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Abstract
In asthma and allergy genetics, a trend towards a few main topics developed over the last 2 years. First, a number of studies have
been published recently which focus on overlapping and/or very specific phenotypes: within the allergy spectrum but also
reaching beyond, looking for common genetic traits shared between different diseases or disease entities. Secondly, an urgently
needed focus has been put on asthma and allergy genetics in populations genetically different from European ancestry. This
acknowledges that the majority of new asthma patients today are not white and asthma is a truly worldwide disease. In
epigenetics, recent years have seen several large-scale epigenome-wide association studies (EWAS) being published and a further
focus was on the interaction between the environment and epigenetic signatures. And finally, the major trends in current asthma
and allergy genetics and epigenetics comes from the field of pharmacogenetics, where it is necessary to understand the suscep-
tibility for and mechanisms of current asthma and allergy therapies while at the same time, we need to have scientific answers to
the recent availability of novel drugs that hold the promise for a more individualized therapy.

Keywords Asthma . Allergy . Genetics . Epigenetics . Interaction

Introduction

Asthma and allergy genetics were dominated by genome-wide
association studies (GWAS) for more than a decade. Starting
with the first GWAS on asthma by our GABRIEL consortium
in 2007 [1], numerous publications followed, exploring genet-
ic susceptibility for elevated total IgE [2], allergic sensitization
[3], atopic dermatitis [4], and allergic rhinitis [5] as well as
food allergy [6]. Over the years, the consortia investigating
these phenotypes grew bigger and bigger, allowing to find
marginal associations of odds ratios lower than 1.2, but still
with strong p values, due to the sheer force of numbers. The
last of these studies included well over 100,000 cases [7].

This era has now come to an end. Common genetic traits
for common diseases have been largely identified. However,
missing heritability in asthma and allergy is still high, and
even ever-larger numbers of patients in GWAS studies will
not increase knowledge on genetic susceptibility as the tech-
nique as used today has reached its limit of resolution.

On the other hand, the analysis of epigenetic modifications
in allergic diseases has recently attracted substantial interest, as
epigenetic modifications might mediate the effects of the envi-
ronment on the development of or protection from allergic dis-
eases as well as constitute a novel class of biomarkers and
potentially provide new therapeutic targets [8, 9]. Epigenetics,
which includes DNA methylation, posttranslational histone
modifications, nucleosome occupancy, and small and long non-
coding RNAs, may indeed hold the key to explaining the high
degree of plasticity of the immune response throughout life.

Rather than focusing on ever larger studies of ill-defined
phenotypes (such as asthma per se and general allergic sensi-
tization), the field is currently moving into new directions and
towards new system-medicine technologies with artificial in-
telligence looming on the horizon to make use of massive
multi-layer data derived from genomic, epigenomic,
transcriptomic, and metabolomics approaches that are collect-
ed now. In this review, we focus on current trends in genetics
and epigenetics of allergic diseases.
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Current trends in asthma and allergy genetics
and epigenetics

In genetics, a trend towards three main topics in asthma and
allergy genetics developed over the last 2 years. Studies on
overlapping and/or very specific phenotypes within the aller-
gy spectrum but also reaching beyond, looking for common
genetic traits shared between different diseases or disease en-
tities. Furthermore, asthma and allergy genetics in populations
genetically different from European ancestry have now been
performed. This is extremely necessary, as the majority of new
asthma patients today are not white and asthma is a worldwide
disease with more than 230 million people affected across all
races and continents according to WHO. In epigenetics, sev-
eral large-scale epigenome-wide association studies (EWAS)
have been published and recent studies focus on the interac-
tion between the external and internal (e.g., the microbiome)
environment and epigenetic signatures extending our knowl-
edge to novel environmental factors and mechanism of
disease.

Finally, the major trend in current asthma and allergy that
unites genetics and epigenetics, comes from the field of phar-
macogenetics, driven by the recent availability of novel drugs
that hold the promise for a more individualized therapy.
However, these biologicals come at a prize that makes it fi-
nancially necessary for the health system of almost any coun-
try to better understand the mechanisms of disease and to
better manage the distribution of these new drugs specifically
to those in greatest need and likely to benefit.

The genetic susceptibility for more specific asthma
and allergy phenotypes

About 100 years ago, it was first noticed that atopic diseases
such as asthma, allergic rhinitis, and atopic dermatitis occur
overproportionally frequent in some families and even in the
same patient. It came quite as a surprise, when the first GWAS
were published on asthma [1], total IgE [2], atopic dermatitis
[4], allergic sensitization [3], and allergic rhinitis [5], that
many hits and genes for these diseases were not shared. It took
some time and much larger datasets to identify the indeed
existing overlaps between allergic diseases (Fig. 1). Finally,
in 2018, on the basis of the UK biobank and an enormous
effort in genotyping and bioanalysis, about 30 shared genetic
loci were identified across the genome [10]. When expression
analyses were performed on respective hit genes, a vast ma-
jority of these genes were found to be expressed in the skin but
not so much in other tissues, suggesting that the skin could be
the primal battleground for the development of the different
allergic diseases. It could be hypothesized that genetic alter-
ations of the skin barrier may facilitate an unnatural presenta-
tion of allergens to the immune system and thus, starting

allergic reactions, later expressed in different organs such as
the skin, the airways, and the gut (or combinations thereof).

A further recent study not focusing on pleiotrophy but gene
environment interaction is also worth mentioning in this con-
text. Traffic-related air pollution was found to be associated
with atopic dermatitis in children in the presence of a genetic
risk background [11], which was previously already associat-
ed with the development of asthma in connection with air
pollution from environmental tobacco smoke and traffic relat-
ed air pollution [12]. Calculating weighted genetic risk scores
from a total of nine polymorphisms in four candidate genes
(GSTP1, TNF, TLR2, and TLR4) were associated. These find-
ings were based on 6 birth cohort studies from Europe and
Canada and suggest that interaction between genetic suscep-
tibility for inflammation and increased reaction to pollution on
the one hand, and early life exposure to traffic on the other, can
increase the risk for atopic dermatitis in children, while such
an association between air pollution and atopic dermatitis was
not observed for those without genetic susceptibility.
Although not investigated in this study, such an association
could also be expected for asthma, taken the data from Zhu
[10] into account. Thus, new and exciting evidence from ge-
netics points towards the skin to have a gatekeeper function
for the development of allergic diseases in general on the basis
of environmental exposures and genetic susceptibility.

Genetic pleiotrophy for comorbidities with asthma
and allergy

Pleiotrophy was also identified between asthma and a number
of other diseases (Fig. 2). The most consistent finding in asth-
ma genetics is the association between asthma starting in
childhood and a risk locus on chromosome 17q21.
Interestingly, that same region was furthermore associated
with ulcerative colitis [13] and Crohn’s disease [14] and sus-
ceptibility to type I diabetes and rheumatoid arthritis were
reported while we did not find an association with multiple
sclerosis [15]. In large twin populations from Scandinavia,
genetic traits for asthma overlapped with those from different
affective disorders such as major depression disorder, primary
anxiety disorder, and most of all, neuroticism [16]. Using so-
phisticated bioinformatics tools, also an overlap between gene
networks contributing to asthma and hypertension based on
genetic databases and bioinformatic ranking algorithms was
identified [17]. The genes most likely in the center of the
asthma and hypertension interaction were IL10, TLR4, and
CAT, suggesting that mechanisms of adaptive and innate im-
munity are shared in the development of both diseases. In
addition, association between asthma and celiac disease was
observed, but only when a genetic background for asthma in
the family was present in children with an atopic form of
asthma [18]. The overlapping association clustered to the
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HLA system, known to play a role in celiac disease for a long
time and linked to asthma in a recent massive scale GWAS [7].

Asthma and allergy genetics in non-Caucasian
populations

First GWAS on asthma and allergic diseases were all per-
formed in Caucasian populations, and therefore, it was not
clear if these results could easily be transferred to populations

of other genetic backgrounds or may even be of any use in
these populations. First GWA studies in African American
populations followed and the results suggested that indeed, a
somewhat different genetic architecture for allergic diseases
may be present [19]. In mostly small and underpowered stud-
ies only two loci associated with asthma in African American
were known until recently: PTGS on chromosome 9q34 [20]
and PYHIN1 on chromosome 1 [21]. This was also due to the
fact that genotyping chips specific for African genetic ancestry

Fig. 2 Genes linking different
diseases to asthma. Candidate
genes identified to be associated
with asthma and allergy have also
been implicated in other diseases.
These genes and the associated
diseases are depicted

Fig. 1 Genes involved in
different allergic diseases. Top ten
genes associated with the
respective allergic disease in most
recent and extensive GWAS as
described in the text were
compared for overlaps in their
associations. The more links a
gene has, the more general the
role of its mutations in allergic
mechanisms may be
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and imputation tools for that ancestry were not available. Only
in 2019, the first large-scale GWAS on asthma in African
Americans was published by the Consortium on Asthma
among populations of African Ancestry in the Americas
(CAAPA) [22]. In a landmark effort, the consortium first se-
quenced almost 900 individuals of African ancestry to create
an imputation base. Then, the novel ADPC (African Diaspora
Power Chip), to complement previous GWAS chips for spe-
cific African SNPs was developed. Finally, pooling smaller
previous study populations, an analysis based on approxi-
mately 7.500 cases and as much controls was created. The
results indicate that some of the genetic background for asth-
ma is shared between Caucasians and African Americans
when 11 out of 18 major asthma associations were confirmed.
In addition, three African specific association signals were
identified and these three belong to the top 5 asthma signals
in the study. The most significant association signal comes
however from the well-known 17q21 locus.

In this study, it also became evident that there is also a need
to better understand the genetic influence of Native American
populations on the development of asthma and allergy. The
reason for that is the massive increase of children with asthma
and allergic diseases in Central and South America as shown
by recent ISAAC surveys [23]. As CAAPA drew their African
American probands from numerous populations across the
Americas with different degrees of admixture, the authors
did find hints of Native American influences in their analyses,
but they could only speculate about the true role of that back-
ground in the development of asthma and allergies. CAAPA is
a blueprint for further GWAS studies urgently needed also in
Asian, South American, and African populations. This may
come as a surprise especially when thinking about all the
Chinese and Japanese studies that have already been per-
formed in the field, also recently [24, 25]. These studies are
state of the art and of considerable size. For example, the
recent meta-analysis of 29 case-control studies suggested a
somewhat more important role of FceRIß polymorphisms in
the development of asthma and allergic rhinitis in Asian pop-
ulations compared to Caucasians [25]. Performed with tools
centered around European backgrounds, they are only capable
to confirm if signals identified in Europeans can also be found
in Asians, but they cannot find specific factors contributed by
Asian backgrounds. What is needed now is a profound and
serious approach to the topic as demonstrated so impressively
by CAAPA.

EWAS for asthma and allergy

In contrast to the genetic field, several general EWAS have
only been published recently (Table 1). Most of these were
still using the old 450K chip but some (e.g., [33]) were already
done with the current EPIC BeadChip (Illumina, Inc.) interro-
gating either 450,000 or 840,000 of the 29 M CpGs in the

human genome. In the EWAS from the MEDALL consortium
using four European birth cohorts and validating 14 CpGs in
further seven cohorts, childhood asthma was found to be as-
sociated with a number of differentially methylated CpG po-
sitions in whole blood [26]. In particular, the analysis of a
subgroup of individuals for whom purified circulating eosin-
ophils were available showed an altered DNA methylation
profile suggesting a differential activation state and that
changes observed in blood are probably largely driven by this
cell population. The importance of this cell type was further
shown in the ALSPAC cohort, where none of the initially ~
300 significant CpGs remained significant after adjustment for
eosinophil and neutrophil cell count estimates [34]. The so-far
largest cross-sectional EWAS (631 cases and 2231 controls)
using nine different cohorts increased the number of differen-
tially methylated CpGs associated with asthma to 179 CpGs
and 36 regions [27]. In general, there is significant overlap of
the findings in EWAS analyzing asthma or atopy [31]. EWAS
have shown to explain better the variation in a phenotype than
GWAS as demonstrated for, e.g., circulating IgE levels [35]
and levels of asthma related proteins such as CHI3L1 are
partly mediated by DNAmethylation changes, but not genetic
variation [36].

Most EWAS so far performed have a cross-sectional de-
sign; they do thus not allow to distinguish if the observed
changes are preceding the onset of the disease (and are prob-
ably disease causing) or a consequence of the disease. The
PACE consortium analyzed in addition to the above described
cross-sectional study also newborn blood DNAmethylation in
668 cases and 2904 controls and identified 9 CpGs and 35
differentially methylated regions associated with asthma later
on life [27]. While these CpGs represent a potential biomarker
for the prediction of asthma later in life, these CpGs have not
been associated with asthma in other (cross-sectional) cohorts,
which makes it currently difficult to assess their value.
Nonetheless, candidate gene studies of Th2 lineage genes
and EWAS of limited size already showed the potential of
analyses in cord blood predicting asthma at a later age [37,
38]. Notably, methylation changes in the distal promoter of
SMAD3, an important regulator in T cell differentiation, were
replicated in three small cohorts [37].

In general, there is significant overlap of the findings in
EWAS analyzing asthma or atopy [31]. Overall, despite the
huge advances in the last years, there is still considerable
heterogeneity in the published studies. A recent review on
EWAS studies in asthma identified among the thousands of
CpGs associated with asthma in recent years, that only 41 of
the associations were identified in at least one other study [31].
The epigenetic landscape is specific for a given cell thus re-
quiring careful selection of the cell type of relevance for a
given biomedical question as well as taking potential con-
founding effects caused by differential cell composition be-
tween, e.g., patients and controls into account [39]. Most
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studies, especially most of the large EWAS cohort studies
(Table 1) have been performed in whole blood or PBMCs,
with a few using also sorted blood cell populations albeit in
cohorts of limited size. However, an increasing number of
studies have also been performed in nasal epithelial cells
[28–30]—as a proxy for airway epithelial cells, which are
especially in children difficult to collect—and more recently
in airway smooth muscle cells [40]. Studies in the nasal epi-
thelial cells identified hundreds to thousands of significant
CpGs, showing thus much stronger effects as the EWAS per-
formed in the blood. Of note, most of the top CpGs identified
in nasal epithelial cells replicated well in other cohorts analyz-
ing this tissue type despite different ethnicity of the children of
the different cohorts [28, 30]. Differentially methylated CpGs
included mainly hypomethylated genes regulating eosinophil-
ic and Th2 responses [11]. Further support for the importance
of selecting the right cell type comes from an EWAS in atopic
dermatitis, where statistically significant DNA methylation
changes were only found in skin samples, but not in blood
or sorted blood cell populations [41]. In general, DNA meth-
ylation changes in tissues other than blood did correlate better
with gene expression changes [29, 40] and magnitude of
changes and effect sizes of genes that were also found in
blood-based EWAS were increased in nasal cells compared
to whole blood, but not to sorted eosinophils [30]. Similarly,
in the African American inner-city children cohort, changes in
the PBMCs were small in magnitude (median 1.3%, range
0.02–3.1%), while those in nasal epithelial cells ranged from
2.6 to 29.5% with a median of 9.5% [29, 42]. Furthermore,
there is a substantial overlap of DNA methylation changes
observed in nasal cells with DNA methylation changes ob-
served in cultured endobronchial epithelial cells from asth-
matics and controls [32]. Furthermore, some genes previously
found in blood-based EWAS were confirmed in the nasal cells
including ACOT7, EPX, GJA4, and METTL1. A predictive
model based on DNA methylation changes of 30 CpGs in
nasal cells showed improved performance compared to the
Asthma Predictive Index to predict development of asthma
in children with wheeze [28]. It is likely that significant find-
ings in blood based EWAS reflect the contribution of eosino-
phils to the disease, while nasal cells represent methylation
changes in the airway cells constituting thus two different
angles of view on asthma.

The epigenome is determined by the genome and genetic
variation and epigenetic variation influence each other [43]. A
large proportion of the CpGs in the human genome are impli-
cated in Methylation Quantitative Trait Loci (mQTLs), i.e.,
the methylation level is at least partly determined by genetic
variants in cis or in trans. However, the proportion of the
variance in the methylation levels explained by genetic varia-
tion is in most cases rather limited [44]. Studies analyzing
epigenetic and genetic variation at large scale in the same
individuals are so far limited in allergic diseases. mQTLs were

found enriched in cultured endobronchial epithelial cells from
a large cohort of asthmatics and controls in genes showing
genetic variation and differential DNAmethylation associated
with asthma [32]. Similarly, 500 CpG-SNP interactions in cis
were found to be associated with allergic rhinitis and 274
CpG-SNPs with allergic rhinitis associated with asthma [45].
In a recent study, interactions between CpGs and SNPs in the
vicinity of about 2/3 of all human genes were investigated and
12 genes associated with asthma with significant CpG-SNP
interactions were identified, including three previously de-
scribed asthma genes (PF4, ATF3, TPRA1) [46].

Environment and epigenetics in asthma and allergy

Epigenetics might mediate the effects on the environment on
cellular homeostasis and contribute to the development of
asthma and allergic diseases. DNA methylation changes have
been associated with atopy and serum IgE levels [35, 47], and
shown to differ between allergic patients with asthma [8, 26,
27, 30], atopic dermatitis [41], food allergy [33, 48, 49], and
seasonal allergic rhinitis [50] when compared to healthy indi-
viduals. For seasonal allergic rhinitis, DNA methylation alter-
ations show increased discriminatory power compared to gene
expression-based signatures and this during as well as outside
the allergy season [50]. In the same line, it was recently shown
that baseline DNA methylation levels in a gene called
SLFN12 predicted the severity of the allergic reaction when
allergic rhinitis patients were exposed to grass pollen [51].
Similarly, analysis of histone modifications or microRNA ex-
pression has been shown to detect differences at both the can-
didate gene level or in genome-wide analyses in allergic indi-
viduals [52, 53].

Air pollution, ozone, cigarette smoking, viral infections,
use of antibiotics and antipyretics, pets, a traditional farm en-
vironment and exposure to mold or dust mites, consumption
of raw or unprocessed cow’s milk have been associated with
increased or reduced frequency of allergic diseases and have
recently been reviewed in detail [8]. We will therefore focus
only on recent results. It is well known that prenatal smoking
in mothers lead to widespread changes in DNA methylation
patterns [54]. A recent study now addressed how these chang-
es compare to changes induces by active smoking and found
that the changes in utero caused by prenatal smoking in
mothers are more pronounced than those caused by passive
smoking after birth or active smoking in teenagers [55].
However, although cigarette smoking has a well proven im-
pact on the development of respiratory allergies and leads to
clear and reproducible changes in the DNAmethylome, it is of
note that hardly any of the smoking associated changes have
also been associated with asthma in different EWAS
performed.

Air pollution has been linked to lung pathologies such as
asthma and has been shown inmultiple studies to have a direct
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impact on genome-wide DNA methylation patterns leading
mostly to a loss of DNA methylation [56]. Air pollution and
especially particulate matter 2.5 (PM2.5) has been shown to
alter DNA methylation patterns already in utero [57] and in a
recent study using a mouse model for allergic rhinitis PM2.5

exposure led to more pronounced symptoms and increased
DNA methylation at the IFNγ promoter in CD4+ T cells sug-
gesting an increased shift towards the Th2 subtype [58].
Exposure to diesel exhaust particles led to much more pro-
nounced changes in the DNA methylation profile when com-
bined with exposure to an allergen within 4 weeks compared
to either allergen or particle exposure alone or even simulta-
neous exposure to both insults suggesting that timing between
the insults is of great importance for functional consequences
[59]. Air pollution has notably been shown to have a direct
influence on the expression of enzymes involved in the bal-
ance of DNAmethylation and demethylation through increas-
ing DNA methylation levels at the promoter of the DNA
demethylating enzyme TET1 [60]. Recent data in a mouse
model deficient for Tet1 supports an important role for this
enzyme in airway disease leading to increased expression of
Th1 and Th2 cytokines, lung eosinophilia and airway
hyperresponsiveness, which were at least partially mediated
by a genome-wide hypermethylation including genes in-
volved in interferon signaling [61]. Furthermore, air pollution
has also shown to alter the expression profile of miRNAs
involved in inflammation andwhich have also been associated
with allergic diseases [52, 62].

Vaccination has been associated with increased circulating
IgE levels and therefore postulated to lead to an increased risk
of asthma and other allergies [63]. There is, however, little
support for this hypothesis in the literature [64]. In a recent
EWAS using the Isle of Wright cohort [65], methylation of
two CpGs near immune related genes was associated with
tetanus vaccination at genome-wide significance and the two
of them were also associated with a decreased risk of asthma.
This data is also supported by previous experiments per-
formed in experimental models of food allergy, where treat-
ment of mice with Heliobacter pylori lysate or its immuno-
modulatory peptide VacA led to attenuated anaphylaxis upon
challenge probably though a mechanism involving reduced
DNA methylation in the Treg-specific demethylated region
in the Foxp3 gene leading to a larger number activated T
regulatory cells (Tregs) [66].

One of the most prominent external factors influencing
DNA methylation changes is aging and the chronological
age can be deduced from the DNA methylation patterns
[67]. Accelerated epigenetic aging, i.e., a higher biological
age predicted from the DNAmethylation patterns then the true
chronological age, has been associated with a large number of
disease and an overall greater risk of death [67], while longev-
ity has been associated with decelerated epigenetic aging [68].
Epigenetic aging has now also been assessed in the context of

atopic or allergen sensitization and asthma using a variety of
different clocks [30, 69]. Accelerated epigenetic aging in chil-
dren at 7–8 years of age was associated with increased serum
IgE levels and a 1.2–1.3-fold increased risk of atopic sensiti-
zation, or sensitization to environmental or food allergens for
every 1-year increase in epigenetic age [69].

Pharmacogenetics and pharmacoepigenetics
of asthma and allergy

For the whole field of asthma and allergy genetics, pharmaco-
genetics is the hot topic of the moment. This is driven by the
development and recent market introduction of numerous bi-
ologicals (Fig. 3). “Individualized medicine” is necessary to
know which (incredibly expensive) drug should be used in
which specific patient. While still in early phase, epigenetic
modifications, particularly DNA methylation and miRNAs,
may have potential assisting in the stratification of patients
for treatment and complement or replace in the future bio-
chemical or clinical tests. First epigenetic biomarkers correlat-
ing with the successful outcome of immunotherapy have been
reported as described in more detail below and with personal-
ized treatment options being rolled out epigenetic modifica-
tions might well play a role in monitoring or even predicting
the response to tailored therapy.

Genetics and epigenetics play a role in the response
to classical asthma therapy

As predicted [70], individualized medicine in this first phase
which has started now will rather restrict access to drugs than
tailor new drugs to individual needs. Using genetic and non-
genetic data such as transcriptomics, epigenetics, and metabo-
lomics, asthma and allergy patients may be first characterized
as nonresponders to standard therapy as discussed in a previ-
ous conceptual paper [71]. In those patients, even though high
doses of steroids and other drugs are administered, their dis-
ease is not controlled, leading to ever-increasing amounts of
drugs with side effects, uncontrolled symptoms, ER visits, and
hospital admissions. It is clear that this form of severe allergic
diseases needs to be discriminated from “difficult to treat”
disease, where patients do not adhere to therapy and the cause
for the uncontrolled disease is not a lack of response to treat-
ment but absence of proper management. However, one also
has to consider that patients may not adhere to therapy exactly
because they see that the prescribed drugs do not work. If
patients who are truly unresponsive to standard treatment
could be identified easily and characterized early, these pa-
tients would be the primary candidates for novel treatments
with biologicals.

To achieve this goal, the international consortium on
Pharmacogenomics in Childhood Asthma (PiCA) was formed
recently. Bringing together studies with GWAS data already
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available across different countries and ethnicities, this con-
sortium was able to determine a handful of genetic risk factors
for an insufficient response to inhaled corticosteroids (ICS)
and exacerbations in children and young adults of
Caucasian, Hispanic, and African American origin [72].
Especially, a locus on chromosome 22 harboring
APOBEC3B and APOBEC3C was identified in admixed pop-
ulations and was replicated in follow-up studies of European
origin. The gene locus has not been implicated in asthma or
allergy in previous studies, but is a biologically plausible can-
didate as it is involved in innate immunity, virus defense and
RNA editing. In the same study, also three other gene loci,
which previously had been associated with ICS response in
adults, were confirmed.

Epigenetic data investigating drug response is still very
scarce, often limited to very small cohorts and even more
restricted in the pediatric setting. Inhaled or oral corticosteroid
use has been shown to affect epigenetic patterns.
Glucocorticoid treatment leads to global loss of histone acet-
ylation through activation of several HDACs and displace-
ment of NF-κB from glucocorticoid receptor (GR) binding
sites [73, 74]. Decreased sensitivity to synthetic glucocorti-
coids has been linked to decreased levels of HDAC2, which
deacetylates the glucocorticoid receptor, and might be wors-
ened by passive smoking [75, 76]. Increasing HDAC levels in
therapeutic interventions might thus constitute a new way to
maximize treatment efficacy, which is also supported by a
number of recent findings relevant for the physiopathology
of allergic diseases described below.

Systemic exposure to corticosteroids has been found to be
associated with differential DNA methylation in whole blood
from patients with COPD [77]. There is preliminary evidence
that DNA methylation changes might contribute to treatment
response as methylation changes in genes including theOTX2
and the VVN1 promoter were observed in good but not in poor
responders in nasal epithelial cells during treatment [78, 79].
An EWAS using 8-year old children diagnosed with asthma
from the BAMSE cohort identified 20 CpGs reaching statis-
tical significance to be associated with any or continuous cor-
ticosteroid exposure, but replicating in the STOPPA cohort as
well the BAMSE cohort at 16 years of age replicated none of
these CpGs [80]. However, more recently, an EWAS
performing a meta-analysis of the corticosteroid use in the
CAMP, BAMSE, and GACRS cohorts identified two differ-
entially methylated CpGs in the upstream regions of IL12B
and CORT to be associated with absence of severe exacerba-
tions on ICS treatment or absence of oral corticosteroid use,
respectively, as a proxy for inhaled corticosteroid response
[81]. Of note while not reaching significance in all three co-
horts, hypomethylation of OTX2 was confirmed in the
GACRS cohort. However, in contrast to gene expression sig-
natures, noDNAmethylation-based biomarker has so far been
identified to be predictive for response to corticosteroids [82,
83]. These DNA methylation markers might nonetheless as-
sist in molecularly defining patients unresponsive to cortico-
steroids having difficulties controlling their asthma. A recent
EWAS also investigated the effect of sympathomimetic bron-
chodilators (albuterol) on the DNA methylation patterns in

Fig. 3 Mechanisms of allergy and the targets of current monoclonal antibodies. A current immunological model of allergy mechanisms and the position
at which available biolocials for the treatment of asthma may interfere
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nasal epithelial cells and identified 130 CpGs associated with
the treatment [30]. However, further validation of these find-
ings is required.

Very few studies have analyzed miRNAs in relation to
given treatments in allergic diseases. Treatment with inhaled
corticosteroids (ICS) had modest effects on miRNA expres-
sion patterns and changed the expression of nine miRNAs in a
small cohort of steroid-naïve asthma patients [84]. miR-21 is a
well-known miRNA in allergic diseases and induces polariza-
tion of naïve T cells towards the Th2 lineage and the synthesis
of the associated pro-inflammatory cytokines. Higher levels of
miR-21 were found in children resistant to inhaled corticoste-
roids, compared to children sensitive to ICS [85]. However, as
miR-21 levels in ICS-resistant children were similar to pa-
tients without ICS, the decreased levels in ICS sensitive pa-
tients are probably a result of the improvement of their asth-
matic status rather than predisposing therapy to success.
Similarly, miRNA changes correlated with the use of oral
steroids or antileukotriene therapy [86] and allergen induced
changes in miRNA expression were reverted by glucocorti-
coids in patients with eosinophilic esophagitis [87].

Using admixed populations (SAGE II and GALA II popula-
tions) for screening, the American TopMED consortium recently
identified genetic determinants for bronchodilator response
(BDR) associated with lung capacity (DNAH5), immunity
(NFKB1 and PLCB1), and beta-adrenergic signaling
(ADAMTS3 and COX18) [88]. Thus, these signals may be of
value across different ethnicities and replication could be expect-
ed in populations from different parts of the world. BDR also
changes over time, a fact that is well known to pediatricians who
often observe a poor response to ADRB2 agonists in babies and
very young children. Interestingly, different genetics factors may
be responsible for bronchodilator response in younger versus
older children and adults. That is suggested by data of the
CAMP studywhen SNPs near SPATS2L andASB3 demonstrated
strongest associations with BRD in early childhood throughout
adolescence, and a large decrease in effect size afterwards [89].

Also recently, the genetic basis of moderate to severe asth-
ma was investigated in a massive study involving more than
10,000 patients and almost 50,000 controls [89]. This can be
viewed as a pharmacogenetic study, as cases were patients not
adequately controlled with low or medium levels of ICS. In
addition to known variants already detected in study address-
ing general asthma previously, three novel loci harboring
MUC5AC,GATA3, and KIAA1109with convincing biological
plausibility emerged. Altered expression of the pathogenic
mucin MUC5AC potentially contributes to mucus plugging
and airway obstruction, GATA3 is a transcription factor linked
to the T cell response in asthma and eosinophilia, and the
KIAA1109 locus has previously been associated with allergic
sensitization. Presence of risk alleles in these genes may thus
help to identify nonresponders to conventional therapy and
candidates for advanced therapies.

In general, the combination of ICS and LABA is the cor-
nerstone of therapy in moderate to severe asthmatics and a
recent study suggest that the response to combination therapy
is under genetic control [90]. Interestingly, many
glucocorticoid-induced genes were shown to be independent-
ly induced by LABA. Variance in target transcription could be
explained by gene-specific control by glucocorticoid receptor-
and LABA-activated transcription factors, as the authors sug-
gested. Thus, failure to improve to combination therapy in
asthma may be a polygenic trait such as asthma itself.
Further support for this theory comes from a recent analysis
of mutations in the G-coupled receptor family, which SABA,
LABA, and other asthma therapies target. It showed a great
genetic variability in this pharmacologically important group
of receptors, which may explain the interindividual variability
in drug response [91].

Epigenetic changes during allergen immunotherapy

Allergen immunotherapy aims at inducing tolerance to a given
allergen or at least sustained unresponsiveness. Depending on
the route of application different protocols have been devel-
oped including subcutaneous (SCIT), sublingual (SLIT), oral
(OIT), and more recently epicutaneous (EPIT) immunothera-
py. Allergic sensitization has been shown to alter genes in-
volved in the Th1/Th2 balance in experimental models of
asthma [92]. Furthermore, the outcome of immunotherapy
can be improved administrating synthetic microRNA mimics
of anti-inflammatory miRNAs concurrent with the immuno-
therapy in a mouse model of allergic rhinitis [93]. In the field
of food allergy, induction and maintenance of tolerance to
antigens requires the generation of antigen-specific regulatory
T-cells (Tregs). Demethylation of the Treg-specific
demethylated region (TSDR) of FOXP3 is a pre-requisite for
the stable maintenance of the suppressive properties of Tregs
[94, 95]. Demethylation is induced by immunotherapy, and
methylation levels remain lower in individuals that show
sustained unresponsiveness to allergens such as peanut or
milk [96, 97]. Demethylation of FOXP3 might therefore be
a prerequisite for successful immunotherapy. Although the
number of individuals analyzed was low in both studies,
DNA methylation analysis of the TSDR can be considered
as a promising biomarker for monitoring the response to im-
munotherapy as well as the induction of potential tolerance.
Similarly, we have recently shown in a mouse model of
epicutaneous immunotherapy for peanut allergy that Foxp3
methylation was reduced upon successful EPIT, while meth-
ylation of the Th2 key transcription factor Gata3 was specif-
ically increased in splenic CD4+ IL4+ T cells [98]. In contrast,
OIT induced only demethylation of Foxp3, but not methyla-
tion of Gata3, suggesting that the latter might be important to
maintain the level of sustained unresponsiveness and protec-
tion against sensitization to a second allergen observed in
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EPIT. In addition, OIT to peanut allergy has shown to induce
the differentiation of novel CD4+ Tcell subsets [99]. Although
these have so far only been characterized at the transcriptional
level, it is highly likely that these novel CD4+ T cell subsets
also contain distinct epigenetic profiles, which could provide
further markers correlating with sustained unresponsiveness.

Further evidence for an epigenetic modification of the Th
cell polarization comes from a recent study analyzing PBMCs
from children with allergic asthma following a three-year dust
mite allergen-specific immunotherapy (Der p) [100]. Allergic
sensitization has been shown to alter genes involved in the
Th1/Th2 balance to yield a pro-Th2 phenotype in experimen-
tal models, which was also observed in asthmatic patients
following Der p challenge [92, 101]. Patients treated with
Der p immunotherapy showed increased DNA methylation
at the IL4 promoter suggesting inhibition of the Th2 pathway
in children undergoing immunotherapy compared to allergic
asthmatics without immunotherapy [100].

Genetics and epigenetics and the therapy
with biologicals

Also, the response to biologicals shows a great variability. The
better patients are characterized by molecular biology, the bet-
ter their response is to biologicals in preventing asthma exac-
erbations, as summarized very elegantly in a recent review
[102]. However, this characterization in current studies is rath-
er primitive: Those patients with elevated eosinophils and/or
elevated FeNO respond better to all kinds of biologicals, sug-
gesting that this is a just a crude measure of true severity and
not a molecular characterization of the disease. This is what is
missing so far and a first step would be to understand why
some patients are not responding to ICS therapy. Exactly that
is the goal of ongoing EU funded studies such as the
SysPharmPediA and PERMEABLE consortia, which aim to
identify biomarkers in severe asthmatics that define corticoid
resistance and in a next step, to identify specific susceptibility
for specific biologicals. Genetics may be of help in that quest
as genetic determinant may contribute to the specific respon-
siveness to certain biologicals.

For anti-IL-5, a GWAS using data from clinical studies on
mepolizumab (DREAM and MENSA), was recently pub-
lished, and there is a clear trend (which is just not significant
after correction for multiple testing) towards an association
between the prevention of exacerbation on mepolizumab
and a locus on chromosome 6 harboring UTRN and EPM2A
and a further locus on chromosome 9 which included different
type 1 Interferon genes such as IFNA14 [103]. Why the au-
thors, who are mainly current or former employees of a phar-
maceutical company, do not follow up on these highly sug-
gestive and plausible associations remains unclear. Especially,
as these data has a potential to stratify patients for their re-
sponsiveness to anti-IL5 therapy and could be used to spare

unresponsive patients from an unnecessary use of these anti-
bodies while others could be identified as having a rather good
chance to respond to this biological. Interestingly, such stud-
ies, where biomarkers or predictors for the response to
omalizumab, the monoclonal antibody against IgE, which is
on the market since 2003, would have been investigated, have
not been published so far. For dupilumab, the newest
monoconal antibody directed against the receptor chain shared
by IL-4 and IL-13, such studies for genetic susceptibility also
do not exist. However, we showed in our previous work [104],
that the concomitant presence of multiple polymorphisms in
the IL-4/IL-13 pathway in an individual may contribute sig-
nificantly to the development of a mainly allergic form of
asthma. Carrying SNPs associated with asthma risk in three
different genes of the pathway increased the risk up to 30-fold
in our study population of German children, affecting approx-
imately 2–4% of the population under investigation. Thus,
based on molecular mechanisms already identified, one could
speculate that exactly these asthma patients carrying such
multiple SNPs in the pathway are those that may respond to
dupilumab treatment.

Epigenetic data supporting the use of biologicals is still
rare. At least two EWAS have found differential methylation
of CpGs in the IL5 receptor [27, 34], which is targeted by the
monoclonal antibody benralizumab. A CpG in this gene has
also been found to be associated with allergic sensitization
[105]. It would therefore be interesting to investigate the as-
sociations or correlation between the degree of methylation of
this gene and the response to benraluzimab.

As described above, eosinophils from asthmatic children
showed an altered DNA methylation profile suggesting a dif-
ferential activation state in the recent multi-cohort study from
the MEDALL consortium [26]. These findings provide an
interesting basis to investigate how eosinophil targeting/
depleting therapies with anti-IgE-, anti-IL-13-, or anti-IL-
5Ra-based antibodies will modify the DNAmethylation land-
scape in eosinophils and if there is any correlation between the
response to therapy and the pre-treatment epigenetic profile.
Epigenetic profiling could also yield in the future biomarkers,
which could assist in the classification and selection of pa-
tients that would profit most from a potential biological treat-
ment or on the other hand for which little improvement could
be expected.

A potential next step: targeting epigenetic enzymes
in allergic diseases

In addition to the above described implication of histone
deacetylases in the response to corticosteroids, a number of
recent studies have demonstrated a beneficial effect of
blocking histone deacetylases in allergic diseases. The
blocking of HDAC activity (using a pan HDAC inhibitor
JNJ-26481585) restored the integrity of the nasal epithelium
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from patients with allergic rhinitis and restored mucosal func-
tion and prevented the development of airway inflammation
and hyperresponsiveness in experimental models [106]
Furthermore, the HDCAi trichostatin A improved atopic der-
matitis in a mouse model reducing notably expression for Th2,
but not Th1 cytokines [107]. Although constituting a novel
and promising approach, the use of HDAC inhibitors
(HDACi) has yielded conflicting result with some studies
pointing to enhanced inflammation thus requiring further in-
vestigation of the use of this treatment [108–110]. However,
as HDACs and HATs (de)acetylate a large number of targets
and are involved in a multitude of cellular pathways, inhibi-
tion or modulation of these processes might provoke unde-
sired adverse effects requiring the development of more selec-
tive HDAC inhibitors targeted to specific cell populations.
The Polycomb protein Ezh2, the main H3K27me3 methylase,
has been shown to be critically involved in the differentiation
and plasticity of CD4+ Th1 and Th2 cells controlling the cor-
rect expression of the key transcription factors Tbx21 and
Gata3, promoting Th1 responses and the loss resulted in the
accumulation of memory Th2 cells [111]. Ezh2 further pre-
vents the development of pathological NKTcells preventing a
spontaneous asthma-like phenotype in experimental models
[112]. First results show also the possibility of improving al-
lergic inflammation and airway hyperresponsiveness in exper-
imental asthma models by administrating a H3K27Me3 spe-
cific histone demethylase inhibitor (GSK-J4 [113]).

Conclusions

Taken together, there are a still a number of open questions in
asthma to which genetics and epigenetics may give answers to
and thus, at the end, may even help the patients. Despite the
rapid progress in recent years, there are still numerous chal-
lenges for the interpretation of existing and future data. In
epigenetics, it is not yet clear which tissue and cell types are
best suited for analysis [114]. Most analyses have been per-
formed in blood immune cells, but respiratory epithelial cells
from the nose or bronchi have also been studied, show much
better discrimination between asthmatics and controls. For
genetics and epigenetics, the often imprecise definition of
the underlying clinical phenotype (e.g., how and by whom
asthma or other allergies were exactly diagnosed) also makes
interpretation difficult and makes previous study results only
partially comparable. Furthermore, longitudinal studies with
samples available prior to the onset of symptoms, e.g., birth
cohorts with repeated biological samplings are required to
better investigate causality and relationships betweenmarkers,
onset, and course of disease.

Technical progress led and leads to ever more voluminous,
high-dimensional multi-omic data sets. The future challenge
will be to analyze and integrate these data sets in order to

obtain a systems medicine view of the molecular processes
underlying the development and progression of allergic dis-
eases [115]. First big data and multi-omic studies have shown
that allergic diseases are very complex and dynamic and that
further systems biology studies are required. Advances in ma-
chine learning algorithms and artificial intelligence are timidly
making their first steps in the field of allergy and refine epi-
genetic signatures [116], but their power remains limited due
to the absence of sufficiently large data volumes.

With the choice of biologicals now available for treatment,
the prediction of treatment response and the matching of pa-
tients to specific therapies becomes crucial for the patient as
well as for the health system. Thus, a better understanding of
allergy and asthma mechanisms in the individual patient and
to have biomarkers for decision making are now needed more
than ever. Epigenetics and genetics have the potential to make
substantial contribution and the analysis of epigenetic changes
will have an important role in designing a customized
(immune) therapy, preventing side effects and defining an
optimal therapy duration. This will ultimately contribute to
improving the quality of life of allergy patients.
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