∗ = 10, Prl = 1
[16, 24, 33, 48, 67, 96] ; Ar∗ = 10, Prl = 2.5
[24, 33, 48, 67, 96] ; Ar∗ = 10, Prl = 5
[16, 22, 32, 45, 64] ; Ar∗ = 50, Prl = 1
[22, 32, 45, 64, 90] ; Ar∗ = 50, Prl = 2.5
[22, 32, 45, 64, 90] ; Ar∗ = 50, Prl = 5

G
eo

m
et

ri
ca

l

Domain size Ωx,y,z Db
[3, 3, 4] ; Ar∗ = 10
[4, 4, 6] ; Ar∗ = 50

Viscosity µl Pa s 6.82 × 10−5

Density ρl kg m−3 594.4
Conductivity λl W m−1 K−1 0.69Ω

l

Specific
heat capacity

Cpl J kg−1 K−1 10 110

Viscosity µv Pa s 2.3 × 10−5

Density ρv kg m−3 101.9
Conductivity λv W m−1 K−1 0.14Ω

v

Specific
heat capacity

Cpv J kg−1 K−1 14 001

Latent heat Lvap J kg−1 ∞

Γ

Surface tension σ N m−1 3.91 × 10−6

Ω Gravity g m s−2
{
2 × 10−4; 4.97 × 10−3

}

2.3 Qualitative outcomes
The simulations have been performed in 3D although the nu-
merical configurations are 2D-axisymmetric. It is justified by
the fact that complex 3D simulations are aimed at and will ben-
efit from our boundary layer approach. Cartesian grid principal
directions, interface portions’ positions and angles cause a dis-
persion of the results as the numerical schemes’ precision is
directly impacted.

Two snapshots of the dimensionless temperature fields (de-
noted Θ, see Eq. (18b)) are plotted in Fig. 5.a and Fig. 5.b.
For a single bubble rising in an infinite medium, it is possible to
proceed to an overall non-dimensionalisation for the tempera-
ture using the far-field temperature T∞ and a reference temper-
ature T0 (the interface temperature at saturation). In the case of
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sub-cooling, it corresponds to ∆Tsub:

∆Tsub =T sat − T∞ = −min (T ) (18a)

Θ =
T − T∞
T0 − T∞

=
T − T∞

T sat − T∞
∈ [0, 1] (18b)

It can be observed that the boundary layer at Ar∗ = 10
reaches the domain’s boundaries. As a consequence, it is ex-
pected that the boundary conditions slightly influence the tem-
perature field. However, it will not cause any problem to inves-
tigate our methods. The converged results are used to evaluate
the ability of the method to enhance the temperature gradient.
Our approach focuses on local enhancements but we are not
expecting it to correct the compression of the boundary layer
induced by the domain size.

At the highest Archimedes number (Ar∗ = 50), the box has
been chosen to be larger and longer to capture more precisely
the thermal wake.

We can see that the bubble top region necessitates a very high
refinement to capture the boundary layer thickness. According
to the interface position and the mixed cell regions (a strip with
a thickness of plus or minus one mesh’s diagonal), it can be
deduced that the mixed cell region thickness is large compared
to the boundary layer thickness. The interfacial cells which ap-
pear to be a strength in terms of ease of implementation become
a source of errors where quantities are spread.

2.4 General comments

2.4.1 Bubble rising velocity
The simulation aims to keep the bubble steady in the domain
through the use of a variable inlet velocity boundary condi-
tion over time. For each dynamical regime explored, a first
simulation has been done using the coarser mesh and a con-
stant inlet velocity Upred

term predicted roughly using the modified
Archimedes number re-written to mimic a Reynolds number.

Ar∗b =
√

Arb =

√
gDb

ρl − ρv

ρl

Db

νl
=

Upred
termDb

νl
(19)

The bubble has been stabilised in the domain but a minor
component of its vertical velocity can remain because the pa-
rameters chosen to stabilise the bubble have been measured on
the coarser simulations where the velocity boundary layer is not
converged. In other words, if the velocity gradient is not cap-
tured well on both sides of the interface, the shear between both
phases is underestimated. Such local errors, once integrated,
are responsible for a bubble’s relative velocity error.

Authors such as Weiner et al. [25] used a similar technique
while imposing the tangential velocity in a single fluid simula-
tion. It makes it possible to keep the bubble almost stationary
over its transient phase.

In this paper, any post-processing of velocity is performed at
a steady state in the bubble’s reference frame, i.e. by removing
the residual bubble velocity in the simulation frame of refer-
ence.
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Figure 5: Final snapshots of the temperature fields for two cases to observe
qualitatively the boundary layer thicknesses’ dependency in Reb. The red

dashed line represents approximately the interface position whereas the two
red lines (alternating dashes and dots) represent the contraction and dilation of

the interface by a distance of a cell diagonal ±
√

∆2
x + ∆2

y + ∆2
z

(a) Ar∗b = 10,Reb ≈ 3.6, Prl = 1,
Db

∆
= 48,

(b) Ar∗b = 50,Reb ≈ 62.5, Prl = 1,
Db

∆
= 64

2.4.2 Velocity profiles and drag coefficient value

A similar approach can be undertaken on the three compo-
nents of the velocity field. The Cartesian velocity vector field
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u =
(
ux, uy, uz

)
can be projected onto each local facet coordinate

system
(
ẽr, ẽθ, ẽφ

)
. This basis of vectors is associated with the

osculating sphere of radius R.
The drag coefficient value is determined through a basic bal-

ance of forces applied to the rising bubble. Buoyancy (Pressure
forces), gravity and drag forces are balancing at equilibrium and
lead to the simple expression of drag coefficient Cd presented
in Eq. (20). It entirely handles the physical complexity and is
a function of several dimensionless parameters in the case of
viscous bubbles: Cd (Re, µv/µl, ρv/ρl).

Cd =
2∆ρgVb

ρlS
p
b

2U2
term

=
4
3

(
ρl − ρv

ρl

) (
gDb

U2
term

)
(20a)

S p
b =

π

4
D2

b (20b)

Vb =
π

6
D3

b (20c)

S p
b is the cross-sectional surface area also known as the frontal

area and Vb is the bubble volume.
In our case, the bubble terminal velocity is subdivided into

two parts. The liquid inlet velocity U inlet
term corresponds to the

ideal bubble rising velocity as a Galilean transformation has
been performed to work in the frame of reference of the bubble.

Measured values of the Drag coefficient Cd are exposed in
Tab. 3 and compared to the correlation of Feng et al. computed
as Eq.23a in [45]. For the lowest Archimedes number Ar∗ =

10, the finest mesh (Db/∆ = 96) value of drag is well predicted
i.e. within a range of 3% around the correlation value. For the
highest Archimedes number, a constant drag coefficient value
is obtained with an accuracy of 15%. Domain size has surely
an influence on the shear at the interface but the velocity field
is resolved enough to perform our approach.

Table 3: Drag coefficients measured for each dynamic and spatial resolution.
RF stands for refinement.

Archimedes
number (Ar∗)

Spatial
refinements

RF-1 RF-2 RF-3 RF-4 RF-5 Theoretical

Resolutions Db
∆

12 16 24 33 48
10

Drag coefficient 11.06 10.81 10.59 10.49 10.42 10.82
Resolutions Db

∆
16 22 32 45 64

50
Drag coefficient 0.85 0.84 0.84 0.84 0.85 0.74

2.4.3 Temperature error field
A post-processing tool has been developed to estimate the tem-
perature error locally (see Fig. 6). A finer solution is interpo-
lated on the coarse mesh cell centres and displaced to match
the bubbles’ centres. The error in the restricted domain Ωε (see
Eq. (21.a)) is expressed by Eq. (21.b).

Ωε = Ωcoarse ∩Ωfine (21a)

εφ =

∣∣∣∣∣φcoarse − φfine

φcoarse

∣∣∣∣∣ × 100 (%) (21b)

An example of the relative error is shown on two perpendic-
ular planes in Fig. 6a and Fig. 6b for Ar∗ = 50, Prl = 1 and
Db
∆

∣∣∣
coarse = 16, Db

∆

∣∣∣
fine = 64.

−2 0 2

X-axis (m) ×10−3

−3

−2

−1

0

1

2

3

4

Z
-a

xi
s

(m
)

×10−3

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

R
elative

tem
p

erature
error

(%
)

(a)

−2 0 2

Y-axis (m) ×10−3

−3

−2

−1

0

1

2

3

4

Z
-a

xi
s

(m
)

×10−3

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

R
elative

tem
p

erature
error

(%
)

(b)

Figure 6: Temperature error field on two perpendicular planes:
(a) ZX plane, (b) YZ plane. Both planes are approximately centred at y = 0
and x = 0, respectively. The maximum colour bar level is 5%. The error has
been calculated between mesh resolutions of Db/∆ = 16 and Db/∆ = 64 at

Pr = 1 and Ar∗ = 50.

It can be seen in both figures that the relative temperature er-
ror is significantly below 5% (from a local temperature point
of view). However, in the mixed cells, the error is increasing
significantly. The presence of mixed cells does not affect the
interfacial region’s thickness the same way for coarse and fine
mesh solutions. The extended temperature field established us-
ing a pure-diffusion model is impacting a larger region on the
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coarse mesh.
Although the flow should theoretically exhibit axisymmetry,

the Front-Tracking method generates a triangular mesh uncon-
strained by the Cartesian grid, resulting in a numerical setup
that lacks inherent axisymmetry. Furthermore, the number of
nodes in this triangular mesh depends significantly on the reso-
lution of the Cartesian mesh, as detailed in the numerical strat-
egy (see Sec. 2.1.2). The coarse and fine Lagrangian meshes do
not align and lack a common axis of symmetry.

These phenomena contribute to the irregular patterns, espe-
cially pronounced in the wake of the bubble and at the interface.

The temperature field, which is a zeroth order quantity, is
converged globally (under 5%) from the coarsest simulation.
It is later confirmed while observing the radial profiles of the
temperature depending on the spatial resolution (Sec. 4.1.2,
Fig. 16a). The far-field temperature will be used as an input
(to fit an analytical profile in Sec. 4.2 or as a boundary condi-
tion in Sec. 4.3). As a consequence, it reinforces our trust in an
a priori methodology (later exposed in Sec. 3).

Although the normal temperature gradient is not predicted
well at the interface using the coarse grid, the error is not spread
in the domain; it is contained in the interface’s vicinity. In
other words, the temperature error will have a reduced effect
on the assessment of the method. Such local data is rarely post-
processed and available in the literature due to the Lagrangian
aspect of the method. The Python library developed for this
purpose will be re-employed in future work involving multi-
bubble configurations.

2.5 Global and local convergence of the temperature gradient
and the Nusselt number

To evaluate the convergence of the simulations, the steady-state
bubble Nusselt number Nub has been measured by integrating
the normal temperature gradient at the interface Γ. Both the
continuous ·(c) and discretised ·(d) expressions of the Nusselt
number are summarised in Eq. (22).

Nu(c)
b =

hDb

λl
=

DbQvap→liq

λl∆TS Γ

=
Db

∆TS Γ

∫
Γ

∇T g
l · nΓdS

Nu(d)
b =

D(d)
b

∆T
∑Facets

k S k

Facets∑
k

∇T g
l · nk

ΓS k

=
D(d)

b

∆TS (d)
Γ

Facets∑
k

∇T g
l · nk

ΓS k

(22)

The global bubble Nusselt number measured for each simula-
tion is plotted depending on the Prandtl number in Fig. 7a and
Fig. 7b. The reference correlation has been chosen to be the
one of Feng and Michaelides [44]. They performed a numeri-
cal simulation on a single translating bubble. Their innovative
approach consists of solving for the stream and vorticity func-
tions by finite difference. They were able to stretch the coordi-
nate system through a change of variables which gives access
to better accuracy at a lower cost. They managed to obtain a

minimum spatial resolution of 1/1000 of the bubble radius in the
layer whereas the domain size is 75 bubble’s diameter large.

Fig. 7 shows first a good convergence of our numerical re-
sults and a reasonable agreement with respect to the reference
correlation appearing as Eq.29a in [44]. The larger deviation
observed at Ar∗ = 10 can be attributed to the stronger impact of
the different B.Cs used.

0 1 2 3 4 5 6

Prl (-)

0

1

2

3

4

5

N
u
b

(-
)

Feng et.al.
Db
∆

= 12

Db
∆

= 16

Db
∆

= 24

Db
∆

= 33

Db
∆

= 48

Db
∆

= 67

Db
∆

= 96

(a)

0 1 2 3 4 5 6

Prl (-)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

N
u
b

(-
)

Feng et.al.
Db
∆

= 16

Db
∆

= 22

Db
∆

= 32

Db
∆

= 45

Db
∆

= 64

Db
∆

= 90

(b)

Figure 7: Bubble overall Nusselt numbers measured for several Prandtl
numbers at two dynamical regimes. The modified Archimedes numbers Ar∗b

are evaluated using the physical parameters in Tab. 2 while the bubble
Reynolds number Reb is computed a posteriori according to the liquid-vapour
relative velocity (≡ bubble terminal velocity Uterm). The reference correlation

appears as Eq.29a in [44].
(a) Ar∗b = 10 and Reb ≈ 3.6, (b) Ar∗b = 50 and Reb ≈ 62.5

It is possible to compute the temperature gradient at the in-
terface by computing an Eulerian gradient field using a second-
order centred operator and interpolating it at each facet’s cen-
troid using a Tri-linear operator (1st order interpolation, 8
points in 3D). To observe the local convergence of the tempera-
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ture gradient, the Nusselt number Nu(l)
b depending on the bubble

elevation parameter θ has been plotted in Fig. 8a and Fig. 8b.

(a)

(b)

Figure 8: Local Nusselt number depending on the bubble elevation parameter
θ ∈ [−90; 90] °.

(a) Ar∗b = 10, Reb ≈ 3.5 and Prl = 1,
(b) Ar∗b = 50, Reb ≈ 62.5 and Prl = 1

It can be seen that at low Reynolds and Prandtl numbers (see
Fig. 8a), the local convergence is roughly obtained at a reason-
able cost (from 33 cells per diameter) whereas the convergence
is more costly at Reb ≈ 62.5 reaching 64 elements per diameter.

Increasing the Prandtl number up to 5.0 is demanding more
than 90 elements to converge properly (see Fig. 9). At higher
Prandtl numbers, some oscillations are visible at the bubble top
where θ ≈ 90°. Similar observations have been done on the
numerical results of Bothe et al. [29]. The origin of the oscil-
lations is numerical. It does not come from the post-processing
approach but rather from the resolution itself. Bothe et al. ar-
gued that in the region of oscillations, the boundary layer is the

Figure 9: Local Nusselt number at higher Prandtl number Pr = 5.0 and
Reb = 62.5. Some oscillations are visible in the measurements, especially at

the bubble’s top.

finest. As a consequence, the location of the reconstructed inter-
face (PLIC plane) has a larger effect on the temperature gradient
measure. In our case, the facets’ position may also influence the
solution. We expect that the error is dependent on the vapour
volume fraction contained in the mixed cell. These oscillations
are less and less visible as the spatial resolution increases.

Based on these validated numerical results, we present our
strategy to model the thermal boundary layer in the following
section.

3 Boundary-layer modelling strategy

3.1 Introduction to existing boundary layer enhancement
techniques

The chemical transport community has been developing various
approaches to enhance both passive and reactive scalar gradient
prediction in a single rising bubble vicinity. Some of them have
been briefly introduced in Sec. 1. In each case, it should be
noticed that the variable of interest is the concentration c. In the
rest of the paper, we focus on passive scalars. For applications
of these approaches with chemical reactions, mass transfer and
change in volume please refer to [34, 46]. In fact, as long as
phase change is not taken into account, a parallel can be made
between concentration and dimensionless temperature through
the diffusivity coefficient αl. The advection-diffusion equation
does not contain any additional source term.

On the other hand, the community of wall-bounded turbu-
lence has developed several methodologies to capture strong
varying quantities in the walls’ vicinity. Some of the strategies
are analytical and empirical. However, few of them are based
on numerical sub-resolution (LES-RANS solvers) in the turbu-
lent boundary layer and inspired us to develop a second type of
approach for DNS-layer coupling.
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We are considering a single rising bubble at a steady
state. Both the dynamic and thermal boundary layers are set-
tled. Based on these hypotheses, three literature methodolo-
gies present reasonable applicability. We can classify the ap-
proaches into two categories:

1. Gradient correction using an analytical profile:

(a) Quasi-static correction (QSC1) also referred to as
sub-grid model in [30] and re-employed in [26, 29,
31]: A fit is done at each time step. The analytical
profile is permeable to the numerical resolution un-
derneath.

(b) Unsteady boundary layer energy tracking (UBLET1)
[27, 32, 33]. It consists of tracking the temporal
evolution of the energy contained in the boundary
layer: A given profile is introduced into a simplified
advection-diffusion equation. The governing equa-
tion is integrated radially over a finite fixed thickness
in the interface vicinity. The energy contained within
the layer is resolved over time and is therefore un-
steady/transient. Energy is transferred to the neigh-
bouring cells solely through convection, via a source
term for the macroscopic field resolved by the CFD.

2. Laminar radial sub-resolution (LRS1): For each inter-
face facet, a probe with a certain length is set and a temper-
ature equation is resolved over the 1D probe. The bound-
ary condition at the probe’s tip is deduced from the inter-
polation of the temperature field or its derivative. Tangen-
tial effects may be incorporated as source terms.

Analytical profile approaches.

In each analytical approach 1a (QSC) and 1b (UBLET), sev-
eral radial problems are considered locally all over the interface
portions2. Radial profiles are imposed by the choice of a form
of the analytical solution. Some local information on the sur-
rounding flow field such as local derivatives τ = ∂u

∂x = − ∂v
∂y is

used in the time-dependant approach 1b.
The first class of methods 1a uses one temperature value to

calibrate a free parameter δ appearing in a simple analytical
form of solution. At each time step, this parameter is adjusted
based on the mixed cell temperature value, which can be re-
garded either as the local value or the integral value, as guided
by insights from previous studies (specifically, Weiner et al.
[26]), treating it as an extensive quantity in a Finite Volume
approach.Bothe et al. [30] originally introduced a self-similar
form of solution to describe the scalar boundary layer appearing
at an inviscid interface (No-shear, see Fig. 10). Later on, Bothe
et al. [29], Cai et al. [31] or Weiner and Claassen [26, 33]
re-employed this form of solution to investigate thin concen-
tration layers developing around bubbles. The general form of

1Acronym chosen by the authors
2The original papers [26, 27, 29–32] consider the local concentration c and

dimensionless concentration c, but we transposed it to the thermal problem for
the presentation here.

solution, in terms of a dimensionless temperature Θ, and the
associated hypotheses are reminded by Eq. (23) and Eq. (24)
respectively.

(Ωv)

TΓ

u

Γ

Vapour (Ωl)Liquid

Figure 10: Figure extracted from [46] and adapted to the paper’s
nomenclature.

U
∂Θ

∂x
= αl

∂2Θ

∂y2 (23a)

Θ(x, y) = 1 − erf
(

y
δ(x)

)
= erfc

(
y
δ(x)

)
(23b)

δ(x) = 2
√
αlx
U

(23c)

κ = 0 (Plane interface) (24a)
U = const (Inviscid interface) (24b)

V = 0 (Planar flow) (24c)

Here, x is the curvilinear abscissa, the position from the bub-
ble’s top.

This analytical profile (23b) has been extensively used at
high Prandtl numbers from 1 × 101 to 1 × 107 in [29] and [26]
(Peclet numbers from 1 × 102 to 2 × 104).

On the contrary, Aboulhasanzadeh et al. [27] (1b) have de-
cided to use a parabola to describe the concentration profile on
a finite controlled thickness δ0 while exhibiting certain proper-
ties:

Θ ≡ c =
c
c0

= 1 − 2
(y
δ

)
+

(y
δ

)2
(25)

Through Eq. (25), Aboulhasanzadeh et al. consider that the
concentration profile and its derivative cancel at a certain dis-
tance δ. At the interface, the concentration is assumed to be
constant and equals c0.

The scalar derivative at the interface can be simply evaluated
using Eq. (26).

∂Θ

∂y

∣∣∣∣∣
y=0
≡
∂c
∂y

∣∣∣∣∣
y=0

= −
2
δ

(26)

Instead of fitting directly the free parameter δ using a concen-
tration value, Aboulhasanzadeh et al. have integrated the pro-
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file in the radial direction and over a fixed and arbitrary finite-
thickness δ0 (θ, φ). Only normal linear velocity variations have
been considered (with a slope τ = ∂xu = −∂yv: the surface
divergence of the velocity).

The mass M or energy E contained in the layer is then ex-
pressed as follows:

E =

∫ δ0

0
Θdy

(
≡ M =

∫ δ0

0
cdy

)
(27)

Finally, replacing the previous integral Eq. (27) in the overall
layer integrated equation yields:

DE
Dt

= −τE + τδ0 Θ|δ0
− Dm

(
∂Θ

∂y

∣∣∣∣∣
Γ

−
∂Θ

∂y

∣∣∣∣∣
δ0

)
(28)

The parameters describing the profile can be deduced by the
instantaneous level of energy contained in the layer E. The
resolution of Eq. (28) replaces locally the Eulerian temperature
field. Temperature and thermal fluxes are not coupled within
this resolution.Eq. (28) is then discretised taking advantage of
the surface mesh and solved over the interface.

It should be noticed that the analytical profiles of methods
1a and 1b are only described by one free parameter δ. As a
consequence, they can be fitted with a single value, e.g. a lo-
cal temperature value or the mass or energy value contained
in the mixed cell or layer. Both the time-dependency and the
Eulerian-grid coupling cannot be achieved conjointly through
these existing methods. The thickness δ(n) at instant (n) is ob-
tained through the energy value E

(n)
in Eq. (27) and Eq. (28).

However, there is no reason that Θ|δ(n)
0

, evaluated from the pro-
file at the end of the layer (at distance δ0), matches the Eulerian
field.

Finally, in the method 1a, the fluxes on the Eulerian control
volumes are evaluated through the analytical profile. It sup-
poses that the analytical profile substitutes the numerical tem-
perature resolution locally. Weiner et al. [26] performed com-
plex integration over the cells’ wetted surface area and it proved
more accurate than correcting the cell face centre value. In 1b,
a source term is used to transfer the fluxes of excess energy to
the Eulerian grid but there is no further precision concerning
the treatment of the region impacted by this coupling. The as-
sessment of flux correction and its benefits over time will be
addressed in future work.

Laminar radial sub-resolution (LRS).

The second approach 2 has been inspired by the thesis work
of Bizid [47]. It aimed to enhance the velocity prediction near
a solid curved shape (turbine blades...). His method is related
to the thin boundary layer equation also referred to as turbu-
lent boundary layer equations (TBLE) [48–50] in which the
Reynolds Averaged Navier Stokes momentum equations are
solved unidirectionally near a solid boundary while interpolat-
ing the pressure term to avoid further computational resource
requirements. Such methods fail when adverse pressure gradi-
ents are dominating.

In the thesis of Chatelain [51], some work has been under-
taken to solve for the temperature boundary layer in a chan-
nel. He employed the uni-directional solving procedure for a
thermal planar problem. A turbulent diffusivity αT is added to
the temperature equation to account for sub-grid fluctuations.
The latter thermal method has been applied to very simple ge-
ometries. A combination of [47] (non-planar shapes) and [51]
(thermal considerations) has inspired the present work.

Credit is also due to Gruending et al. [52] who solved non-
linear ordinary differential equations (ODEs) locally and in
the normal direction to the interface in the context of reactive
scalars.

Their numerical approach focuses on chemical reactions and
is not fed by the interpolated velocity field. Consequently, it in-
corporates a theoretical form of solution that acts as a tangential
convective source term.

To the best of our knowledge, there is currently no compre-
hensive method that encompasses all of the aforementioned ap-
proaches and is applied to a thermal problem involving bubbles
or droplets.

Velocity correction could also be combined with the thermal
approach proposed here.

3.2 Discussion and improvement of existing strategies

The QSC approach among two of the listed approaches is rel-
evant to us in the first attempt because it does not necessitate
further major developments and is partially achievable in a post-
processing tool. Moreover, we propose a novel approach simi-
lar to thin/turbulent boundary layer equations where several 1D
problems are solved in each facet’s normal direction over a fi-
nite length.

Both retained approaches (1a and 2) rely on using the close
but resolved temperature field. In other words, it is necessary to
exploit the field at a distance that should be close to the interface
to contain enough information without being too erroneous.

In the case of 1a, it is required to work with a dimension-
less temperature profile Θ because analytical profiles are often
derived using self-similar hypothesis (dimensionless equations)
and two Dirichlet boundary conditions bounding the range of
temperature values. Therefore, we should dispose of more than
one free parameter. Indeed, an additional parameter (T θ

∞ or T θ
δ

depending on the position where it is defined) is needed to non-
dimensionalise the problem locally. One of the biggest difficul-
ties with the time-dependant approach is that the far-field tem-
perature used to non-dimensionalise the problem will evolve
over space and time in a multiple bubbles configuration. No
research has been conducted to consider this effect to the best
of the authors’ knowledge. Therefore, the application is not
straightforward.

Besides, to apply methods 1a and 1b, another free param-
eter has to be used to fit the radial profile instantaneously; it
can be determined either from a local quantity (concentration
or temperature) or an extensive one (energy or mass). If an in-
stantaneous quantity is used, the coupling is done with the local
temperature field but the energy is not necessarily conserved
over time (∂tΘ is considered to be zero at each fitting step but
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changes over time for the CFD solver). On the contrary, if the
energy within the boundary layer is conserved over time, the
resulting temperature field may be inconsistent with the instan-
taneous Eulerian field lying underneath (temperature or fluxes).
That is why the latter method 1b annihilates the underlying Eu-
lerian solution. Finally, the last method 2 is coupled to the CFD
resolved field by interpolating a single temperature value.

The dimensionless temperature profile that has been devel-
oped in Appendix A exhibits two parameters (δ1 and δ2) which
are linked by the mean curvature κ = κ1 +κ2, normal velocity ur

and thermal diffusivity αl. As a consequence, we can not satisfy
both a local instantaneous temperature or energy value and the
time evolution of the energy in the layer.

In the case of 2, the temperature does not require necessarily
a non-dimensionalisation. Further modelling at the local scale
is not considered and the fluctuations are assumed to be re-
solved. The benefits of the method rely on the fact that the local
coordinate system is perfectly aligned with the principal direc-
tion of variations. Hence, the discretisation is consistent every-
where and is no longer influenced by the relative collinearity of
the facets’ normal vectors to the Cartesian directions.

Sec. 3.3 and Sec. 3.4 present the methodology to apply the
QSC and LRS approaches to the resolution of the temperature
in boundary layers, respectively.

3.3 Quasi static analytical profiles applied to temperature

3.3.1 Overall approach
The analytical expression of the temperature used in the liter-
ature comes from a planar problem. As underlined previously
a more complex form of solution could be looked for in a lo-
cal spherical frame of reference attached to the interface (see
Fig. 11).

ẽr

ẽθ

ẽx

ẽy

ẽz

G 2
κ

ẽr
ẽθ

2
κ

T local∞

Θ = 1

O

O

M

Figure 11: Schematic and notations employed in the derivation of the
analytical approach. The osculating radius is related to the local mean
curvature R = 2/κ. The principal curvatures are assumed to be identical.

In this osculating frame of reference, the advection-diffusion
equation is directly related to the curvature which has to be con-
sidered.

There, diffusion has a significant impact, and the term 2
r
∂Θ
∂r ,

when approximated as κ ∂Θ
∂r , remains non-negligible. Account-

ing for the mean curvature allows a better mathematical rep-
resentation of the interface locally (a first-order surface as op-

posed to a zeroth-order surface in the context of a planar prob-
lem). Appendix B demonstrates that employing the mean cur-
vature provides a good approximation for the diffusion term
arising due to basis variations when considering two similar
radii of curvature values (R1 and R2).

In the particular case where the velocities are considered
constant in space at a given time and by taking the first order
approximation of 1/r, the steady convection-diffusion equation
writes: (

ur

αl
− κ

)
∂Θ

∂r
+
κuθ
2αl

∂Θ

∂θ
=
∂2Θ

∂r2
(29)

One can note that azimuthal variations have been neglected.
The choice of using a spherical frame of reference is justified
and tangential variations are expected to remain much stronger
in the direction of relative velocity between the two phases even
in more complex configurations. Besides, it enables the re-
employ of the original sub-grid diffusion model while complex-
ifying it. The spherical coordinate system embeds a singularity
on the symmetry axis i.e. azimuthal temperature variation ∂φΘ
should be zero although uφ could be non-zero.

By aligning the osculating sphere equator’s normal direction
with the facet’s normal vector, the equations correspond to the
curvilinear coordinates with two identical and constant princi-
pal curvatures.

An analytical solution exhibiting a double exponential com-
bination has been found using a separation of variable method
(see the development in Appendix A.1). A strong assumption
is made concerning the tangential variations. Because of the
separation of variables method, the latter can not be a func-
tion of the radial distance to the interface. As a consequence,
the considered velocity profile considered does not verify the
divergence-free condition. The overall temperature profile is
given by Eq. (A.25) reported here:

Θ =

1 − e
δ

δ∗


−1

×

e
r
δ∗ − e

δ

δ∗ e

−r
δ1

 (30a)

δ∗ =
αlδ1

2αl + δ1 (ur − καl)
(30b)

Θ =
(
T θ
δ − T

)
/T θ

δ is cancelling at r = δ. At this distance,
T = Tδ. In other words, by picking a temperature at a distance
r = δ to non-dimensionalise the problem, the fitting procedure
consists in fitting δ1 knowing the normal velocity ur and the
curvature κ.

Although the chosen velocity field is not divergence-free, the
effect of the liquid flow impacting the bubble front is embedded
in an average normal velocity ur ← ur (Eq. (31) calculated
using Simpsons’ method over the probe). It differs for each
value of θ considered. Deriving an exact solution while taking
every aspect into account could not be achieved in the authors’
knowledge. The potential effect of phase change proportional
to ṁv could also be embedded. It should be emphasised that
the goal is to look for a form of solution that could adapt and
capture the non-linearity in the near interface profile compared
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to classical linear schemes. The solution must degenerate to the
fine mesh solution.

ur =
1
δ

∫ r=R+δ

r=R
ur(r)dr (31)

Alternatively, as ur and κ are difficult to define and evaluate, a
second parameter δ2 (see Eq. (32)) can also be fitted along with
δ1 to be used in Eq. (30a) in order to assess ur and κ indirectly.

δ2 =
αlδ1

αl + δ1 (ur − καl)
(32)

If so, the fit is based only on the temperature field but the num-
ber of points to achieve the fitting step is higher (fitting interval
wider). It is interesting to investigate this aspect because it may
save computational resources (reducing interpolations and pro-
jections).

3.3.2 Fitting procedure
Two forms of solutions are used in the current section: the Erfc
function, extensively used in the literature, as well as the au-
thors’ derivated solution referred to as the SoV approach. Two
fittings techniques have been explored: a fitting technique based
on locally evaluated values and a second one, based on integral
values of the profile on a finite thickness still in the interface
surrounding area. The choice of point locations (local values
and integral bounds) and point spacing, in the case where mul-
tiple unknowns should be found, are presented in Tab. 4.

Local fitting procedure.

First, the solutions are fitted according to the temperature field
using Newton’s method on the finest meshes. In the case of
the Erfc solution, the function f to minimise is monotonous
according to its set of free parameters Φ. Some known values
of parameters ξ for whom f is null are mandatory to solve for
Φ. f is expressed for each angle θ as follows:

Erfc: ξ = {r,T } ; ξ
′

= {r} ; (33a)

Φ =
{
T θ
∞, δ

}
Θ← Eq. (23b)

f (ξ,Φ) = T θ
∞

[
1 − Θ

(
ξ
′

,Φ
)]
− T (33b)

SoV: ξ =
{
r, δ,T,T θ

δ

}
; ξ

′

= {r, δ} ; (33c)

Φ = {δ1} or Φ = {δ1, δ2}

Θ← Eq. (30a)

f (ξ,Φ) = T θ
δ

[
1 − Θ

(
ξ
′

,Φ
)]
− T (33d)

The free parameters Φ associated with each form of solution
are given in Eq. (33a) and Eq. (33c). T corresponds to a local
temperature value measured on the Eulerian mesh at steady-
state.

The matrix conditioning of the Jacobian matrix (appearing in
Newton’s algorithm) could cause convergence problems. The
problem can arise due to the nature of the analytical solution.

Weiner et al. [26] underlined that the erfc derivative according
to δ tends to zero for increasing δ values. The problem is further
exposed in Appendix C.

Integral fitting procedure.

To improve the robustness of the method, efforts were made to
utilise unidirectional integral quantities, while the consideration
of a 3D integral within the mixed cell, although having the po-
tential to improve accuracy [26], is not currently investigated.
The integration region depends on the number of unknowns and
the type of approach. This information is summarised in Tab. 4.
In that case, the function to minimise, denoted F, is expressed
as follows:

F(ξ,Φ) =

∫ b

a
f (ξ,Φ)dr

=
(
T θ
δ,∞ − T

)
(b − a) − T θ

δ,∞

∫ b

a
Θ

(
ξ
′

,Φ
)

dr

(34)

The integral value T is obtained by numerical integration over
the probe where the reference DNS solution has been interpo-
lated.

The two methods have been tested on both erfc profile (see
Eq. (23b)) and the current paper SoV derivated solution (see
Eq. (30a)). The profile proposed by [29, 30] assumes a Dirich-
let boundary condition for Θ when r → ∞. On the contrary,
the profile formulated in this paper (Eq. (30a)) uses local infor-
mation to non-dimensionalise the temperature. T θ

∞ is deduced
from the simulation setup or fitted in the first case whereas T θ

δ

is measured in the second case.
The fitting ability of these solutions is studied and exposed

in Sec. 4.2. The derivatives of the candidate functions can be
found in Appendix C.1 and Appendix C.2.

3.4 A radial sub-resolution with tangential source terms
Taking into consideration that the quasi-static analytical pro-
file of the planar problem (QSC) has been formulated under
specific assumptions (see Eq. (24)) which are difficult to meet
in the configurations considered here, the Laminar Radial Sub-
resolution (LRS) has been assessed in parallel.

Sec. 4.1 extensively explores the hypotheses in Eq. (24) by
analysing post-processed quantities within the interfacial re-
gion, illustrating their radial variations. In the considered con-
figuration, the velocity variations in the radial direction are ex-
pected to be sufficiently significant over the thickness of a mesh
cell to consider at least a one-dimensional numerical resolu-
tion approach. It is clearly visible in the next sections (see
Sec. 4.1.2). The current approach for temperature has been ex-
plored without using any turbulent thermal diffusivity hence it
is referred to as a Laminar Radial Sub-resolution (LRS).

This second approach relies on solving numerically the
same laminar advection-diffusion equation considered to de-
rive the analytical solution (see Eq. (35)) for r ∈ [R; R + 3∆d].
In that case, the velocity components are interpolated on a
one-dimensional simulation domain associated with each facet
whereas the tangential term (RHS of Eq. (35a) and Eq. (35b))
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Table 4: Associated equations, figures and tested cases for the two forms of solutions and their five associated fitting approaches (FIT-A, B, C, D and E). The red
profile is obtained by interpolation.

Erfc SoV

Equations Eq. (23b) Eq. (A.25)
Figures Fig. 19a, Fig. 20a Fig. 19b, Fig. 20b
Cases FIT-A FIT-B FIT-C FIT-D FIT-E

Unknowns Φ δ
{
δ; T θ

∞

}
δ1 δ1 {δ1; δ2}

G
en

er
al

Specificity T θ
∞ = T∞

κ 6= 0
ur = 0

κ 6= 0
ur 6= 0

ur, κ, αl

not required
Number of

points
1 (T 1

δ ) 2 (T 1
δ , T 2

δ ) 2 (T 1
δ , T θ

δ = T 2
δ ) 3 (T 1

δ , T 2
δ , T θ

δ = T 3
δ )

L
oc

al

Positions r/∆d∗ 1/2 {1/2; 1} {1/2; 1} {1/2; 1; 3/2}
Number of

points
0 1 (T θ

δ = T 1
δ ) 1 (T θ

δ = T 2
δ )

Number of
integral values

1 (T1) 2 (T1, T2) 1 (T1) 2 (T1, T2)

In
te

gr
al

Integral bounds
[a, b] and positions r/∆d∗

[0; 1/2] {[0; 1/2] ; [0; 1]} {[0; 1/2] ; 1/2 } {[0; 1/2] ; [0; 1] ; 3/2}

Sc
he

m
at

ic
s

T 1
δ

T 2
δ T 3

δΓ

T1

T2

1/2 1 3/2

r/∆d∗

can be interpolated from the coarse mesh or modelled using
fine simulations. In the current work, only interpolations from
coarse or converged DNS results are addressed. This tangential
term acts as a source term in the heat equation (see continu-
ous and discretised forms in Eq. (35.a) and Eq. (35.b), respec-
tively). The discretised equation Eq. (35.b) requires obviously
two boundary conditions to be resolved. In its dimensionless
form, Θ = (T∞ − T ) /T∞ = 1 at the interface whereas Θ = 0
at the 1D domain’s end. Also, instead of imposing the tem-
perature, a zero derivative value has been implemented at the
domain’s end. Coupling the measured fluxes at the probes’ end
(Neumann) does not give interesting results and will not be dis-
cussed extensively. The Dirichlet boundary condition is pre-
ferred.

Continuous:
∂2Θ

∂r2 +

(
2
r
−

ur (r)
αl

)
∂Θ

∂r
(35a)

=
uθ (r)
αlr

∂Θ

∂θ
(r) −

1
r2

∂2Θ

∂θ2 (r)

Discrete:
Θi+1 − 2Θi + Θi−1

∆r2 (35b)

+

(
2
r
−

uri

αl

)
Θi+1 − Θi−1

∆r

=
uθ i

αlri

∂Θ

∂θ

∣∣∣∣∣
i
−

1
r2

i

∂2Θ

∂θ2

∣∣∣∣∣∣
i

Convective and diffusive terms can be identified with the fol-

lowing notations (later reused in Sec. 4.3):

Cr =
ur (r)
αl

∂Θ

∂r
(36a)

Dr =
∂2Θ

∂r2 +
2
r
∂Θ

∂r
(36b)

Cθ =
uθ (r)
αlr

∂Θ

∂θ
(r) (36c)

Dθ =
1
r2

∂2Θ

∂θ2 (r) (36d)

Particular attention should be given to the evaluation of velocity
in the mixed cells. A wrong sign could cause the convective
term to sweep heat unrealistically. It has been observed that
at the exact position of the facets, the normal component of the
interpolated interface velocity is not null numerically whereas it
should be. The weak transmission condition (balance of stress)
at the interface in a one-fluid approach could cause the interface
to be offset virtually for the velocity field. This offset could
be a result of the viscosity calculation. For the discrete model
resolution, the velocity profile is corrected to recover the correct
interfacial velocity (ur |Γ = 0). A simple shift of the velocity
profile is applied. The tangential velocity uθ is not affected by
the correction and is assumed to be sufficiently resolved (low
interfacial shear stress because µv/µl ≤ 1).

The two methods presented in this section are assessed based
on their interfacial temperature gradient prediction in the fol-
lowing section. Their strengths and weaknesses are discussed
and the best candidate approach is examined to perform multi-
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bubble configuration in future scenarios, especially under low
spatial resolution conditions. This examination considers both
the physical aspects and the numerical implementation.

4 Evaluation of the boundary-layer modelling strategies

Sub-section 4.1 begins with the hierarchy of terms, aiming to
determine the leading terms of the thermal advection-diffusion
equation.

Sub-section 4.2 shows that in our operational conditions, i.e.
coarse grids and large thermal boundary layers, the applicabil-
ity of the analytical profile to replace locally the coarse-grid
resolution is limited.

Then, sub-section 4.3 presents the promising results obtained
through the laminar radial sub-resolution in terms of local and
global heat flux prediction.

4.1 Convection and diffusion terms measurements on refer-
ence simulations

To derive the simplified problems presented in Sec. 3.3 and
Sec. 3.4, it has been necessary to make several assumptions.
Identifying the dominating terms in the temperature equation
Eq. (35a) is then the first step to legitimate our approach. De-
pending on the flow regime, it is expected that some terms will
vanish because either the velocity component or the tempera-
ture gradient component is strongly decreasing at the interface.

The focus is made on both convection terms and the radial
diffusion term in spherical coordinates (i.e. in the local osculat-
ing sphere coordinate system). Aboulhasanzadeh et al. [27] are
neglecting the tangential component variation while other re-
search groups such as Weiner et al. [26, 29] are neglecting the
normal convective term through their choice of the analytical
solution. It depends on which frame of reference we are work-
ing in. Quasi-static methods see the interface as a non-material
object which displaces only in the normal direction whereas
Aboulhasanzadeh et al. [27] are expressing the problem in a
material frame of reference i.e. convected tangentially. Both
researchers are unanimous on the predominance of the radial
diffusion term over the tangential one.

Hypotheses such as the omission of the curvature effect and
velocity variations, as made in Eq. (24) to derive the simplified
planar solution, are tested in the subsequent section.

Terms are evaluated for each facet at a distance
∆d∗

(
= 3

2

√
∆2

x + ∆2
y + ∆2

z

)
from the interface which corre-

sponds to 1.5 times the diagonal of a cell. Such a minimum
is necessary to avoid totally using mixed cell values when
performing a Tri-linear interpolation scheme. Results are
presented in Sec. 4.1.1.

Terms that have been computed radially on several probes are
later exposed in Sec. 4.1.2. The local convergence of quantities
over the probe length can be directly observed.

4.1.1 Hierarchy of terms at several regimes
Terms hierarchy over the three identified regions.

The thermal boundary layer thickness δ0 around the bubble
does not follow any known analytical laws or correlations. It
has also multiple definitions which are no longer straightfor-
ward when we deal with more than one rising object in a finite
domain. In particular configurations (self-similarity, pure slip
condition) such as on flat planes or walls, analytical expressions
or forms of solution can be found [53]. The particular geom-
etry of the bubble favours stall and recirculation which have
a direct impact on the boundary layer thickness and thus heat
transfers. In the case of the spherical bubble, we can divide the
heat transfer profile depending on the bubble’s elevation param-
eter θ in three distinct regions which are observable in Fig. 12
and Fig. 13: the bottom region denoted (1) and the equator and
top regions denoted (2) and (3), respectively. The division of
the interface into three regions serves solely to emphasize the
hierarchy of terms and to assess whether the simplified equation
remains valid within these regions. The methods are applied in-
dependently of the region.

At the bubble’s top (3), the liquid is decelerating and the tan-
gential velocity component is increasing to ensure mass conser-
vation until the bubble’s zero elevation (coordinate θ = 0°). As
a consequence, heat is increasingly swept along the tangential
direction. As in every forced convection flow, there is a com-
petition between diffusion and advection. In a condensation
case, the normal convective component is positive which sig-
nifies that convection is acting against diffusion (see Eq. (37)).
The same reasoning, but with the opposite sign, applies to evap-
oration.

Top (3):
(
ur −

2αl

r

)
︸      ︷︷      ︸

<0

∂Θ

∂r︸︷︷︸
<0

≈ αl
∂2Θ

∂r2︸︷︷︸
>0

(37)

The boundary layer is compressed so the normal temperature
gradient varies rapidly. It then decreases along the curvilinear
abscissa (when θ decreases). In the equator’s region (2), the
tangential convective term reaches a maximum and ultimately
prevails over the normal one (see Eq. (38)).

Equator (2):
uθ
r︸︷︷︸
>0

∂Θ

∂θ︸︷︷︸
>0

≈ αl

(
2
r
∂Θ

∂r
+
∂2Θ

∂r2

)
︸            ︷︷            ︸

>0

(38)

Finally, at the bottom, the normal convective term is changing
sign and acts in the same direction as diffusion if ur exceeds
2αl/r (see Eq. (39)). The boundary layer is then expanding and
normal heat transfer is decreasing. Mathematically, in the ab-
sence of the tangential term and at a steady state, the value on
the symmetry axis is the saturation temperature. In a turbulent
configuration, the recirculation will create fluctuating contribu-
tions. Both tangential convective and diffusive terms exist in
this region and are essential although their magnitude is low.
Their contributions are at the origin of a non-constant tempera-
ture field at steady-state (∂tΘ = 0) in the bubble wake.
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Bottom (1):

 ur︸︷︷︸
>0

−
2αl

r︸︷︷︸
∼ur

︸             ︷︷             ︸
>0 if ur>

2αl
r

∂Θ

∂r︸︷︷︸
<0

≈αl
∂2Θ

∂r2

︸︷︷︸
>0

+

(
αl

r2

∂2Θ

∂θ2 −
uθ
r
∂Θ

∂θ

)
︸                  ︷︷                  ︸

small but 6=0

(39)

Using the Erfc profile presented in Eq. (23b) assumes that
the tangential convective term is dominating i.e. that the central
region is the largest over the whole θ range. It is no longer the
case in the stagnation points’ regions whose width is inversely
proportional to the Prandl number Prl.

General observations.

The convective terms have been post-processed on the reference
mesh for both Reynolds numbers and are shown in Fig. 12a and
Fig. 12b for Prl = 1.0.

The advective term of the simplified temperature equation
Eq. (35a) in spherical coordinates is superimposed with the
total convective term (Cartesian) computed from the simula-
tion. As a consequence, it is a first validation to ensure that the
current problem is governed by Eq. (35a) and that the recon-
structed azimuthal variations are zero.

The normal convective term is globally prevailing at both
Reynolds numbers. However, three zones are observed.

At the bubble’s front θ >> 0°, the radial convective term is
dominating whereas the tangential convective term decreases
from the equator until it cancels at the stagnation point.

In the bubble’s equator region (|θ| ≤ 20° in Fig. 12a,
Fig. 12b), the tangential term tends to dominate over the radial
convective term. It is especially visible at the higher Reynolds
numbers. At θ ≈ 10°, the maximum tangential velocity uθ is
reached while a zero normal velocity ur is measured. However,
at this location, the tangential convective term is not at its maxi-
mum value. Something important to notice is that the maximum
of the tangential term is not reached exactly at θ = 0° but rather
at θ = −10°. Behind the bubble, the boundary layer expands
so the temperature field tends to stretch in the tangential direc-
tion. The tangential convective term thus increases faster than
the tangential velocity decreases. We expect that the symmetry
in the tangential term distribution around θ = 0° will be influ-
enced by the level of turbulence which conditions the position
of the separation point.

At the bubble’s rear (θ << 0°), the tangential convective term
is decreasing. We expect this region to have a strong depen-
dency on the flow regimes. At higher Reynolds numbers, we
expect a stall to occur due to an adverse pressure gradient. In
that case, recirculations may be observed which will influence
this region of low heat transfer.
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Figure 12: Convective term hierarchy in the interface vicinity:
(a) Reb ≈ 3.6, Prl = 1.0, Db

∆
= 48,

(b) Reb ≈ 62.5, Prl = 1.0, Db
∆

= 45

Regarding diffusion, its normal component is dominant (see
Fig. 13a, Fig. 13b). The tangential diffusive term is compar-
atively more significant at the lowest Reynolds number. It is
not negligible especially at the bubble’s top and bottom accord-
ing to Fig. 13a for this low Reb value. We were expecting this
term to be low as the configuration related to Fig. 13a is closer
to a pure radial diffusion problem. The error may come from
a stronger effect of the finite domain size which is not large
enough and the outflow boundary conditions are influencing
more significantly the results. As the domain cross-section is
a square, the azimuthal symmetrical aspect of the flow is lost.
It explains the discrepancies in the values for a given angle θ at
a low Reynolds number. The fact that this assessment of tan-
gential diffusion does not go to zero at the symmetry axis was
expected as the singularity of the solution is difficult to capture
in a 3D discrete solution where the discrete surface does not
show any symmetry.

We can observe that the variations of the normal diffusion are
dominant at high Reynolds numbers (see Fig. 13b). The tan-
gential diffusive term remains negligible for all θ values com-
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pared to the normal diffusion term which is sufficient to neglect
it in a first modelling procedure. Sec. 4.3 shows that this term
has importance in regions that are already resolved and it avoids
the sub-resolution approach to deteriorate the original solution.
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Figure 13: Diffusive term hierarchy in the interface vicinity: (a) Reb ≈ 3.6,
mesh resolution of 48 elements per bubble diameter.

(b) Reb ≈ 62.5, mesh resolution of 45 elements per bubble diameter.

4.1.2 Radial evolution of the terms
Quantities have been post-processed on radial probes all over
the bubble surface. In our approach, we propose to model the
temperature only. The velocity is considered to be well cap-
tured in the working conditions i.e. at viscosity ratios close
to unity µv/µl / 1, or for Prl ≥ 1 (Thick velocity boundary
layer). Fig. 14a and Fig. 14b show that the velocity high order
variations are captured close to the interface. The interpolated
profiles are sufficiently resolved to be used in a sub-resolution
process. The legend for the next figures is shown at the end of
the current section (see Fig. 18). The following figures present
the useful quantities at Reb ≈ 62.5 and Prl = 1.

The normal velocity component evaluated at each facet is
non-zero in Fig. 14a. It causes the normal convective term to
show the wrong sign if assessed directly, which raises problems
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Figure 14: Radial and tangential velocity profiles at Reb ≈ 62.5 and Prl = 1
and for a mesh resolution of 64 elements per bubble diameter (fine mesh): (a)

Radial velocity ur (m s−1), (b) Tangential velocity uθ (m s−1). The velocity
along ẽφ is zero.

in the radial sub-resolution approach. These profiles are all off-
set to cross exactly ur |Γ = 0 in the subsequent convective terms
assessment.

Fig. 14a shows that the velocity is not constant in the inter-
face vicinity. As a consequence, we expect the analytical solu-
tion to mispredict the temperature field if the velocity is evalu-
ated locally when looking for the free parameter (root-finding
routines). As presented in Sec. 3.3.1, the free parameters are fit-
ted based on the temperature field. An averaged velocity char-
acterising the incoming fluid ur ← ur (see Eq. (31)) is also used
in method FIT-D (see Tab. 4).

Strong variations of temperature can be observed in Fig. 15.
For all the cases treated in this paper, the interfacial flux is
strictly decreasing from the bubble’s top to bottom. Fig. 16a
shows that the far-field value of temperature is rapidly converg-
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ing (end of range
[
0; ∆∗d

]
) whereas the error is very significant

between the two mesh resolutions of 16 and 64 cells per diam-
eter in the near interface region.
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Figure 15: Temperature distribution at the interface and at several elevations θ
at Reb ≈ 62.5 and Prl = 1 and for a mesh resolution of 64 elements per bubble

diameter. The temperature varies drastically in the interface vicinity.

The normal temperature gradient varies very rapidly close to
the interface (see Fig. 16b). As a consequence, a poor mesh
will be unable to capture such strong variations. A simple first-
order (forward finite difference) scheme to measure the inter-
facial flux, which is very often used in numerical approaches,
fails to predict it. Such systematic errors have a strong effect on
the global Nusselt number prediction. For example, the global
Nusselt number values exposed in [29] at high Pr present rela-
tive errors within a 50% range around the converged value. In
our case, up to 30% underestimation is observed on the bubble’s
top with respect to the coarse mesh.

The radial variations are dominant. It was highlighted in the
Sec. 4.1.1 through the post-processing of the convective terms.
One can conclude that the tangential variation should be eas-
ily captured by coarser meshes. Surprisingly, the tangential
temperature variations interpolated over the probes are some-
how noisy for coarser meshes as presented in Fig. 17a. It is
mainly attributed to both interpolation and differentiation errors
in post-processing as well as the local application of the temper-
ature extension in the numerical method (DNS solver). Several
local problems are imposing weakly the saturation temperature
at the interface (TΓ = 0). The same applies to its tangential
derivatives.

As the Peclet number increases, the tangential convective
term should gain importance in comparison with the normal
convective term at the bubble θ = 0° elevation coordinate. It le-
gitimates our will to consider every convective term in the lam-
inar sub-resolution equation. The use of the classical numeri-
cal method based on Ghost-fluid and a local diffusion problem
(presented in Sec. 2.1.3) is no longer appropriate for low mesh
resolutions at high Reynolds numbers.
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Figure 16: Temperature (a) and Normal temperature gradient ∂T
∂r (K m−1) (b)

at Reb ≈ 62.5 and Prl = 1 and for two mesh resolutions of 16 (coarse) and 64
(fine) elements per bubble diameter.

4.2 Analytical profiles: fitting assessment in two steps (fine,
coarse) of the quasi-static approach (QSC)

4.2.1 Best fit on the finest mesh solutions
To evaluate the ability of the previously introduced profiles to
capture the temperature variations properly (Sec. 3), the fields
coming from the fine simulations are used first in the fitting
process.

Two calibrations performed with the various methods dis-
cussed in Sec. 3.3.2 are shown in Fig. 19a and Fig. 19b for the
Erfc and the SoV profiles, respectively.

All methods are using fine mesh information. The fitted pro-
files’ capabilities are characterised in the following section by
the value of the interfacial temperature gradient as a figure of
merit. Indeed, it is one of the most important pieces of infor-
mation that will be used in the application of the model.
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Figure 17: Tangential temperature gradient ∂T
∂θ (K) at Reb ≈ 62.5 and Prl = 1

and for two mesh resolutions of 16 (coarse) (a) and 64 (fine) (b) elements per
bubble diameter.
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Figure 18: (a) Probe locations for Fig. 14 to Fig. 17 at Reb = 62.5, Pr = 1.0
and Db/∆ = 16 − 64.

In Fig. 19a (Erfc), the reference profile is globally captured
for each tested fitting method both using the local and integral
value of temperature. Using one free parameter δ and know-
ing the infinite temperature value T θ

∞, it is possible to fit the
profile accurately in the interface vicinity. The integral method
requires a numerical calculation which should be avoided in
an a posteriori implementation. However, seeing the near-cell
temperature value as an integral could also be considered as
emphasised previously in Sec. 3.1.

(a)

(b)

Figure 19: Fitted temperature profile in a narrow band around the interface:
(a) Erfc function, (b) SoV derived solution. Profiles have been fitted on the
finest simulation at Reb ≈ 62.5, Pr = 1.0 and at a resolution of Db/∆ = 64

With two temperature values, it was also possible to retrieve
the ”infinite” temperature T θ

∞ quite accurately in addition to the
first parameter δ. It is still working pretty well using local tem-
perature values. In the integral case, two integral values are
given to the root finding algorithm but it proves to give more
dispersed values as this information is contained infinitely far
from the interface. This type of profile does not suit exactly
future complex configurations well as it requires an infinite ref-
erence.

Analytical solutions in CFD are derived in an idealised situa-
tion in semi-finite domains. Defining and measuring a temper-
ature value at infinity is tedious in a closed domain. There are
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then two paradigms. On one hand, we can look for analytical
solutions describing exactly the physics in the layer (expression
of δ and T∞ known) which is impossible in practice. Determin-
ing T θ

∞ by looking for the best fit could be surprising but works
well in practice. In the paradigm of this article, we aim to utilise
an analytical solution incorporating physical considerations that
could replicate the non-linear interfacial temperature variations,
as suggested by Bothe et al. [29].

Fig. 19b (SoV) shows more dispersed values according to
the method employed. Using local temperature values leads to
an overestimation of the temperature gradient for both zero and
non-zero normal incoming bulk velocity ur. The best prediction
is given by the two methods employing integral values of the
temperature. In that case, feeding the fitting procedure with an
average normal velocity does not have a significant influence on
the results. It is mainly because the incoming fluid has already
decelerated in the fine mesh tested region i.e. ur → 0. It may
be no longer the same when the boundary layer thickens ur > 0.
Using two parameters δ1 and δ2 instead of measuring κ and ur

explicitly (and using relation Eq. (32)) tends to overestimate
the temperature gradient prediction.

Fig. 19b could then be employed legitimately to fit the tem-
perature radial distribution at each time step.

4.2.2 A priori interfacial gradient corrections on under-
resolved steady simulations

The same process can be undertaken for coarse and
non(entirely)-resolved simulations. This section aims to judge
the ability to correct the temperature gradient from the coarse
mesh using the fitting procedure. Corrected temperature pro-
files could later be coupled to the Eulerian field control volumes
through convective and diffusive fluxes.

Fig. 20a shows that the use of an Erfc profile does not allow
enhancing the temperature gradient evaluation whatever the fit-
ting procedure employed. The hypotheses made to derive this
profile are not always met in the interfacial region, and the sim-
ulation setup fails to align with all of these prerequisites (e.g.,
Prl & 1). Consequently, its applicability to extrapolate to a
broader range of operating conditions, such as ours with a large
thermal layer and low spatial resolution (. 40 cells per bubble
diameter), is not possible. Although the fitted profile continues
to faithfully replicate the values on the coarse mesh, the expec-
tations of improving the gradient prediction remain unfulfilled.
Therefore, we have decided to discard this profile, no longer
considering it as the best candidate in our research on tempera-
ture gradient correction at moderate Peclet numbers.

The SoV profile (see Fig. 20b) shows again a large disper-
sion depending on the fitting method employed. Methods using
local values of temperature for calibration are not working well
from a global point of view and tend to overestimate the gradi-
ent (Orange, Red and Green). Methods referred to as integral
are closer to the fine mesh solution. Considering ur = 0 (Light
orange), some local enhancements are observed but it is too dis-
persed to assert the capability of the method. Finally, the two
fitting types which show a clearer agreement with the fine mesh
values are the two last integral methods:

(a)

(b)

Figure 20: Fitted temperature profile in a narrow band around the interface:
(a) Erfc function, (b) SoV derived solution. Profiles have been fitted on the
coarse simulation at Reb ≈ 62.5, Pr = 1.0 and at a resolution of Db/∆ = 16

• δ1 determination considering ur 6= 0 (Light green in
Fig. 20b): an overall agreement is observed in the bub-
ble’s equator and top regions θ > 0° while the bubble’s
bottom which was already converged is well fitted. It is
now clear that the two parameters should be linked by the
direct relation using the curvature κ and the averaged nor-
mal velocity ur.

• Fitting both free parameters δ1 and δ2 (Light red): omitting
the relation linking δ2 to δ1 through curvature and aver-
aged incoming bulk velocity is beneficial from a numerical
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point of view (not velocity and curvature measurement re-
quirements). It appears that the gain in prediction is good
on the entire θ range.

Considering an averaged normal velocity component, even
though it is not consistent with the mass conservation, is rele-
vant as it embeds the effect of the upcoming fluid. Some fur-
ther investigation at higher Prandtl confirms our observations.
The predicted interfacial temperature gradient does not show a
huge dispersion depending on the azimuthal φ coordinate which
could be explained by the fact that the input of the method
is only a zeroth order quantity (local or integral temperature
value). Fig. D.26 in Appendix D further illustrates the disper-
sion.

Finally, the second derivative of the post-processed quantity
appears to be in better agreement (Fig. 16). In contrast, the
derivative of the Erfc profile shows a plateau and linear varia-
tions at the interface (Eq. (40) and Eq. (A.28)), while the SoV-
derived solution allows for a non-zero second derivative value
and high-order variations when evaluated at the interface (see
Eq. (41) and Eq. (A.27)). The fitted temperature and normal
temperature gradient variations in the interface vicinity are il-
lustrated in Fig. D.27 and Fig. D.28 of Appendix D. They
illustrate the difficulties of the fitted solutions to significantly
improve the prediction in the interface vicinity near the bubble
top.
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2
δ

e
−r2

δ2

√
π

(
2
δ
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Supplementary results using this method are not extensively ad-
dressed in this paper as the second approach (LRS) is revealed
to be more versatile (transposable to velocity) and interesting
in the scope of simulating moderately large thermal boundary
layers with low mesh requirements.

4.3 Laminar radial sub-resolution

In a second approach, the laminar radial sub-resolution has been
performed on the simulation results. We expect the method to
enhance the temperature gradient for coarse meshes. It is also

desirable that the method degenerates to the same underlying
field value by increasing spatial resolution. A simple advection-
diffusion equation is resolved for a given probe associated with
a facet. The problem is resolved on a length of three diago-
nals of the coarse mesh (Db/∆ = 16) i.e. 2∆d∗ ≈ 5∆ with an
increased resolution of around 32 points in the local 1D dis-
cretisation of Eq. (35b) i.e. we are considering around 6 times
more points locally. For a simulation at 16 cells per diameter,
the surface mesh counts roughly 1200 facets. Solving the prob-
lem on each one represents 38 400 degrees of freedom for the
temperature field. It is therefore a very reasonable supplemen-
tary cost compared to the 0.4M and 25M cells of the coarse and
fine simulations performed with 16 and 64 cells per diameter,
respectively.

Interfacial temperature gradient enhancement study.

The velocity components are interpolated from the coarse field,
while the tangential temperature gradient ∂θΘ, as per Eq. (36d),
and the tangential diffusion term, as indicated in Eq. (36d), can
be interpolated from either the coarse or fine Eulerian field.
These tangential convective terms serve as radial source terms.

The idea is to observe the effect of considering different tan-
gential source terms, starting with the convective effect alone
and progressing to the inclusion of both tangential convec-
tion and diffusion, along with interfacial corrections, to ensure
∂nΘ
∂θn = 0. A summary of the seven tested combinations can
be found in Tab. 5. The complexity of the source terms in-
creases from cases (A) to (C), while the influence of using well-
resolved terms is also explored in cases (D), (E), and (F).

Cases (A), (B), and (F), as outlined in Tab. 5, are initially
discussed in this section. This discussion is complemented by
figures Fig. 21, Fig. 22, and Fig. 23, respectively. Each of these
figures consists of two sub-figures: one illustrating the interfa-
cial temperature gradient based on the bubble’s position, and
another for observing the predicted temperature profile over a
finite length, which will prove valuable in a future coupling pro-
cess.

According to Fig. 21a presenting the case (A) i.e. with a sin-
gle tangential convective term only, the difference in the tem-
perature field in the interface vicinity is small for the probes sit-
uated in the bubble’s top region. However, for bottom probes, at
the end of the sub-resolution domain r = 2∆d∗ , the normal tem-
perature field derivative differs from the Eulerian one. We can
incriminate the error made on the tangential term (convective
term Cθ, defined in Eq. (36)) that influences the temperature
variations significantly.

Heat is constantly injected at the interface because of the
constant interfacial temperature (and the mass transfer being
disabled) and is transported toward the subdomain’s end. At
the bubble’s bottom, the liquid is pushed outward the bubble
which causes the radial convective and diffusive terms to have
the same sign if the tangential variations are not well captured.
It explains the wrong slope of the temperature at the probe’s
end. Sign and evolution of the terms have been discussed in
Sec. 4.1.1. According to Fig. 12a, a non-zero diffusion term is
still visible at the bubble’s bottom. This term is neglected in
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Figure 21: The convective tangential term Cθ has been interpolated from the
coarse simulation in case (A). (a) Refined temperature profile. (b) Local

Nusselt number enhanced by the laminar radial sub-resolution. The technique
has been performed at Reb = 62.5 and Pr = 1.0 and for a resolution of

Db/∆ = 16 and compared to the reference profile at Db/∆ = 64.

case (A) which contributes to the discrepancy observed (blue
probes in Fig. 21a).

In case (A) presented in Fig. 21b, the normal temperature
gradient near the interface is enhanced from the bubble’s top un-
til θ ≈ 30°. However, the approach misses correcting the tem-
perature gradient in the equator region and the bubble’s wake.
Once again it may be caused by a coarse evaluation of the tan-
gential convective term. At the bubble’s bottom, the tempera-
ture gradient is underestimated but it is less critical as it is quite
small and it concerns a small area. It is also due to the second-
order tangential derivative ∂2

θΘ which is neglected in the heat
equation Eq. (35) but has a significant effect in this region.

The smoothed profile shown in Fig. 21b has been computed
from a tweaked Levich-Ruckenstein profile (Eq. (42) reformu-
lated from [16] with coefficient in Eq. (43)). In particular when

θ = −π/2, c should equal ∇T · nΓ |θ=−π/2

∇T · nΓ |θ=π/2
. The profile has been

under-constrained to be fitted without using any top or bottom
temperature gradient value (θ = π/2 and −π/2, respectively). It
is convenient when the maximum predicted value is not neces-
sarily at the bubble’s top (because of numerical variations). The
ability of our LRS method can be better visualised.

∇T · nΓ(θ)
max (∇T · nΓ)

=

√
a cos2

(
π/2−θ

2

)
√

b + cos (π/2 − θ)
+ c

for θ ∈ [−π/2; π/2]

(42)

max (∇T · nΓ) = ∇T · nΓ|π/2 Theoretical
a = 3; b = a − 1 = 2; c = 0
a = 9.37; b = 8.35; c = 1.22 × 10−2 Fitted, Case (A)
a = 1.80 × 107; b = 1.92 × 107; c = 4.56 × 10−2 Fitted, Case (B)
a = 4.23; b = 3.40; c = 3.90 × 10−2 Fitted, Case (F)

(43)

In the second case (B), the diffusion term ∂2
θΘ/R

2 is added
to the resolution as a source term taken from the coarse solu-
tion. At the exact bubble’s equator (θ = 0°), where tangen-
tial convective effects are the greatest, there is no particular en-
hancement. However, the prediction is better in the upper range
θ ≈ {10°; 25°} in Fig. 22b. The predicted values on both sides
of the equator θ ≈ {−5°; 5°} are quite dispersed and are still
coarser than the reference measurement. These discrepancies
are studied more precisely in the light of the Nusselt number
integrand to ensure a global convergence of the Nusselt number
although some dispersion in the predicted values is observed.

By interpolating both tangential terms Cθ and Dθ from the
finest mesh, a clear improvement can be observed (Case F, see
Fig. 23a and Fig. 23b). The source terms have been slightly
offset to ensure a physical zero value at the exact interface po-
sition. In case (F), the velocity field is still coming from the
coarse mesh (see Tab. 5). On average, an improvement in the
temperature gradient prediction is visible in the bubble equator
region. Bubble’s top and bottom regions are still well resolved.

The particular case (F) is the best combination to mitigate the
error in the configuration characterised by dimensionless values
Ar∗ = 50 and Prl = 1. It can be concluded from our analysis
of cases (A-F) that it is required to model properly the tangen-
tial terms in the equator region to perform a decent temperature
gradient correction. It becomes more and more significant as
the Prandtl number increases.

Non-zero tangential temperature derivatives at the interface
∂n
θΘ

∣∣∣
Γ

have a non-negligible effect as well. These terms must be
treated with caution to not alter the regions where the solution is
already converged (bubble’s rear part). As our approach is sys-
tematic, it does not involve specific region detection. Therefore,
it became necessary to ascertain the source of this deterioration.

Enhancement on the integral prediction and dispersion of the
values.
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Table 5: Summary of the observations depending on tested methods. Velocity is systematically corrected to ensure zero velocity at the probe end lying on the
interface. It is done to respect the frame of reference in which we are working.

Case Description Related figures
Mesh related
velocity field

Tangential terms
Mesh related

tangential terms
Corrections

A Raw sub-resolution Fig. 21,Fig. 24a Coarse Convective Cθ
coarse Coarse -

B
Raw sub-resolution

Diffusive term
Fig. 22 Coarse

Convective Cθ
coarse

Diffusive Dθ
coarse

Coarse -

C
Raw sub-resolution

Interfacial correction
- Coarse

Convective Cθ
coarse, corr

Diffusive Dθ
coarse, corr

Coarse
Tangential terms

∂Θ
∂θ

∣∣∣
Γ

= 0; ∂2Θ
∂θ2

∣∣∣∣
Γ

= 0

D Enhanced sub-resolution - Coarse Convective Cθ
fine Fine -

E Enhanced sub-resolution Fig. 24b Coarse
Convective Cθ

fine
Diffusive Dθ

fine

Fine -

F
Enhanced sub-resolution

Interfacial correction
Fig. 23,Fig. 24c Coarse

Convective Cθ
fine, corr

Diffusive Dθ
fine, corrˆ

Fine
Tangential terms

∂Θ
∂θ

∣∣∣
Γ

= 0; ∂2Θ
∂θ2

∣∣∣∣
Γ

= 0

If a local improvement has been observed in previous figures
Fig. 21, Fig. 22 and Fig. 23, it is mandatory to study the ro-
bustness of the approach over all the facets. Their orientation
or their position in the mixed cells might have a significant ef-
fect on the method’s efficiency. The integrand has been cal-
culated for each facet (a thousand at Db/∆ = 16) and for each
treatment of the source terms. Finally, the effect of three tested
corrections on the integrand value of the temperature gradient
(so the bubble Nusselt number) can be visualised in Fig. 24a,
Fig. 24b and Fig. 24c for cases A, E and F respectively. The
integrand is evaluated locally keeping in mind that the facet’s
surface area is uniformly distributed. In each case, the tangen-
tial term treatment has a clear effect on the dispersion especially
in the equator region.

In case (A), the gain in the temperature gradient predic-
tion at the bubble top is encouraging (see Fig. 24a) but it is
not sufficient to correct its integral quantity. Introducing both
fine tangential convective and diffusive source terms Cθ and
Dθ, respectively (case E), an overall improvement is observed
(Fig. 24b). Around the bubble equator, it still lacks a compo-
nent that sweeps the heat and makes the transfer more intense.

Finally, in the present case (Ar∗ = 10, Prl = 1), the use of
the finer source terms coupled to a correction of both tangential
terms (case F) by bringing them to zero at the interface makes
the best prediction once regularised (Fig. 24c). The prediction
in the region around θ ≈ 25o is very dependent on the convec-
tive tangential term evaluation Cθ. Using the fine field velocity
does not improve significantly the results and is thus not pre-
sented here. Once again, the boundary condition applied for the
velocity in the mixed cell is not directly geometrically related
compared to the one employed in the temperature extension.

To sum up, an overall improvement is observed given the
coarse source terms in Fig. 24a. Some values are underesti-
mated in the equator region i.e. where the normal velocity is
almost zero and in which stall will occur at higher Reynolds
numbers. A wrong prediction of the tangential source terms in
this region can be critical. The maximum value of the integrand
is overestimated and the distribution is offset in the bubble’s top
region. The dispersion is relatively high but is balanced as the
computation of the overall Nusselt number shows a significant
improvement.

Using finer source terms allows a net gain in dispersion as
exposed in Fig. 24b. However, the collection of points is again
offset in the bubble’s top region. The dispersion is mitigated
using finer terms.

Finally, by correcting the source terms Fig. 24c (Case F), the
dispersion is slightly increased but the average values at a given
θ are close to the fine mesh. The regularisation (dash-line) is in
excellent agreement with the fine mesh solution.

For each tested treatment of the source terms, the overall
Nusselt number with correction has been computed and com-
pared to the reference (see Tab. 6). Overall Nusselt number
is given for a perfect sphere of radius Rb (diameter Db) by
Eq. (44).

Nub = DbR2
b/∆T

∫
S Γ

(∇T · nΓ) sin (θ) dθdφ (44)

where φ varies between 0 and 2π. Results are presented in
Tab. 6. The column ”Reference errors” gives the Nusselt un-
derestimation of the coarse mesh for each case.

A clear improvement is observed at a moderate Reynolds
number reducing the relative error to reach 8-12 % of the ref-
erence solution depending on the liquid Prandtl value Prl i.e.
depending on the thermal boundary layer thickness. Relative
error drops to a range of 1-4 % using the tangential source terms
interpolated from the finest mesh solution in case (F).

Adding a surface diffusion source term from the coarse field
in case (B) reduces the gain in precision. It is incriminated to
the high-order character of this term which is not well captured
in some regions in the actual coarse simulations without a sub-
model. However, once corrected to ensure a zero value at the
interface (i.e. shifting the profile to enforce Dθ = 0 on cases (C)
and (F)), the gain can be significant. Correcting the interfacial
value of the surface diffusion Dθ to zero allows to mitigate the
error in regions of high variations while keeping the benefits in
well-resolved regions.

Surprisingly, the use of Dθ is no longer beneficial when the
source terms come from the finest simulation at high Prandtl
numbers. When the Prandtl increases, the boundary layer
thickness is thinner. Dθ must be less well captured for both
Pr = 2.5, 5 than for Pr = 1. This term and the higher order
derivatives of Θ along θ are thus potentially showing a greater
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Table 6: Overall Nusselt number prediction according to each tested method (A-F) exposed in Tab. 5. Reference error is coloured in red. The green colour
indicates the best prediction for both coarse and fine source terms.

Coarse Fine A B C D E FArchimedes
number (Ar∗)

Prandtl
number (Pr) Db

∆
Value Db

∆
Value

Resolution
ratio

Reference
error (%) Value Error (%) Value Error (%) Value Error (%)

Best gain
factor Value Error (%) Value Error (%) Value Error (%)

Best gain
factor

1.0 12 3.02 48 3.17 4 4.76 3.10 2.18 3.09 2.71 3.14 1.17 4.06 3.12 1.78 3.11 2.08 3.13 1.21 3.92
2.5 16 4.26 96 4.46 6 4.48 4.26 4.42 4.25 4.58 4.29 3.73 1.20 4.34 2.66 4.34 2.74 4.37 2.06 2.1710
5.0 24 5.34 96 5.53 4 3.38 5.34 3.44 5.33 3.54 5.36 3.10 1.09 5.40 2.29 5.40 2.28 5.41 2.06 1.64
1.0 16 7.40 64 8.81 4 16.06 7.96 9.67 7.95 9.76 8.05 8.67 1.85 8.24 6.46 8.26 6.32 8.49 3.61 4.44
2.5 22 10.47 90 13.00 4.1 19.46 11.87 8.65 11.85 8.87 11.88 8.61 2.26 12.80 1.53 12.79 1.60 12.35 5.02 12.7050
5.0 22 11.87 90 17.41 4.1 31.78 15.19 12.72 15.17 12.87 15.27 12.29 2.59 17.28 0.73 17.27 0.77 16.28 6.45 43.46
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Figure 22: Both convective and diffusive tangential terms Cθ and Dθ have
been interpolated from the coarse simulation (Case B). (a) Refined

temperature profiles. (b) Normal temperature gradient enhanced by the
laminar radial sub-resolution. The technique has been performed at

Reb = 62.5 and Pr = 1.0 and for a resolution of Db/∆ = 16 and compared to
the reference profile at Db/∆ = 64.

error although it is decreasing in magnitude with the boundary
layer thickness. Sticking to the tangential term Cθ for a higher-
aimed Reynolds number appears to be the best option.

At the lowest Reynolds number, the gain in precision is not
as high as the relative error was already low with the coarse

resolution. The error is still reduced by a factor 1.6 to 4 de-
pending on the Prandtl number and it reaches a very low level.
For this flow regime, the resolution required to resolve correctly
the bubble shape and velocity is already satisfied. In that case,
the thermal sub-resolution approach is not very interesting for
Pr ∈ [1; 5].

Overall, the LRS method proposed in this paper is promis-
ing even using the coarse source terms and especially at higher
Peclet numbers i.e. when the boundary layer will get thinner.
The source terms (Cθ and Dθ) need to be corrected to ensure
a better prediction of the temperature in the interfacial region.
A possible improvement of the sub-resolution method could be
achieved by modelling these terms. It could potentially lighten
vector projection procedures along the tangential axis. Some in-
vestigations will be conducted using the fine simulation results
to perform further modelling and draw a clear tendency accord-
ing to local variations such as velocity gradient (and other in-
variant fields).
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Figure 23: Both convective and diffusive tangential terms Cθ and Dθ have been interpolated from the fine simulation (Case F). (a) Refined temperature profiles.
(b) Normal temperature gradient enhanced by the laminar radial sub-resolution. The technique has been performed at Reb = 62.5 and Pr = 1.0 and for a resolution

of 16 Db/∆ and compared to the profile at 64 Db/∆.
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Figure 24: Normal temperature gradient integrand for a perfect sphere considering axisymmetry: sin (θ)∇T · nΓ. The solution has been computed for all the
interface’s facets. (a) Source terms and velocity from the coarse mesh (Case A), (b) Source terms from the fine mesh and velocity from the coarse mesh (Case E),
(c) Source terms from the fine mesh and velocity from the coarse mesh. Convective (Cθ) and diffusive (Dθ) tangential source terms are corrected to exhibit a zero

interfacial value (Case F).

5 Conclusions

The present work has been carried out on thermal boundary
layer modelling near a viscous bubble interface. DNS ref-
erence data of heat transfer around a rising bubble was pro-
duced by a Front-Tracking solver in addition to a ghost fluid
approach and a quasi-static sub-grid diffusion model in the in-
terface vicinity. Two steady dynamical regimes have been ob-
tained at Ar∗ = {10; 50} corresponding to bubble Reynolds
numbers of Reb = {3.6; 62.5}. Thermal cases have been simu-
lated for each dynamical regime at three different liquid Prandtl

numbers Prl = {1 , 2.5 , 5}. Spatial resolutions expressed in
cells per bubble diameter vary from 12 to 96 for Ar∗ = 10 and
between 16 and 90 for Ar∗ = 50, respectively.

A hierarchy of radial and tangential convective and diffusive
terms showed three distinct regimes. The tangential and normal
convective terms are relevant to consider in the interface vicin-
ity. On the other hand, the normal diffusive term is dominant
over the tangential one at every bubble elevation coordinate.

Global Nusselt numbers measured in each case have been
compared to a robust correlation of the literature. The con-
vergence study shows that the spatial resolution requirement is
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proportional to the Prandtl number.
A literature review on sub-grid models for boundary lay-

ers has been performed where different aspects were discussed
and some improvements have been proposed. Either semi-
analytical profiles undergoing a fitting process or 1D laminar
sub-resolutions were considered.

Regarding the fitting of an analytical solution, the SoV pro-
file Eq. (30), established within an osculating sphere frame of
reference, incorporates considerations for the local mean cur-
vature and the tangential convective term, contrasting with the
commonly used plane solution (zeroth order surface, erfc func-
tion) found in the existing literature. Furthermore, the impact
of a constant normal velocity has been incorporated.

Fitting the resulting SoV profile has shown some enhance-
ment in the gradient prediction. However, the difficulties linked
to the free-parameter determination (Newton’s algorithm), cou-
pled with its limited applicability, make it difficult to work with.
This analytical approach poses challenges when dealing with
larger boundary layers (δ . R, ∆x,y,z . R).

The numerical radial sub-resolution is very interesting in en-
hancing the temperature gradient evaluation at the interface
from coarse initial meshes. It proved to be particularly effec-
tive in the region subjected to the incident fluid where a local
steady-state is ensured even when tangential derivatives, feed-
ing the sub-resolution, are poorly reconstructed.

The effect of the tangential terms around the bubble equator
is also clearly observed and the necessity to capture properly
the latter is key to performing sub-grid modelling. The tem-
perature gradient once weighting by the surface area in this re-
gion brought the main contribution to the overall bubble Nusselt
number.

The LRS approach has demonstrated better capabilities than
the analytical approach. Besides, it exhibits a greater im-
provement at higher Prandtl numbers (with thinner thermal lay-
ers) while the original sub-grid pure diffusion approach (as in
Ghost-Fluid methods) becomes less representative of the under-
lying physics for a given mesh cell resolution (higher Peclets
lead to weaker thermal diffusion). Our approach benefits from
the scale separation that occurs as the thermal boundary layer
thickness diminishes, constituting one of its strengths.

The degrees of freedom added to the numerical resolution
are reasonable. Besides, an extension of the method could be
achieved in the case of a two-phase LES simulation by incorpo-
rating a turbulent contribution into the thermal diffusion term.
This approach still remains independent of the resolution of the
velocity field.
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Appendix A Derivation of an analytical solution

Appendix A.1 Temperature equation in the osculating sphere
frame of reference

To derive an analytical solution or to work with simplified equa-
tions taking into account the local curvature, some analytical
developments have been conducted. By choosing to use the
spherical equation, i.e. by re-writing the problem in the os-
culating sphere frame of reference we wish to align with the
principal direction of variations. The general instantaneous and
local temperature equation expressed for a single phase and in
non-conservative form (only the liquid phase is resolved) can be
written in dimensional and dimensionless forms by Eq. (A.1a)
and Eq. (A.1b) respectively.

∂T
∂t

+ u · ∇T = αl∆T (A.1a)

∂Θ

∂t∗
+ u∗ · ∇∗Θ =

1
RebPrl

∆∗Θ (A.1b)

For this particular problem, the characteristic length could
be chosen to be the bubble diameter L = Db. The characteristic
velocity U is chosen to be the terminal velocity. A characteristic
time t∗ is built upon both previously introduced characteristic
variables.

A hypothesis is made concerning the non-dimensionalisation
of the temperature. In the case where it is not possible to define
an infinite temperature, a local temperature value denoted Tδ
is used (for each sub-problem). The reference temperature is
T0 = T sat. It is common to solve around the constant saturation
temperature i.e. T ←

(
T − T sat). One can write:

Θ =
Tδ − T

Tδ − T sat = 1 −
T
Tδ

(A.2a)

dΘ =
∂Θ

∂T
dT +

∂Θ

∂Tδ
dTδ = −

dT
Tδ

+ T
dTδ
Tδ2︸︷︷︸
≈0

(A.2b)

From Eq. (A.2), the variations of dTδ are assumed to be zero
locally. It is noticeable that the characteristic variable Tδ used
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to non-dimensionalise the current problem is inherently related
to a single bubble configuration.

The single-phase instantaneous and local temperature equa-
tion in a moving spherical coordinate system writes:

DtΘ︷︸︸︷
DΘ

Dt
+

Cr︷           ︸︸           ︷(
ur − ur,Γ

) ∂Θ

∂r
+

Cθ︷ ︸︸ ︷
uθ
r
∂Θ

∂θ
+

Cφ︷        ︸︸        ︷
uφ

r sin (θ)
∂Θ

∂φ

Dr
{

=
αl

r2

∂

∂r

(
r2 ∂Θ

∂r

)
Dθ

{
+

αl

r2 sin (θ)
∂

∂θ

(
sin (θ)

∂Θ

∂θ

)
Dφ

{
+

αl

r2 sin (θ) cos (θ)
∂2Θ

∂φ2

(A.3)

ur,Γ denotes the interface radial velocity.
As each local frame of reference is moving over time, the

time derivative appearing in the spherical equation is a material
derivative denoted Dt· in each marker frame of reference (or
associated osculating sphere in Fig. 11):

DΘ

Dt

∣∣∣∣∣
Γ

=
∂Θ

∂t
+

dOMsph

dt
· ∇Θ

=
∂Θ

∂t
+

[
dr
dt

ẽr +
�
��r

dẽr

dt

]
· ∇Θ

≈
∂Θ

∂t
+ (uΓ · nΓ) (∇Θ · nΓ)

=
∂Θ

∂t
+ ur |Γ

∂Θ

∂r

(A.4)

The time derivative of ẽr is neglected. It could potentially be
linked to the curvature evolution over time.

As a consequence, the fluid velocity is thus referring locally
to the liquid relative velocity to the interface i.e. the liquid ve-
locity from which the normal interface velocity component has
been subtracted:

ul↔Γ = u − (uΓ · nΓ) nΓ

= u − ur |Γ nΓ

(A.5)

Only the normal component of the interface velocity is em-
ployed. In fact, because of the shear of the two moving flu-
ids, the tangential velocity is not zero at the interface even in a
steady-state configuration. It implies that the basis is associated
with a geometric displacement of the interface i.e. the markers
are not advected by the fluid tangentially.

For the sake of clarity, u will be kept in the following section
but will refer to ul↔Γ defined in Eq. (A.5). To derive our ana-
lytical approaches, the total derivative DtΘ in Eq. (A.3) is as-
sumed to be zero. This is especially true at the interface where
the temperature is kept constant. The quasi-steadiness of the
solution in the interface vicinity can be justified by the fact that
the boundary layer around the bubble will be only slightly per-
turbed by other bubbles’ wakes once settled. It is expected that
the bubbles’ acceleration will be low in a statistically stationary
swarm. The initial transient will rapidly affect the local far-field

temperature T θ
δ , which in turn influences the sub-resolution ap-

proach boundary conditions. It might be sufficient to capture
the transient accurately. Capturing the overall vapour growth
rate is already a difficult task and we think the proposed ap-
proach will lead to a useful gain in accuracy and knowledge for
industrial applications related to heat transfer.

The solution is expected to vary strongly in the radial di-
rection ẽr. As a consequence, the normal convective term
as well as the second-order normal diffusive term are kept
in the general equation Eq. (A.3). To simplify our study in
the first approach, an axisymmetric problem has been cho-
sen. Variations along direction ẽφ are then zero in any bubble-
osculating sphere frame of reference. Finally, the first-order
tangential term has been kept. The tangential diffusive term has
been neglected according to preliminary observations shown in
Sec. 4.1 and according to numerous works performed in the lit-
erature [26, 27, 29, 32]. However, it has been observed that
locally, it can have a positive effect on the prediction capability
of the method.

As underlined previously, the tangential component of the
velocity uθ is non-zero and there is not a real consensus on
considering this term in the temperature equation. Some au-
thors are favouring this term against the normal convective term
[26, 27] by using an analytical solution of the simplified prob-
lem (see Eq. (23a)).

To avoid any lack of generality, the simplified steady-state
advection-diffusion Eq. (A.6) has been extensively considered
in the current paper and Sec. 3.

ur
∂Θ

∂r
+

uθ
r
∂Θ

∂θ
=
αl

r2

∂

∂r

(
r2 ∂Θ

∂r

)
= αl

(
2
r
∂Θ

∂r
+
∂2Θ

∂r2

) (A.6)

The tangential diffusive terms employed in the sub-resolution
process write:

Dθ =
αl

r2 sin (θ)
∂

∂θ

(
sin (θ)

∂Θ

∂θ

)
(A.7a)

=
αl cos (θ)
r2 sin (θ)

∂Θ

∂θ︸          ︷︷          ︸
Dθ

1

+
αl

r2

∂2Θ

∂θ2︸  ︷︷  ︸
Dθ

2

=
αl

r2

∂2Θ

∂θ2 for θ = π/2 (A.7b)

Appendix A.2 Forms of solution of a simplified equation

To achieve an interfacial gradient correction in the style of
Weiner et al. [26], Cai et al. [31] at steady state or like in the ap-
proach of Aboulhasanzadeh et al. [27] or Classen et al. [32] in
a time-dependent fashion (see Sec. 3.1), an equation describing
the boundary layer radially is needed.

Previous authors have not taken into account the mean cur-
vature κ in their previous forms of solutions. Moreover, they
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made some assumptions concerning the convective terms to set-
tle their approaches.

To find a solution to Eq. (A.6), a method of separation of
variables (SoV), commonly used in heat transfer problems, has
been explored. In our case, this method is applicable because
the temperature equation is linear and the boundary conditions
are finite (Θ equals 1 at the interface and 0 from a certain dis-
tance).

As a reminder, the methods of SoV consist of expressing the
variable Θ into a product of a function of one variable. In our
case, Θ writes:

Θ (r, θ) = f (r) g (θ) (A.8)

Eq. (A.8) is then re-introduced in Eq. (A.6) but ur and uθ
directions of variation are constrained to solve the problem. ur

can only vary in the radial direction whereas uθ can vary in
either radial or tangential directions. Tow forms are possible
and are expressed through Eq. (A.9a) and Eq. (A.9b).

A =

∂g(θ)
∂θ

g(θ)
=

∂2 f (r)
∂r2 +

(
2
r −

ur(r)
αl

)
∂ f (r)
∂r

f (r)
αlr

uθ (r)
(A.9a)

A
′

=uθ (θ)
∂g(θ)
∂θ

g(θ)
=

∂2 f (r)
∂r2 +

(
2
r −

ur(r)
αl

)
∂ f (r)
∂r

f (r)
αlr (A.9b)

As we wish to solve this simplified problem locally and radi-
ally, it is more consistent to look for the solution of equation
Eq. (A.9a). It is also expected that the variables are strongly
varying in the normal direction including the tangential veloc-
ity uθ (see Fig. 14.b).

Besides, Θ (r, θ) is not cancelling at the interface so neither
g (θ) or f (r) are zero at the interface. However, Θ is cancelling
at a certain distance from the interface while its derivatives are
decreasing as well. As a consequence, it is physically admissi-
ble to find a solution using the SoV method.

Given Eq. (A.9a), both sides of the equations are functions
of separate variables. As a consequence, each side of the equa-
tion is equal to an undetermined constant A which leads to
two separate Ordinary Differential Equations (ODEs) given by
equation (A.10).

∂g(θ)
∂θ
− Ag(θ) = 0 (A.10a)

∂2 f (r)
∂r2 +

(
2
r
−

ur

αl

)
∂ f (r)
∂r
−

Auθ (r)
αlr

= 0 (A.10b)

g can be solved straightforwardly according to constant A. An-
other constant of integration B ∈ R appears in the Eq. (A.11)
and will be determined later.

g (θ) = BeAθ (A.11)

To be able to solve Eq. (A.10b) analytically, it is required to
make further simplifications. The coefficients of the character-
istic polynomials are a priori some functions of r. However, to
find a solution, the velocity components must be constants and

the terms ∝ 1/r can be approached at zero order by the mean
curvature value κ in the interface vicinity (see Eq. (A.12) given
Eq. (A.13)).

κ =κ1 + κ2 =
1

R1
+

1
R2

=
2
R

(A.12)

2
r

=
2
R

+ o (1)

=κ + o (1)
(A.13)

One can see that the continuity equation should also be ap-
proximated to be coherent with a constant velocity field:

∇sph · u =
2ur

r
+
∂ur

∂r
+

1
r
∂uθ
∂θ

≈κur +
∂ur

∂r
+
κ

2
∂uθ
∂θ

(A.14)

A zero divergence can not be achieved with a constant normal
velocity ur 6= 0 except if a source term is taken into account in
the RHS .

Symbolic mathematical software such as SageMath was not
able to determine a general form of solution for higher-order
expansions of ur, uθ and 1/r. The ODE in the radial direction
Eq. (A.10b) can be simplified in the interface vicinity r = R to
Eq. (A.15a) and leads to characteristic equation (A.15b).

∂2 f (r)
∂r2 +

(
καl − ur

αl

)
∂ f (r)
∂r
−
κAuθ
2αl

≈0 (A.15a)

λ2 +

(
καl − ur

αl

)
λ −

κAuθ
2αl

=0 (A.15b)

The problem now reduces to a simple second-order system
whose discriminant is:

∆ =

(
καl − ur

αl

)2

+
2κuθA
αl

=
κ2α2

l + u2
r + 2καl (Auθ − ur)

α2
l

(A.16)

Sticking to non-oscillatory solutions (i.e. ∆ > 0), the two
roots λ1,2 equal:

λ1,2 =
(ur − καl) ±

√
κ2α2

l + u2
r + 2καl (Auθ − ur)

2αl

(A.17)

For the sake of simplicity, let us define in Eq. (A.18) δ1 and
δ2, which are characteristic length scales associated with the
general forms of solutions of Eq. (A.15b). The relations be-
tween δ1 and δ2 are derived by combining the two roots λ1 and
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λ2.

δ1 = −
1
λ1

=
αlδ2

αl + δ2 (καl − ur)
(A.18a)

δ2 =
1
λ2

=
αlδ1

αl + δ1 (ur − καl)
(A.18b)

The general form of function f is straightforwardly found
given two constants C, D ∈ R:

f (r) =Ceλ1r + Deλ2r

=Ce−
r
δ1 + De

r
δ2

(A.19)

Overall non-oscillatory forms of solution for Θ are finally given
by Eq. (A.20).

Θ(r, θ) = BeAθ
[
Ce

−r
δ1 + De

r
δ2

]
(A.20)

Constants A, B as well as C and D in R should then be found.
However, simplifications made to solve for Θ have already con-
strained the solution space so that imposing a constant tem-
perature at the interface leads to a constant solution. Since,
eAθ > 0,∀A ∈ R, A or B must equal zero to satisfy the ”global”
interface zero tangential temperature gradient. In other words
the saturation temperature condition Θ (r-0, θ) = 1, ∀θ ∈ [0, π]
lead to A = 0 to have a non-trivial solution.

However, it should be kept in mind that we are solving sev-
eral heat transfer problems locally i.e. for each osculating
sphere (subscript (θ)). Instead, the saturation temperature can
be weakly imposed locally by letting B, C and D vary with re-
spect to θ so that the following boundary condition holds:

B.C.1: Θ (r-0, θ) = 1

↔ B(θ) =
1

C(θ) + D(θ)

(A.21)

In a real 3D scenario, the ẽθ direction should then be chosen
such as the direction of the tangential velocity corresponds to
the surface projection of u:

uθẽθ ≡ u − (u · nΓ) nΓ (A.22)

To consider further local complexity like the two principal di-
rections of curvature, the equations should be entirely rewritten
in curvilinear coordinates.

If the second boundary is imposed at r → ∞, ∃
(
C(θ),D(θ)

)
∈

R2, Θ (r → ∞, 0) = 0. C(θ) and D(θ) can take multiple values
over R to satisfy the second boundary condition and the prob-
lem is under-determined. Instead, it will be considered that Θ

equals zero at a certain distance δ (θ). In other words, the prob-
lem is re-constrained by local information on the far-field tem-
perature T θ

δ . It is translated by the following boundary condi-
tion:

B.C.2: T (r-δ (θ) , θ) = T θ
δ

↔ Θ (r-δ (θ) , θ) = 0
(A.23)

This second boundary condition can be introduced to relate C(θ)

to D(θ):

C(θ) = −D(θ)e
δ
(

1
δ2

+ 1
δ1

)
(A.24)

The overall solution is finally given through Eq. (A.25).

Θ (r, θ) =
C(θ)

C(θ) + D(θ)
e−

r
δ1 +

D(θ)

C(θ) + D(θ)
e

r
δ2

=

(
1 − e

δ
(

1
δ2

+ 1
δ1

))−1 (
e

r
δ2 − e

δ
(

1
δ2

+ 1
δ1

)
e
−r
δ1

)
=

(
1 − e

δ(2αl+δ1(ur−καl))
(αlδ1)

)−1

×

(
e

r(2αl+δ1(ur−καl))
(αlδ1) − e

δ(2αl+δ1(ur−καl))
(αlδ1) e

−r
δ1

)
(A.25)

In the case where ur = 0 (free-divergence field), the equation
writes:

Θ (r, θ) =
C(θ)

C(θ) + D(θ)
e−

r
δ1 +

D(θ)

C(θ) + D(θ)
e

r
δ2

=

(
1 − e

δ(2−κδ1)
δ1

)−1 (
e
−r(κδ1−1)

δ1 − e
δ(2−κδ1)

δ1 e
−r
δ1

) (A.26)

This form of solution is plotted in Fig. A.25a for given values
of constant A, ur, uθ and three values of curvature κ. It leads to
three values of δ1 giving the root expression Eq. (A.17). When
κ → 0 and ur = 0, the approximated tangential term uθκ/2∂θΘ
cancels naturally. Then, the discriminant ∆ tends to 0 and the
solution tends to be a planar diffusion problem. In the case
where κ → 0, ur < 0, the solution corresponds to a decreasing
exponential solution. It embeds a normal velocity component
ur.

It should be underlined once again that our approach, as pre-
sented here, remains quasi-static. The value of T θ

δ , δ (θ) are
re-evaluated at each time-step and for each value of θ thanks
to interpolation of the far-field a certain distance from the in-
terface. Time dependency as introduced by Aboulhasenzadeh
et al. [27] will be much more difficult to put in place. Even
by fixing δ (θ) = const and integrating the heat equation over a
radial portion, one can see that T θ

δ is now time-dependent. Its
temporal variations might have some impact on the model.

Around r = 0, the second-order term that emerges in the
Taylor expansion of Eq. (A.25) does not cancel out, and its
magnitude depends on the radial distance to the boundary layer
thickness values r

δ1
and r

δ2
, indicating that the profiles exhibit

higher-order behaviour at the interface.

f (r) =
r=0

1 +
1

C + D

(
D
δ2
−

C
δ1

)
r

+
1

C + D

 C
δ2

1

+
D
δ2

2

 r2

2
+ o

(
r2

) (A.27)

Finally, conducting a Taylor expansion of the error function
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Figure A.25: Form of the solution developed for the simplified problem.
(a) Effect of the curvature κ on the dimensionless temperature variations for
given parameters:

{
A = −1 × 10−5 ; uθ = 1 × 10−3m s−1; δ = 0.8 × 10−2m;

αl = 1 × 10−5m2 s−1; ur = 0m s−1
}
,

(b) Effect of the velocity ur on temperature variations for given parameters:{
δ1 = 0.5 × 10−2m ; κ = 500m−1; δ = 0.8 × 10−2m; αl = 1 × 10−7m2 s−1

}
.

Eq. (23b) around r = 0 results in a linear profile:

f (r) =
r=0

1 −
2
√
π

r
δ

+ o
(
r2

)
(A.28)

Appendix B Error assessment using a mean curvature

Incorporating the mean curvature κ = κ1 + κ2 into the solution
implies a description of surface variation at the first order while
employing two radii of curvature yields a second-order repre-
sentation of the problem. Utilising a planar solution represents

only a zeroth order approximation, and the diffusion term ∝ ∂Θ
∂r ,

scaled by 2
r+R due to the change of the basis vectors in the tan-

gential directions (e.g. ∂ẽr
∂θ

), remains non-zero in the context of
significant thermal diffusion.

Indeed, within a curvilinear framework where we assume
the local uniformity of radii of curvature and positivity (R1 =

const > 0 and R2 = const > 0), the derivatives of the basis vec-
tors along orthogonal curvilinear directions emerge from the
diffusion term, resulting in two additional terms that vary with
the normal direction r.

A
∂Θ

∂r
=

1
r + R1

∂Θ

∂r
+

1
r + R2

∂Θ

∂r

=

(
R1 + R2 + 2r

R1R2 + r2 + r (R1 + R2)

)
∂Θ

∂r

(B.1)

Through the approximation of the term A ∂Θ
∂r from Eq. (B.1) as

B ∂Θ
∂r in Eq. (B.3), by employing the osculating radius expres-

sion as depicted in Eq. (B.2), we can quantify the associated
error.

R =
2
κ

=
2

κ1 + κ2
=

2R1R2

R1 + R2
(B.2)

2
R + r

∂Θ

∂r
=

2 (R1 + R2)
2R1R2 + r (R1 + R2)

∂Θ

∂r
= B

∂Θ

∂r
(B.3)

This error is directly proportional to the radial distance to the
interface, denoted as r, and to the square of the difference be-
tween the radii of curvature, expressed as (R1 − R2)2 (for a de-
tailed derivation, refer to Eq. (B.4)).

(A − B)
∂Θ

∂r
=

[
1

r + R1
+

1
r + R2

+
2

R + r

]
∂Θ

∂r[
R1 + R2 + 2r

R1R2 + r2 + r (R1 + R2)
−

2 (R1 + R2)
2R1R2 + r (R1 + R2)

]
∂Θ

∂r

∝

∣∣∣∣r (
4R1R2 − (R1 + R2)2

)∣∣∣∣
∝

∣∣∣r (R1 − R2)2
∣∣∣

(B.4)

One can proceed to quantify the error by substituting R2 with
R1 + ε in Eq. (B.4) and subsequently conducting a Taylor ex-
pansion of the expression, where ε serves as a variable param-
eter around zero. This analysis reveals a distinctive third-order
polynomial dependence on ε at the denominator, accompanied
by second-order variations in the numerator, as illustrated in
Eq. (B.5). In this equation, the coefficients ai(R1, r) represent
the polynomial coefficients, and k remains a constant term in
the equation.

A − B =
−rε2

a0(r,R1) + a1(r,R1)ε + a2(r,R1)ε2 + a3(r,R1)ε3

= − rε2
[

1
a0

+ o(1)
]

= r
[
kε2 + o(ε2)

]
(B.5)
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Expression of coefficient a0 is given in Eq. (B.6).

a0(R1, r) = 2R4
1 + r

(
6R3

1

)
+ r2

(
6R2

1

)
+ r3 (2R1) (B.6)

Performing a first-order Taylor expansion of the denominator
in Eq. (B.5) and reordering the terms yields the final equation,
as denoted by Eq. (B.7). The influence of two curvature values
may come into play in highly elongated bubbles, which, how-
ever, falls outside the scope of this study.

B
∂Θ

∂r
=

A + r
[
kε2 + o(ε2)

]︸            ︷︷            ︸
error

 ∂Θ

∂r
(B.7)

Appendix C Additional equations to perform Newton’s
algorithm

Appendix C.1 Literature’s form of solution: error function
(Erfc)

The two derivatives that are necessary to solve for the root of
the function f (see Eq. (33a)) introduced in Sec. 3.3.2 are:

∂ f
∂T θ
∞

(ξ,Φ) = erf
( r
δ

)
(C.1a)

∂ f
∂δ

(ξ,Φ) = −T θ
∞

2
√
π

r
δ2 e

−

( r
δ

)2

(C.1b)

One can notice that the local infinite temperature could be cho-
sen to be the overall infinite temperature T∞ imposed in the
simulation.

The Erfc form of solutions Eq. (23b) introduced in
Sec. 3.3.2 presents a few problems in Newton’s algorithm. The
derivative of the function according to the free parameter δ
tends to zero when δ tends to infinity. It can cause a conver-
gence issue in the case where the initial guess δ(0) is far from its
optimal value. That is why Weiner et al. [26] has promoted the
use of the integrated profile.

Derivatives shown in Eq. (C.2) are non zero which is prefer-
able to perform Newton’s algorithm.
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Appendix C.2 SoV form of solution: double exponentials pro-
file

The derivative of the function f (see Eq. (33c)) derived in the
present paper and employed in Newton’s algorithm can be ex-

pressed as follows:

∂ f
∂δ

=
−T θ

δ (1/δ1 + 1/δ2) eδ(1/δ1+1/δ2)(
1 − eδ(1/δ1+1/δ2)

)2

(
er/δ2 − e−r/δ1

)
(C.3a)
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×
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δ
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×
[
eδ(1/δ1+1/δ2)

(
(r − δ)er/δ2 + δe−r/δ1

)
− rer/δ2

]
In the case of an integral approach, the derivatives of the

function F (see Eq. (34)) according to the free parameters
equal:
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Appendix D Supplementary results on SoV fittings

Dispersion figures.

Further fittings have been performed using the best candidate
fitting procedure at two regimes and on several probe locations
(200 probes). Results are shown in Fig. D.26a and Fig. D.26b.

Both figures show dispersion in the predicted value depend-
ing on the azimuthal coordinate φ. Some improvements are ob-
served in the top region due to the incoming fluid velocity feed-
ing the fitting process. In the equator region, it is still difficult
to enhance significantly the temperature gradient prediction.

Temperature and normal temperature gradient fitted profiles.

The temperature and normal temperature gradient predicted
by the analytical form of solutions (once fitted) in the inter-
face vicinity are visible for an angle θ = 83° in Fig. D.27
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(a)

(b)

Figure D.26: Dispersion in the predicted value for the best fitting approach
using the SoV form of solutions with ur 6= 0 at (a) Ar∗ = 50 and Prl = 1.0 and

(b) Ar∗ = 50 and Prl = 5.0.

and Fig. D.28, respectively. The temperature profiles computed
from both analytical forms of solutions show qualitatively sim-
ilar variations on a finite length but the derivative of the erfc
function is no longer describing well the second-order radial
variations of the temperature at the exact location of the inter-
face.

The effect of the temperature extension procedure is slightly
visible on both original and fine mesh post-processed normal
temperature gradient profiles (piecewise change of slope near
r ≈ 0.1 × 10−4m).

Coarse

Figure D.27: Fitted normal temperature profiles in the interface vicinity and
θ = 83° using different approaches (Erf and SoV forms of solution) at

Ar∗ = 50 and Prl = 1.0. The spatial resolution of the coarse and fine mesh
solutions equal Db/∆ = 16 and Db/∆ = 64, respectively

Coarse

Figure D.28: Fitted normal temperature gradient profile in the interface
vicinity and θ = 83° using different approaches (Erf and SoV forms of

solution) at Ar∗ = 50 and Prl = 1.0. The spatial resolution of the coarse and
fine mesh solutions equal Db/∆ = 16 and Db/∆ = 64, respectively
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Bordeaux (2017).

[48] E. Balaras, C. Benocci, U. Piomelli, Two-layer approximate boundary
conditions for large-eddy simulations, AIAA Journal 34 (6) (1996) 1111–
1119. doi:10.2514/3.13200.
URL https://doi.org/10.2514/3.13200

[49] E. Labourasse, P. Sagaut, Reconstruction of turbulent fluctuations using a
hybrid RANS/LES approach, Journal of Computational Physics 182 (1)
(2002) 301–336. doi:10.1006/jcph.2002.7169.
URL https://doi.org/10.1006/jcph.2002.7169

[50] Y. Benarafa, O. Cioni, F. Ducros, P. Sagaut, RANS/LES coupling for
unsteady turbulent flow simulation at high reynolds number on coarse
meshes, Computer Methods in Applied Mechanics and Engineering
195 (23-24) (2006) 2939–2960. doi:10.1016/j.cma.2005.06.007.
URL https://doi.org/10.1016/j.cma.2005.06.007

[51] A. Chatelain, Simulation des grandes echelles d’écoulements turbulents
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