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Genome-Wide Association Studies (GWAS) explain only a small fraction of heritability for

most complex human phenotypes. Genomic heritability estimates the variance explained

by the SNPs on the whole genome using mixed models and accounts for the many

small contributions of SNPs in the explanation of a phenotype. This paper approaches

heritability from a machine learning perspective, and examines the close link between

mixed models and ridge regression. Our contribution is two-fold. First, we propose

estimating genomic heritability using a predictive approach via ridge regression and

Generalized Cross Validation (GCV). We show that this is consistent with classical mixed

model based estimation. Second, we derive simple formulae that express prediction

accuracy as a function of the ratio n
p , where n is the population size and p the total number

of SNPs. These formulae clearly show that a high heritability does not imply an accurate

prediction when p > n. Both the estimation of heritability via GCV and the prediction

accuracy formulae are validated using simulated data and real data from UK Biobank.

Keywords: heritability, prediction accuracy, ridge regression, mixed model, generalized cross validation, best

linear unbiased predictor

1. INTRODUCTION

The old nature vs. nurture debate is about whether a complex human trait is determined by a
person’s genes or by the environment. It is a longstanding philosophical question that has been
reinvestigated in the light of statistical genetics (Feldman and Lewontin, 1975). The concept of
heritability was introduced by Fisher (1918) and Wright (1920, 1921) in the context of pedigree
data. It has proved highly useful in animal (Meuwissen et al., 2001) and plant genetics (Xu, 2003) for
selection purposes because of its association with accurate prediction of a trait from genetic data.
In the last decades, Genome-Wide Association Studies (GWAS) have become highly popular for
identifying variants associated with complex human traits (Hirschhorn and Daly, 2005). They have
recently been used for heritability estimations (Yang et al., 2010). A shortcut is often made between
the heritability of a trait and the prediction of this trait. However, heritable complex human traits
are often caused by a large number of genetic variants that individually make small contributions
to the trait variation, which is often referred to as polygeny. In this context, the relation between
heritability and prediction accuracy may not hold (de Vlaming and Groenen, 2015).
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The goal of this paper is to establish a clear relation between
prediction accuracy and heritability, especially when the number
of genetic markers is much higher than the population size,
which is typically the case in GWAS. Based on the linear
model, statistical analyses of SNP data address very different and
sometimes unrelated questions. The most commonly performed
analyses tend to be association studies, where multiple hypothesis
testing makes it possible to test the link between any SNP
and a phenotype of interest. In genomic selection, markers
are selected to predict a phenotype with a view to selecting
an individual in a breeding population. Association studies
and genomic selection may identify different sets of markers,
since even weak associations might be of interest for prediction
purposes, while not all strongly associatedmarkers are necessarily
useful, because of redundancy through linkage disequilibrium.
Genomic heritability allows quantifying the amount of genomic
information relative to a given phenotype via mixed model
parameter estimation. The prediction of the phenotype using all
genomic information via the mixed model is a closely related but
different problem.

We approach the problem of heritability estimation from a
machine learning perspective. This is not a classical approach in
genetics, where inferential statistics is the usual preferred tool.
In this context, heritability is considered as a parameter to be
inferred from a small sample of the population. The machine
learning approach places the emphasis on prediction accuracy.
It makes a clear distinction between performance on training
samples and performance on testing samples, whereas inferential
statistics focuses on parameter estimation on a single dataset.

1.1. Classical Approach via Mixed Models
Heritability is defined as the proportion of phenotypic variance
due to genetic factors. A quantitative definition of heritability
requires a statistical model. The model commonly adopted is a
simple three-term model without gene-environment interaction
(Henderson, 1975):

y = g+ f+ e,

where y ∈ Rn is a quantitative phenotype vector describing n
individuals, f ∈ Rn is a non-genetic covariate term, g ∈ Rn is
a genetic term and e ∈ Rn an environmental residual term. The
term gwill depend on the diploid genotypematrixM ∈ Mn,p (R)

of the p causal variants.
There are two definitions of heritability in common use:

first, there is H2, heritability in the broad sense, measuring
the overall contribution of the genome; and second, there is
h2 , heritability in the narrow sense (also known as additive
heritability), defined as the proportion of phenotypic variance
explained by the additive effects of variants.

The quantification of narrow-sense heritability goes back to
family studies by Fisher (1918), who introduced the above model
with the additional hypothesis that g is the sum of independent
genetic terms, and with e assumed to be normal. This heritability
in the narrow sense is a function of the correlation between the
phenotypes of relatives.

Although Fisher’s original model makes use of pedigrees for
parameter estimation, some geneticists have proposed using the
same model with genetic data from unrelated individuals (Yang
et al., 2011a).

1.1.1. Polygenic Model
In this paper, we focus on the version of the additive polygenic
model with a Gaussian noise where g = Zu, f = Xβ , with
Z ∈ Mn,p (R) a standardized (by columns) version ofM, u ∈ Rp

a vector of genetic effects, X ∈ Mn,r (R) a matrix of covariates,
β ∈ Rr a vector of covariate effects, µ an intercept and e ∼

N
(

0n, σ
2In

)

a vector of environmental effects.
The model thus becomes

y = µ1n + Zu+ Xβ + e, (1)

where 1n ∈ Rn a vector of ones.

1.1.2. Estimation of Heritability From GWAS Results
To estimate heritability in a GWAS context, a first intuitive
approach would be to estimate u with a least squares regression
to solve problem (1). Unfortunately, this is complicated in
practice for three reasons: the causal variants are not usually
available among genotyped variants; genotyped variants are in
linkage disequilibrium (LD); and the least squares estimate is only
defined when n > p, which is not often the case in a GWAS (Yang
et al., 2010).

One technique for obtaining a solvable problem is to
use the classical GWAS approach to determine a subset of
variants significantly associated with the phenotype. The additive
heritability can then be estimated by summing their effects
estimated by simple linear regressions. In practice this estimation
tends to greatly underestimate h2 (Manolio et al., 2009). It only
takes into account variants that have passed the significance
threshold after correction for multiple comparisons (strong
effects) and does not capture the variants that are weakly
associated with the phenotype (weak effects).

1.1.3. Estimating Heritability via the Variance of the

Effects
Yang et al. (2010) suggest that most of the missing heritability
comes from variants with small effects. In order to be able to
estimate the information carried by weak effects they assume a
linear mixed model where the vector of random genetic effects
follows a normal homoscedastic distribution u ∼ N

(

0p, τ Ip
)

.
They propose estimating the variance components τ and σ 2,
and defining genomic heritability as h2G =

pτ

pτ+σ 2 . An example

of an algorithm for estimating variance components is the
Average Information—Restricted Maximum Likelihood (AI-
REML) algorithm, implemented in software such as Genome-
wide Complex Trait Analysis (GCTA) (Yang et al., 2011a) or
gaston (Perdry and Dandine-Roulland, 2018). More recent
methods that are much faster than REML have also been
proposed, such as the modified Haseman-Elston regression
(Chen, 2014) or methods based on summary statistics such as
the LD-score regression (Bulik-Sullivan et al., 2015) or the MQS
(MinQue for Summary statistics) approach (Zhou, 2017).
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1.2. A Statistical Learning Approach via
Ridge Regression
The linear model is used in statistical genetics for exploring
and summarizing the relation between a phenotype and one or
more genetic variants, and it is also used in predictive medicine
and genomic selection for prediction purposes. When used
for prediction, the criterion for assessing performance is the
prediction accuracy.

Although least squares linear regression is the baselinemethod
for quantitative phenotype prediction, it has some limitations. As
mentioned earlier, the estimator is not defined when the number
of descriptive variables p is greater than the number of individuals
n. Even when n > p, the estimator may be highly variable when
the descriptive variables are correlated, which is clearly the case
in genetics.

Ridge regression is a penalized version of least squares that
can overcome these limitations (Hoerl and Kennard, 1970).
Ridge regression is strongly related to the mixed model and
is prediction-oriented.

1.2.1. Ridge Regression
The ridge criterion builds on the least squares criterion, adding
an extra penalization term. The penalization term is proportional
to the ℓ2 norm of the parameter vector. The proportionality
coefficient λ is also called the penalization parameter. The penalty
tends to shrink the coefficients of the least squares estimator, but
never cancels them out. The degree of shrinkage is controlled by
λ: the higher the value of λ, the greater the shrinkage:

ûR = argmin
u

∥

∥y− Zu
∥

∥

2

2
+ λ ‖u‖22 , (2)

=
(

ZTZ+ λIp

)−1
ZTy, (3)

= ZT
(

ZZT + λIn

)−1
y. (4)

Ridge regression can be seen as a Bayesian Maximum a Posteriori
estimation of the linear regression parameters considering a
Gaussian prior with hyperparameter λ.

The estimator depends on a λ that needs to be chosen. In a
machine learning framework, a classical procedure is to choose
the λ that minimizes the squared loss over new observations.

The practical effect of the penalty term is to add a constant to
the diagonal of the covariance matrix, which makes the matrix
non-singular, even in the case where p > n. When the descriptive
variables are highly correlated, this improves the conditioning of
the ZTZmatrix, while reducing the variance of the estimator.

The existence theorem states that there always exists a value
of λ > 0 such that the Mean Square Error (MSE) of the ridge
regression estimator (variance plus the squared bias) is smaller
than the MSE of the Maximum Likelihood estimator (Hoerl and
Kennard, 1970). This is because there is always an advantageous
bias-variance compromise that reduces the variance without
greatly increasing the bias.

Ridge regression also allows us to simultaneously estimate all
the additive effects of the genetic variants without discarding
any, which reflects the idea that all the variants make a
small contribution.

1.2.2. Link Between Mixed Model and Ridge

Regression
This paper builds on the parallel between BLUPs (Best Linear
Unbiased Predictions) derived from the mixed model and ridge
regression (Meuwissen et al., 2001). The use of ridge regression
in quantitative genetics has already been discussed (De los
Campos et al., 2013; de Vlaming and Groenen, 2015) We look
at a machine-learning oriented paradigm for estimating the
ridge penalty parameter, which provides us with a direct link
to heritability. There is an equivalence between maximizing
the posterior p

(

u|y
)

and minimizing a ridge criterion (Bishop,
2006) under the assumptions that u ∼ N

(

0p, τ Ip
)

and
e ∼ N

(

0n, σ
2In

)

(see section 6 in Supplementary Material

for details). The optimal penalty hyperparameter of the ridge
criterion λ can be used to estimate the heritability. It is
indeed defined as the ratio of the variance parameters of the
mixed model:

argmax
u

p
(

u|y
)

= argmin
u

∥

∥y− Zu
∥

∥

2

2
+ λ ‖u‖22 with λ =

σ 2

τ
.

(5)
The relation between λ and h2G (de Vlaming and Groenen, 2015)
is thus:

h2G =
p

p+ λ
; λ = p

1− h2G
h2G

. (6)

Consequently, the BLUP has a similar formulation to the ridge
estimator. Indeed, as shown in the section 6.2 of the article by
Robinson et al. (1991), its general definition is:

ûBLUP = Ê(u|y) = ŴZT6̂
−1

(y− Xβ̂), (7)

where u ∼ N
(

0p,W
)

, e ∼ N (0n,E) and 6 = ZWZT + E.
When we further assume β = 0r , W = τ Ip and E = σ 2In,

it becomes:

ûBLUP = τZT(τZZT + σ 2In)
−1y = ZT(ZZT +

σ 2

τ
In)

−1y, (8)

which is exactly the ridge estimator.

1.2.3. Over-Fitting
Interestingly, ridge regression and the mixed model can be
seen as two similar ways to deal with the classical over-fitting
issue in machine learning, which is where a learner becomes
overspecialized in the dataset used for the estimation of its
parameters and is unable to generalize (Bishop, 2006). When
n > p, estimating the parameters of a fixed-effect linear model via
maximum likelihood estimation may lead to over-fitting, when
too many variables are considered. A classical way of reducing
over-fitting is regularization, and in order to set the value of
the regularization parameter there are two commonly adopted
approaches: first, the Bayesian approach, and second, the use of
additional data.

Mixed Model parameter estimation via maximum likelihood
can be seen as a type of self-regularizing approach (see Equation
5). Estimating the variance components of the mixed model may
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be interpreted as a kind of empirical Bayes approach, where
the ratio of the variances is the regularization parameter that
is usually estimated using a single dataset. In contrast to this,
in order to properly estimate the ridge regression regularization
hyperparameter that gives the best prediction, two datasets
are required. If a single dataset were to be used, this would
result in an insufficiently regularized (i.e., excessively complex)
model offering too high prediction performances on the present
dataset but unable to predict new samples well. This over-fitting
phenomenon is particularly evident when dimensionality is high.

The fact that the complexity of the ridge model is controlled
by its hyperparameter can be intuitively understood when
considering extreme situations. When λ tends to infinity, the
estimated effect vector (i.e., ûR) tends to the null vector.
Conversely, when λ tends to zero, the model approaches
maximum complexity. One solution for choosing the right
complexity is therefore to use both a training set to estimate the
effect vector for different values of the hyperparameter and a
validation set to choose the hyperparameter value with the best
prediction capacity on this independent sample. An alternative
solution, when data is sparse, is to use a cross-validation approach
to mimic a two-set situation. Finally, it should be noted that the
estimation of prediction performance on a validation dataset is
still overoptimistic, and consequently a third dataset, known as a
test set, is required to assess the real performance of the model.

1.2.4. Prediction Accuracy in Genetics
In genomic selection and in genomic medicine, several authors
have been interested in predicting complex traits that show a
relatively high heritability using mixed model BLUPs (Speed and
Balding, 2014). The literature defined the prediction accuracy
as the correlation between the trait and its prediction, which
is unusual in machine learning where the expected loss is
often preferred. Several approximations of this correlation have
been proposed in the literature (Brard and Ricard, 2015),
either in a low-dimensional context (where the number of
variants is lower than the number of individuals) or in a high-
dimensional context.

Daetwyler et al. (2008) derived equations for predicting the
accuracy of a genome-wide approach based on simple least-
squares regressions for continuous and dichotomous traits. They
consider one univariate linear regression per variant (with a fixed
effect) and combine them afterwards, which is equivalent to a
Polygenic Risk Score (PRS) (Pharoah et al., 2002; Purcell et al.,
2009). Goddard (2009) extended this prediction to Genomic
BLUP (GBLUP), which used the concept of an effective number
of loci. Rabier et al. (2016) proposed an alternative correlation
formula conditionally on a given training set. Their formula
refines the formula proposed by Daetwyler et al. (2008). Elsen
(2017) used a Taylor development to derive the same formula in
small dimension.

Using intensive simulation studies, de Vlaming and Groenen
(2015) showed a strong link between PRS and ridge regression in
terms of prediction accuracy, when the population size is limited.
However, with ridge regression, predictive accuracy improves
substantially as the sample size increases.

It is important to note a difference in the prediction
accuracy of GBLUP when dealing with human populations as

opposed to breeding populations (De los Campos et al., 2013).
De los Campos et al. (2013) show that the squared correlation
between GBLUP and the phenotype reaches the trait heritability,
asymptotically when considering unrelated human subjects.
Dandine-Roulland and Perdry (2015) also proposed a theoretical
formula of the performance of BLUPs for prediction in the
context of human genetics, which is proportional to the number
of individuals, to the squared heritability and to the variance of
the off-diagonal terms of the Genetic Relatedness Matrix.

Zhao and Zhu (2019) studied cross trait prediction in high
dimension. They derive generic formulae for in and out-of
sample squared correlation. They link the marginal estimator to
the ridge estimator and to GBLUP. Their results are very generic
and generalize formulae proposed by Daetwyler et al. (2008).

1.2.5. Outline of the Paper
While some authors have proposed making use of the
equivalence between ridge regression and the mixed model for
setting the hyperparameter of ridge regression according to the
heritability estimated by the mixed model, we propose on the
contrary to estimate the optimal ridge hyperparameter using a
predictive approach via Generalized Cross Validation. We derive
approximations of the squared correlation and of the expected
loss, both in high and low dimensions.

Using synthetic data and real data from UK Biobank, we show
that our results are consistent with classical mixed model based
estimation and that our approximations are valid.

Finally, with reference to the ridge regression estimation of
heritability, we discuss how heritability is linked to prediction
accuracy in highly polygenic contexts.

2. MATERIALS AND METHODS

2.1. Generalized Cross Validation for
Speeding Up Heritability Estimation via
Ridge Regression
2.1.1. Generalized Cross Validation
A classical strategy for choosing the ridge regression
hyperparameter uses a grid search and k -fold cross validation.
Each grid value of the hyperparameter is evaluated by the
cross validated error. This approach is time-consuming in high
dimension, since each grid value requires k estimations. In
the machine learning context, we propose using Generalized
Cross Validation (GCV) to speed up the estimation of the
hyperparameter λ and thus to estimate the additive heritability
h2G using the link described in Equation (6).

The GCV error in Equation (9) (Golub et al., 1978) is an
approximation of the Leave-One-Out error (LOO) (see section
2 in Supplementary Material). Unlike the classical LOO, GCV
does not require n ridge regression estimations (where n is the
number of observations) at each grid value, but involves a single
run. It thus provides a much faster and convenient alternative for
choosing the hyperparameter. We have

errGCV =

∥

∥y− ŷ (λ)
∥

∥

2

2
[

1
n tr (In −Hλ)

]2
, (9)
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where ŷ (λ) = ZûR (λ) = Hλy is the prediction of the
training set phenotypes using the same training set for the
estimation of ûR and where Hλ is defined as (see section 1 in
Supplementary Material for details):

Hλ = Z
(

ZTZ+ λIp

)−1
ZT

= ZZT
(

ZZT + λIn

)−1
.

A Singular Value Decomposition (SVD) of the Hλ can be used
advantageously to speed up GCV computation (see section 3 in
Supplementary Material).

2.1.2. Empirical Centering Can Lead to Issues in the

Choice of Penalization Parameter in a

High-Dimensional Setting
In high dimensional settings (p > n), the use of GCV after
empirical centering of the data can lead to a strong bias in the
choice of λ and thus in heritability estimation. Let us illustrate the
problemwith a simple simulation.We simulate a phenotype from
synthetic genotype data with a known heritability of h2 = 0.25,
n = 1, 000 individuals, p = 10, 000 variants and 100% causal
variants. The simulation follows the additive polygenic model
without intercept or covariates, as described in section 2.3. Before
applying GCV, genotypes are standardized in the most naive
way: the genotype matrix M is empirically centered and scaled
column-wise, resulting in the matrix Z. Since we want to mimic
an analysis on real data, let us assume that there is a potential
intercept in our model (in practice the empirical mean of our
simulated phenotype is likely to be non-null):

y = µ1n + Zu+ e. (10)

GCV expects all the variables to be penalized, but penalizing the
intercept is not relevant. We therefore consider a natural two-
step procedure: first the model’s intercept is estimated via the
empirical mean of the phenotype µ̂ = 1

n

∑

i yi, and, second, GCV
is applied on the empirically centered phenotype y = y− µ̂1n.

Figure 1 shows the GCV error (dotted line). Heritability is
strongly overestimated. The GCV error appears to tend toward
its minimum as λ approaches 0 (i.e., when h2 tends to 1).

This is a direct consequence of the empirical standardization
of M and of the phenotype. By centering the columns of M
with the empirical means of those columns, a dependency is
introduced, and each line of the resulting standardized genotype
matrix Z becomes a linear combination of all the others. The
same phenomenon of dependency can be observed with the
phenotype when using empirical standardization. Given the
nature of the LOO in general (where each individual is considered
successively as a validation set), this kind of standardization
introduces a link between the validation set and the training set
at each step: the “validation set individual” can be written as a
linear combination of the individuals in the training set. In high
dimension, this dependency leads to errLOO −−→

λ→0
0 (see section

4 in Supplementary Material), due to over-fitting occurring in
the training set.

FIGURE 1 | Example of biased estimation by GCV if p > n. We computed the

GCV error curve with n = 1, 000 individuals, p = 10, 000 causal variants and

simulated heritability h2sim = 0.25. We used a grid of λ corresponding to the

grid of heritability {0.01, 0.02, ..., 0.99} using the link described in Equation (6)

and computed the GCV error for those λ after empirical standardization of the

data (dotted line). The λ that minimizes the GCV error corresponds to the

heritability estimation. Here the GCV error tends to its minimum as h2 tends to

1, and heritability is thus largely over-estimated. The plain line corresponds to

the GCV error obtained after correction of this bias by the projection approach

(see section 2.1.3), which provides a satisfactory estimation of h2. The three

vertical lines correspond respectively to the simulated heritability (red line), the

heritability estimated using uncorrected GCV (green line) and the heritability

estimated using corrected GCV (blue line).

From a GCV perspective, a related consequence of the
empirical centering of the genotype data is that the matrix ZZT

has at least one null eigenvalue and an associated constant
eigenvector in a high dimensional setting (see section 4 in
Supplementary Material). This has a direct impact on GCV:
using the singular value decomposition of the empirically
standardized matrix Z = UDVT with U ∈ On (R), V ∈ Op (R)

two orthogonal squared matrices spanning, respectively, the lines
and columns spaces of Z while D ∈ Mn,p (R) is a rectangular
matrix with singular values {d1, ..., dn} on the diagonal. In a high

dimensional context: errGCV (y,Z, λ)
d2n=0
−−−→
λ→0

(1n
Ty)2. Performing

the “naive” empirical centering of the phenotype results in

errGCV (y− µ̂1n,Z, λ)
d2n=0
−−−→
λ→0

(1n
Ty− 1n

Tµ̂1n)
2 = 0.

The very same problem is observed for a more general model
with covariates (see section 4 in Supplementary Material).
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2.1.3. A First Solution Using Projection
A better solution for dealing with the intercept [and a matrix of
covariatesX ∈ Mn,r (R)] in ridge regression is to use a projection
matrix as a contrast and to work on the orthogonal of the space
spanned by the intercept (and the covariates).

Contrast matrices are a commonly used approach in the
field of mixed models for REstricted Maximum Likelihood
computations (REML) (Patterson and Thompson, 1971). REML
provides maximum likelihood estimation once fixed effects are
taken into account. Contrast matrices are used to “remove” fixed
effects from the likelihood formula. If we are only interested in
the estimation of the component of variance, we do not even
need to make this contrast matrix explicit: any semi-orthogonal
matrix C ∈ Mn−r−1,n (R) such that CCT = In−r−1 and
C × (µ1n + Xβ) = 0n−r−1 provides a solution (see section
6 in Supplementary Material for details). In a ridge regression
context, an explicit expression of û is needed for choosing the
optimal complexity. An explicit form forC is therefore necessary.

In the presence of covariates, a QR decomposition can
be used to obtain an explicit form for C (see section 5 in
Supplementary Material for details). In the special case of an
intercept without covariates, there is a convenient choice of
C. Since the eigenvector of ZZT associated with the final null
eigenvalue is constant, C = [U1, ...,Un−1]

T ∈ Mn−1,n (R)

is a contrast matrix adapted for our problem. Additionally, by
considering CZ instead of Z, we have CZ = D−nV

T →

CZZTCT = D−nD
T
−n with D−n the matrix D deprived of row n.

This choice of contrast matrix thus simplifies the GCV formula
and allows extremely fast computation.

2.1.4. A Second Solution Using 2 Data Sets
Dependency between individuals can be a problem when we use
the same data for the standardization (including the estimation
of potential covariate effects) and for the estimation of the
genetic effects. This can be overcome by partitioning our data.
Splitting our data into a standardization set and a training set,
we will first use the standardization set to estimate the mean
and the standard deviation of each variant, the intercept, and the
potential covariate effects. Those estimators will then be used to
standardize the training set on which GCV can then be applied.

This method has two main drawbacks. The first is that the
estimation of the non-penalized effects is done independently of
the estimation of the genetic effects, even though in practice we
do not expect covariates to be highly correlated with variants. The
other drawback is that it reduces the number of individuals for
the heritability estimation (which is very sensitive to the number
of individuals). This approach therefore requires a larger sample
than when using projection.

2.2. Prediction vs. Heritability in the
Context of Small Additive Effects
Ridge regression helps to highlight the link between heritability
and prediction accuracy. What is the relation between the
two concepts? Is prediction accuracy an increasing function
of heritability?

In a machine learning setting, we have training and testing
sets. The classical bias-variance trade-off formulation considers

the expectation of the loss over both the training set and the
test individual phenotype. It breaks down the prediction error
into three terms commonly called variance, bias, and irreducible
error. In this paper we do consider the genotypes of the training
set as fixed and the genotype of a test individual as random, and
somewhat abusively continue to employ the terms variance, bias,
and irreducible error:

Eytr ,yte ,zte

[

(yte − ŷte)
2
]

= Ezte

[

Eytr ,yte|zte

[

(yte − ŷte)
2
]]

= Ezte

[

var(yte|zte)+ var(ŷte|zte)
]

+

Ezte

[

(

Eytr |zte

[

ŷte
]

− Eyte|zte [yte]
)2

]

.

where the index tr refers to the training set, while te refers to the
test set.

Assuming a training set genotype matrix Z ∈ Mn,p(R)
(without index tr to lighten notations) whose columns have zero

mean and unit variances, we denote Kλ =
(

ZTZ+ λIp
)−1

ZT .
Assuming the independence of the variants Ezte [zte] = 0p and
var(zte) = Ip, irreducible error, variance, and bias become:

Ezte

[

var(yte|zte)
]

= σ 2

Ezte

[

var(ŷte|zte)
]

= σ 2tr
(

KλK
T
λ

)

Ezte

[

(

Eytr |zte

[

ŷte
]

− Eyte|zte [yte]
)2

]

= uT
(

KλZ− Ip
)2
u.

where u is the vector of the ridge parameters.
Since individuals are assumed to be unrelated, the covariance

matrix of the individuals is diagonal. The covariance matrix
of the variants is also diagonal, since variants are assumed
independent. Assuming scaled data, ZZT and ZTZ are the
empirical estimations of covariance matrices of respectively the
individuals and the variants (up to a p or n scaling factor). Two
separate situations can be distinguished according to the n/p
ratio. In the high-dimensional case where p > n, the matrix
ZZT estimates well the individuals’ covariance matrix up to a
factor p. Where n > p, on the other hand, ZTZ estimates well
the covariance matrix of variants up to a factor n. Eventually,
ZZT ≃ pIn when n < p and ZTZ ≃ nIp when n > p.

Assuming further that

• ∀i ∈ J1, nK var(yi) = 1, we then have σ 2 = 1− h2,
• heritability is equally distributed among normalized variants

i.e., ∀j ∈ J1, pK var(uj) = h2

p (which is indeed the mixed

model hypothesis),

• uTu ≃ p× h2

p and (Zu)T(Zu) ≃ nh2,

the expected prediction error can be stated more
simply, according to the n

p ratio (see section 8 in

Supplementary Material for details):

Eytr ,yte ,zte

[

(yte − ŷte)
2
]

≃







1− n
p (h

2)2, if p ≥ n

(1− h2)
1+ n

p h
2

1+h2( np−1)
, otherwise.

(11)
When considering the theoretical quadratic error with respect
to the log ratio of the number of individuals over the number
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FIGURE 2 | Theoretical Quadratic Error with respect to the log ratio of the

number of individuals over the number of variants in the training set. Each

curve corresponds to a given heritability (in the narrow sense). Note that the

total variance is assumed to be 1.

of variants in the training set (Figure 2), as expected we have a
decreasing function. This means that the larger the number of
individuals in the training sample, the smaller the error. We also
observe that the higher the heritability, the smaller the error. Both
of these things are intuitive, and as a consequence the error tends
toward the irreducible error when n becomes much larger than
p. What is more surprising is that the prediction error is close to
the maximum, whatever the heritability, when n is much smaller
than p. Paradoxically, even with the highest possible heritability,
if the number of variants is too large in relation to the number
of individuals, no prediction is possible. This can be explained
by the fact that the penalization plays a very important role in
that case and thus strongly increases the bias, while reducing the
variance. The squared bias and the variance with respect to the
log ratio of the number of individuals over the number of variants
in the training set are shown in Supplementary Figures 3, 4.
The irreducible error is only a function of heritability and is not
affected by the dimension of the training set.

Similarly, the prediction error can be computed on the
training set instead of on the test set. Using the same assumptions
as before, the expected prediction error on the training set can be
approximated by:

Eytr

[

1

n
(ytr − ŷtr)

T(ytr − ŷtr)

]

≃

{

(1− h2)2 if p > n,

1−2 n
n+λ

( p
n (1− h2)+ h2

)

+
(

n
n+λ

)2
( p
n (1−h2)+h2

)

otherwise.

A graph similar to Figure 2 for this expected error can be found
in Supplementary Figure 5. Interestingly, when p > n, the error
on the training set does not depend on the n/p ratio. When
n becomes greater than p, it increases and tends toward the
irreducible error 1 − h2 when n ≫ p. As shown in Figure 2, the
error on the test set is always higher than the irreducible error
and thus higher than the error on the training set, which is a sign
of over-fitting. However, the difference between the error on the
test set and the error on the training set is a decreasing function
of the n/p ratio, which is linear when p > n and tends toward
zero when n ≫ p.

Another popular way of looking at the predictive accuracy is
to consider the squared correlation between yte and ŷte (Goddard,
2009; Daetwyler et al., 2010):

corr2(yte, ŷte) =
cov2(yte, ŷte)

var
[

yte
]

var
[

ŷte
] .

Although correlation and prediction error both provide
information about the prediction accuracy, correlation may
have an interpretation that is intuitive, but it does not take the
scale of the prediction into account. From a predictive point of
view, this is clearly a disadvantage. Considering yte, zte, and ytr
to be random, and using the same assumptions that were made
in relation to prediction error, the three terms of the squared
correlation become:

cov2(yte, ŷte) = (uTKλZtru)
2,

var
[

ŷte
]

= tr(KT
λKλ × σ 2In)+ (Ztru)

TKT
λKλ(Ztru),

var
[

yte
]

= 1.

Like in the case of prediction error, replacingZZT orZTZ by their
expectations, the squared correlation simplifies to:

corr2(yte, ŷte) ≃

{ n
p (h

2)2 if n < p,
(h2)2

p
n (1−h2)+h2

otherwise.
(12)

When considering this theoretical squared correlation with
respect to the log ratio of the number of individuals over the
number of variants in the training set (Figure 3), we have,
as expected, an increasing function. Similarly, the higher the
heritability, the higher the squared correlation. We also observe
that when n ≫ p, the squared correlation tends toward the
simulated heritability. Conversely, when p≫ n, it is close to zero
whatever the heritability.

2.3. Simulations and Real Data
Since narrow-sense heritability is a quantity that relates to a
model, we will first illustrate our contributions via simulations
where the true model is known. We perform two different types
of simulation: fully synthetic simulations where both genotypes
and phenotypes are drawn from statistical distributions, and
semi-synthetic simulations where UK Biobank genotypes are
used to simulate phenotypes. We also illustrate our contributions
using height and body mass index (BMI) from the UK
Biobank dataset.
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FIGURE 3 | Theoretical squared correlation between phenotype and its

prediction with respect to the log ratio of the number of individuals over the

number of variants in the training set. Each curve corresponds to a given

heritability (in the narrow sense).

We first assess the performance of GCV for heritability
estimation and then look at the accuracy of the prediction when
the ratio of the number of individuals to the number of variants
varies in the training set.

2.3.1. UK Biobank Dataset
The present analyses were conducted under UK Biobank data
application number 45,408. The UK Biobank dataset consists
of ≃ 784 K autosomal SNPs describing ≃ 488 K individuals.
We applied relatively stringent quality control and minor allele
frequency filters to the dataset (callrate for individuals and
variants > 0.99; p-values of Hardy-Weinberg equilibrium test >

1e-7; Minor Allele Frequency > 0.01), leading to 473,054 and
417,106 remaining individuals and SNPs, respectively.

Two phenotypes were considered in our analyses: height
(standing) and BMI. In order to have a homogeneous population
for the analysis of these real phenotypes, we retained only
those individuals who had reported their ethnicity as white
British and whose Principal Component Analysis (PCA) results
obtained by UK Biobank were consistent with their self-declared
ethnicity. In addition, each time we subsampled individuals we
removed related individuals [one individual in all pairs with
a Genetic Relatedness Matrix (GRM) coefficient >0.025 was
removed], as in Yang et al. (2011b) in order to avoid confusion
between shared genetic factors and shared environmental factors.
Several covariates were also considered in the analysis of these
phenotypes: the sex, the year of birth, the recruitment center,

TABLE 1 | Table of the parameters sets of the simulations.

Parameters Levels

n/p Simulation: 1,000/10,000; 5,000/10,0000; 10,000/500,000

Data-based: 1,000/10,000; 5,000/10,0000; 10,000/417,106

fc 0.1; 0.5; 1

h2sim {0.1, ..., 0.9}

n/p: the ratio of the dimensions of the genotype matrix. fc: proportion of causal variants.
h2sim: simulated heritability.

the genotyping array, and the first 10 principal components
computed by UK Biobank.

2.3.2. Synthetic Genotype Data
The synthetic genotype matrices are simulated as in Golan et al.
(2014) and de Vlaming and Groenen (2015). This corresponds to
a scenario with independent loci or perfect linkage equilibrium.
To simulate synthetic genotypes for p variants, we first set a
vector of variant frequencies f ∈ Rp, with these frequencies
independently following a uniform distribution U ([0.05, 0.5]).
Individual genotypes are then drawn from binomial distributions
with proportions f , to form the genotype matrix M. A matrix of
standardized genotypes Z∗ can be obtained by standardizing M

with the true variant frequencies f .

2.3.3. Simulations to Assess Heritability Estimation

Using GCV
We consider both synthetic and real genetic data, and simulate
associated phenotypes.

In the two simulation scenarios we investigate the influence
on heritability estimation of the following three parameters: the
shape of the genotypematrix in the training set (the ratio between
n the number of individuals and p the number of variants), the
fraction of variants with causal effects fc, and the true heritability
h2sim. The tested levels of these quantities are shown in Table 1.

For each simulation scenario and for a given a set of
parameters (n, p, fc, h

2
sim), the simulation of the phenotype

starts with a matrix of standardized genotypes (either a synthetic
genotype matrix Z∗ standardized with the true allele frequencies,
as described in section 2.3.2, or a matrix of empirically
standardized genotypes Z obtained from UK Biobank data).
To create the vector of genotype effects u, p × fc causal
SNPs are randomly sampled and their effects are sampled
from a multivariate normal distribution with zero mean and a

covariance matrix τ Ip×fc (where τ =
h2sim
p×fc

), while the remaining

p×
(

1− fc
)

effects are set to 0. The vector of environmental effects
e is sampled from a multivariate normal distribution with zero
mean and a covariance matrix σ 2In, where σ 2 = 1 − h2sim. The
phenotypes are then generated as y = Z∗u + e and y = Zu + e,
for the fully synthetic scenario and the semi-synthetic scenario,
respectively. A standardization set of 1,000 individuals (that will
be used for the GCV approach based on two datasets) is also
generated for each scenario in the same way.

Applying GCV to large-scale matrices can be extremely time-
consuming, since it requires the computation of the GRM
associated with Z∗ or Z and the eigen decomposition of
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the GRM. For this reason we employed the same strategy
as de Vlaming and Groenen (2015) in order to speed up both
simulations and analyses by making it possible to test more than
one combination of simulation parameters. We simulated an
(nmax = 10, 000 × pmax = 500, 000) genotype matrix for the
training set in the fully synthetic scenario and used this simulated
matrix for all the 9 × 3 × 3 = 81 (h2sim × fc × n/p) parameter
combinations. Similarly, we sampled nmax = 10, 000 individuals
from the UK Biobank dataset to obtain an (nmax = 10, 000 ×

pmax = 417, 106) genotypematrix for the training set in the semi-
synthetic scenario. Smaller matrices were then created from a
subset of these two large matrices (note that for subsets of the real
genotypematrix we took variants in the original order to keep the
linkage disequilibrium structure). Consequently, computation of
the GRM and its eigen decomposition needed to be performed
only once for each n/p ratio considered. The fully synthetic and
the semi-synthetic scenarios were each replicated 30 times.

2.3.4. Simulations to Assess Prediction Accuracy
We performed fully synthetic simulations for different ratios n

p

in order to study the behavior of the mean prediction error and
the correlation between the phenotype and its prediction. We
considered a training set of size n = 1, 000, and a test set of
size nte = 5, 000. The maximum number of variants was set
to pmax = 50, 000 and the heritability to h2 = 0.6. We first
simulated a global allelic frequency vector f ∼ Upmax (0.05, 0.5)

and a global vector of genetic effects u ∼ N

(

pmax ,
h2

pmax
Ipmax

)

.

For each subset of variants of size p < pmax, we selected
a vector of genetic effects composed of the p first components

of u multiplied by a
√

pmax

p factor assuring a total variance of 1

and var(up) = h2

p Ip: u
p = (u1, ..., up) ×

√

pmax

p . The genotype

matrix Mte was then simulated and its normalized version Z∗
te

computed as described in section 2.3.2. The normalization used
the first p components of f . The noise vector ete ∼ N (0nte , (1 −
h2)Inte ) and a vector of phenotypes yte = Z∗

teu
p + ete were

eventually simulated.
We generated 300 training sets by simulating the normalized

genotype matrix, noise, and phenotype using the same process
as for the test set. Here, the training set index is denoted as k.
A prediction ŷte,k for the test set was made with each training

set using the ridge estimator of up obtained with λ = p 1−h2

h2
,

and the following empirical quantities were estimated: errp =

1
300

∑

k
1
nte

∥

∥

∥
yte,k − ĝp

∥

∥

∥

2

2
, bias2p = 1

nte

∑

i∈J1,nteK

([

Zteu
p − ĝp

]

i

)2

and varp =
1
300

∑

k
1
nte

∥

∥

∥
ŷte,k − ĝp

∥

∥

∥

2

2
, where ĝp =

(

1
300

∑

k∈J1,300K
[

ŷte,k

]

i

)

i∈J1,nteK
. The squared correlation between ŷte,k and yte,k

was also estimated.
We considered the following numbers of variants:

p ∈ {50, 000; 25, 000; 16, 667; 12, 500; 10, 000; 5, 000; 3, 333;

2, 500; 2, 000; 1, 667; 1, 429; 1, 250; 1, 111; 1, 000; 500;

136; 79; 56; 43; 35; 29; 25; 22; 20}.

TABLE 2 | Size (number of individuals) of training, standardization, and test sets

for assessing predictive power on real data.

Set Size

Training {1, 000;2, 000;5, 000;10, 000;20, 000}

Standardization 1,000

Test 1,000

TABLE 3 | Number of repetitions for the evaluation of the predictive power on real

data.

Size of the training set 1,000 2,000 5,000 10,000 20,000

Number of repetitions 100 70 50 20 10

2.4. Prediction of Height and BMI Using UK
Biobank Data
To experiment on UK Biobank for assessing the prediction
accuracy, for each phenotype we considered three sets of
data: a training set for the purpose of learning genetic
effects, a standardization set for learning non-penalized effects
(covariates and intercept), and a test set for assessing predictive
power. Pre-treatment filters (as described in section 2.3.1)
were systematically applied on the training set. We computed
the estimation of genetic effects using the projection-based
approach to take into account non-penalized effects, where
the penalty parameter was obtained by GCV with the same
projection approach:

ûR = ZT
trC

T
tr

(

CtrZtrZ
T
trC

T
tr + λ̂GCVIn−r

)−1
Ctrytr .

We then estimated non-penalized effects (here X contains
the intercept):

β̂ =
(

XT
stdXstd

)−1
XT
std

(

ystd
)

. (13)

Finally, we applied these estimations on the test set:

ĝte = ZteûR,

f̂te = Xteβ̂ ,

ỹte = yte − f̂te,

in order to compute theMean Square Error = 1
nte

(ỹte− ĝte)
T(ỹte−

ĝte) between the phenotype residuals ỹte after removal of non-
penalized effects and ĝte.

This procedure was performed for different ratios n
p using

different sized subsets of individuals for the training set, while
keeping all the variants that passed pre-treatment filters (see
Table 2).

For each number n of individuals considered in the training
set, the sampling of these individuals was repeated several times,
as seen in Table 3, in order to account for the variance of the
estimated genetic effects due to sampling.
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3. RESULTS

3.1. Generalized Cross Validation for
Heritability Estimation
3.1.1. Simulation Results
For the two simulation scenarios we look at the difference
between the estimation of h2g by GCV and the simulated

heritability h2sim in different configurations of study size n/p, h2sim
and the fraction of causal variants fc. Similarly, we look at the
difference between the estimation by the classical mixed model
approach and the simulated heritability. In our simulations fc
was seen to have no influence, and so only the influence of the
remaining parameters is shown in Figure 4 and fc is fixed at 10%.
For full results, see Supplementary Figures 1, 2.

For the fully-simulated scenario, the two GCV approaches
give very similar results and appear to provide an unbiased
estimator of h2. They compare very well with the estimation of
heritability by ridge regression with a 10-fold CV. Moreover, the
variance of the GCV estimators does not appear higher than the
variance of 10-fold CV.

In the case of the semi-synthetic simulations, here too both
GCV approaches and the 10-fold CV provide a satisfactory
heritability estimation. Our choice of using GCV in place of
a classical CV approach for estimating heritability by ridge
regression is therefore validated.

For both simulation scenarios we also note that the classical
mixed model approach (using the AI-REML method in the
gaston R package) gives heritability estimations that are very
similar to those obtained using the GCV approaches. The value
of simulated heritability does not appear to have a strong effect
on the quality of the heritability estimation. On the other hand,
the ratio n/p seems to have a real impact on estimation variance,
with lower ratios leading to lower variances, which initially
might appear surprising. One possible explanation for this is
that in our simulations n increases as the ratio n/p decreases.
Visscher and Goddard (2015) showed that the variance of the
heritability is a decreasing function of n, which could explain the
observed behavior.

3.1.2. Illustration on UK Biobank
We now compare heritability estimations between the two
GCV approaches and the classical mixed model approach for
height and BMI, on a training set of 10,000 randomly sampled
individuals (the training set being of the same size as for the
simulated data). All three approaches take account of covariates
and the intercept. The AI-REML approach also uses a projection
matrix to deal with covariates. For the GCV approach based
on two datasets, a standardization set of 1,000 individuals is
also sampled, and for comparison purposes we have chosen to
apply this two-set strategy to the classical mixed model approach
as well.

Since the true heritability is of course unknown with real
data, the sampling of the training and standardization sets is
repeated 10 times in order to account for heritability estimation
variability. Note that the SNP quality control and MAF filters
were repeated at each training set sampling and applied to the
standardization set.

Figure 5 shows that for each phenotype the two GCV
approaches and the classical mixed model approach (AI-REML)
give similar estimations. There is relatively little estimation
variability, and any variability observed seems depend more
on the individuals sampled for the training set than on the
approach used.

3.2. Prediction vs. Heritability in the
Context of Small Additive Effects
3.2.1. Prediction From Synthetic Data
As expected, the mean of the test set error follows closely the
theoretical curve when the log n

p varies (Figure 6). When n >

p, the mean of the test set is close to the minimum possible
error, which means that the ridge regression provides a reliable
prediction on average.

Interestingly, if the mean error behaves as expected by our
approximation, the standard deviation of the error may be very
large. Figures 6A,B show the same mean error with different
error bars. Figure 6A plots the error bars corresponding to the
training set variation: the mean test set error is computed for
each training set and the error bars show one standard deviation
across the 300 training sets. Figure 6B plots the error bars
corresponding to the variation of the errors across the test set.

The error bars in Figure 6B are much larger than those in
Figure 6A, which shows that the variation in the prediction error
is mostly due to the test individual whose phenotype we wish
to predict, and depends little on the training set. This may be
explained by the fact that the environmental residual term can
be very large for some individuals. For these individuals the
phenotype will be predicted with a very large error even when
n≫ p, that is to say when the genetic term is correctly estimated,
irrespective of the training set.

The squared correlation between the phenotype and its
prediction, as a function of log n

p , is also in line with our

approximation (Figure 7). As expected, when n ≫ p, the
squared correlation tends toward the simulated heritability. We
compared our approximation with the approximation obtained
by Daetwyler et al. (2008) and observed that although Daetwyler’s
approximation is very similar to ours when p≫n, our simulation
results make Daetwyler’s approximation appear under-optimistic
when n ≫ p. Finally, we also compared our approximation with
that obtained by Rabier et al. (2016), which is the same as ours
when n > p. However, when p > n, Rabier’s approximation
appears over-optimistic.

3.2.2. Prediction From UK Biobank Data
Let us consider the proposed theoretical approximation of the
predictive power of ridge regression with respect to the n/p ratio
applied to the UK Biobank data, for height and BMI residuals
(after removal of covariate effects and intercept).

The two phenotypes differ considerably as regards heritability:
we estimate by the projection-based GCV approach that 73.33%
of height is “heritable” whereas only 33.91% of BMI is (on average
over the 10 training samples of 20,000 individuals).

These estimated values are close to those currently found
in the literature (Ge et al., 2017). It is important to note that
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FIGURE 4 | Distribution of (h2est − h2sim) for different parameter combinations with 30 replications. (A) Corresponds to data simulated under the “fully synthetic”

procedure, while (B) corresponds to the “semi-synthetic simulation” procedure. Each sub-panel corresponds to a different value of n/p. In both scenarios 10% of the

variants have causal effects (i.e., fc = 0.1). For each panel, the horizontal axis corresponds to the simulated heritability h2sim ∈ {0.1, ..., 0.9} and the vertical axis

corresponds to (h2est − h2sim). Heritability estimations are done with the random effects model using AI-REML and with ridge regression using three approaches for the

choice of λ: GCV with a projection correction, GCV with a two-dataset correction and a 10-fold cross-validation (CV 10f).
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FIGURE 5 | Heritability estimation of BMI and height using AI-REML and GCV, with the projection-based approach and with the two-set approach. We sub-sampled

the original UK Biobank dataset 10 times for replication. The cross corresponds to the mean and the error bar to the mean ± one standard deviation.

the heritability estimation is strongly dependent on the filters.
Variations of up to 20% were observed in the estimations when
the filtering procedure setup was slightly modified.

A major difference between UK Biobank data and our
simulations designed to check the proposed approximation lies
in the strong linkage disequilibrium present in the human
genome. Several papers have proposed using the effective number
of independent markers to make adjustments in the multiple
testing framework (Li et al., 2012), and we likewise propose
adjusting our prediction model by taking into account an
effective number of SNPs (pe). We estimate the effective n

pe
ratio for each training set and for each considered n value
using the observed mean square errors, the estimated heritability,
and the theoretical relation in the case of independent variants
Eytr ,yte ,zte

[

(yte − ŷte)
2
]

= 1 − n
p (h

2)2 when p > n. We

then use a simple linear regression to find the coefficient
between these estimated n

pe
ratios and the corresponding real

n
p ratios.

Table 4 shows different but close effective numbers of SNPs
for the two phenotypes.

We also consider normalizing the test set errors using the
mean square error of phenotype residuals (after removing non-
penalized effects). Using this error normalization and adjusting
the theoretical curve for an effective number of SNPs, we observe

a close fit between the estimated errors on the test set and their
theoretical values (Figure 8).

4. DISCUSSION

In this work we investigated an alternative computation of
genomic heritability based on ridge regression. We proposed a
fast, reliable way to estimate the optimal penalization parameter
of the ridge via Generalized Cross Validation adapted for high
dimension. The genomic heritability estimated from the GCV
gives results comparable to mixed model AIREML estimates. It
clearly demonstrates that a predictive criterion allows a reliable
choice of the penalization parameter and associated heritability,
even when the prediction accuracy of ridge regression is low.
Moreover, even though our approach does not formally consider
Linkage Disequilibrium, simulations showed that it still provides
reliable genomic heritability estimates in presence of realistic
Linkage Disequilibrium.

We also provided theoretical approximations of the ridge
regression prediction accuracy, in terms of both error and
correlation between the phenotype and its prediction on new
samples. These approximations perform well on synthetic data,
in both high and low dimensions. They rely on the assumption
that individuals and markers are independent in approximating
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FIGURE 6 | Mean Squared Error of the prediction on the test set with respect

to log( np ), using simulated data with h2 = 0.6. The curves correspond to the

theoretical link for h2 = 0.6. The black points correspond to the mean

expectation for each value of log( np ) over 300 repetitions. The error bars in

(A,B) correspond respectively to one standard deviation of the test set error

obtained using two different aggregation strategies. On the left (A), we

consider an aggregation strategy where each of the 300 training sets results in

a mean test set error, whereas on the right (B) each individual in the test set

results in an error averaged over all training sets.

the empirical covariance matrices. Our approximation of the
prediction accuracy in terms of correlation proposes a good
compromise between existing approximations. In particular, it

FIGURE 7 | Mean squared correlation between the phenotype and its

prediction on the test set with respect to log( np ), using simulated data with

h2 = 0.6. The salmon points correspond to the evaluation of the squared

correlation and the black points correspond to the mean expectation for each

value of log( np ) over 300 repetitions. Red dots correspond to training set

replications. The red plain curve corresponds to Daetwyler’s approximation for

h2 = 0.6, while the blue dashed curve corresponds to Rabier’s approximation

and the green dotted curve corresponds to ours.

TABLE 4 | Effective number of SNPs.

Phenotype p/pe

Height 5.01

BMI 3.48

exhibits similar performances to Daetwyler et al. (2008) when
p > n and to Rabier et al. (2016) when p < n.

Our theoretical approximation of the prediction error is also
consistent with the error observed on real genetic data when
p > n, after adjusting for the effective number of independent
markers. Unfortunately, due to computational issues, we were
unable to perform the analysis in the n ≃ p case with real
data. However, we observed that the prediction accuracy already
reaches almost 15% of the heritability of height when n/p ≃ 5%,
while De los Campos et al. (2013) suggested that its asymptotic
upper bound is of the order of 20% of the heritability because
of incomplete LD between causal loci and genotyped markers.
Interestingly, ridge regression is not affected by correlated
predictors, and consequently it is not affected by high LD between
markers. When LD is high, this has the effect of reducing the
degrees of freedom of the model (Dijkstra, 2014), which results in
an improved prediction accuracy in comparison with a problem
having the same number of independent predictors and the
same heritability.
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FIGURE 8 | Normalized Mean Squared Error on the test set for the prediction

of Height (A) and BMI (B) with respect to the log ratio of the number of

individuals over the number of markers in the training set. Salmon dots

correspond to training set replications, black dot to the mean of replications for

different ratio and we show one standard deviation (over the training sets) of

the mean test set error. The theoretical curves are fitted using the estimated

heritability and an effective number of markers.

Although our approximations and simulation results tend to
show that the prediction accuracy can reach the heritability value
when n≫ p, as already suggested by previous works (Daetwyler
et al., 2008; de Vlaming and Groenen, 2015; Rabier et al., 2016),
the large standard deviation of the prediction error that we
observed between simulated individuals suggests that disease

risk prediction from genetic data alone is not accurate at the
individual level, even for a relatively high heritability value in the
context of a small additive effect hypothesis.

In direct continuity of this work, it would be interesting to
investigate the behavior of prediction accuracy on real human
data where n ≃ p. This would enable us to determine whether
our approximations still hold in that case, and even in the case
where n > p (where we approximate the empirical covariance
matrix of the markers to be diagonal). It would show whether it
is possible for the prediction accuracy to exceed the upper bound
proposed by De los Campos et al. (2013). A further prospect
would be to consider a nonlinear model extension via kernel
ridge regression, which may improve the prediction (Morota and
Gianola, 2014).
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