

On a shock capturing finite volume method that can solve fully incompressible flows

Michael Ndjinga, Esteban Coiffier

► To cite this version:

Michael Ndjinga, Esteban Coiffier. On a shock capturing finite volume method that can solve fully incompressible flows. 29th Biennial Numerical Analysis Conference 2023, Jun 2023, Glasgow, United Kingdom. cea-04415385

HAL Id: cea-04415385 https://cea.hal.science/cea-04415385v1

Submitted on 24 Jan 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

DE LA RECHERCHE À L'INDUSTRIE

ON A SHOCK CAPTURING FINITE VOLUME METHOD THAT CAN SOLVE FULLY INCOMPRESSIBLE FLOWS

28 June 2023

M. Ndjinga & E. Coiffier (CEA, University Paris-Saclay)

DES/ISAS/DM2S/STMF/LMEC

Context

Low Mach precision vs checkerboard modes

Numerical diffusion of classical schemes

A new class of staggered schemes

Numerical results

Conclusion and perspectives

Context

Low Mach precision vs checkerboard modes

Numerical diffusion of classical schemes

A new class of staggered schemes

Numerical results

Conclusion and perspectives

Context-I : Nuclear power plant safety

Lundi 21 mars 2011 - 12h00 UTC

Context-II : Flow in a nuclear reactor core

- Multicomponent flow : liquid, vapor, solid obstacles
- Stiff source terms (heat source, boiling, pressure losses)
- ► Flow in a wide range of regimes (Ma, Re, Pe)
- Specifics of two phase flows
 - non conservative models (e.g. two-fluid models)
 - not always admit entropies (e.g. models with drift)
 - characteristic fields neither GNL neither LD (e.g. models with drift)
 - characteristic speeds are not ordered
 - sonic points are very common (e.g. counter-current flows)

 \implies The mathematical structure and the numerical behaviour are very DIFFERENT between single and multiphase flows

\Longrightarrow We need generic and flexible solvers that can adapt to the flow regime

Context

Low Mach precision vs checkerboard modes

Numerical diffusion of classical schemes

A new class of staggered schemes

Numerical results

Conclusion and perspectives

Classical Navier-Stokes equations

$$\begin{cases} \frac{\partial}{\partial t}(\rho) + \nabla \cdot (\rho \mathbf{u}) = \mathbf{0}, \\ \frac{\partial}{\partial t}(\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) + \nabla p = \mu \Delta \mathbf{u} \\ \frac{\partial}{\partial t}(\rho E) + \nabla \cdot (\rho H \mathbf{u}) = \lambda \Delta T \end{cases}$$
(1)

- ρ, u, p may have very different magnitudes
- Use reference lenght L_{ref}, velocity u_{ref}, pressure p_{ref} to scale the equations
- Dimensionless numbers characterise the flow regimes
- Recover the low Mach asymptotic

Non dimensional Navier-Stokes equations

New variables
$$\rho := \frac{\rho}{\rho_{ref}}, \ \rho := \frac{\rho}{\rho_{ref}}, \ \mathbf{u} := \frac{\mathbf{u}}{u_{ref}}$$

$$\begin{cases} \frac{\partial}{\partial t}(\rho) + \nabla \cdot (\rho \mathbf{u}) = \mathbf{0}, \\ \frac{\partial}{\partial t}(\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) + \frac{1}{M^2} \nabla \rho = \frac{1}{\text{Re}} \Delta \mathbf{u} \qquad (2) \\ \frac{\partial}{\partial t}(\rho E) + \nabla \cdot (\rho H \mathbf{u}) = \frac{1}{\text{Pe}} \Delta T \end{cases}$$

$$M = rac{U_{ref}}{C_{ref}}, \quad \mathrm{Re} = rac{L_{ref}U_{ref}}{rac{\mu}{
ho_{ref}}} \quad \mathrm{Pe} = rac{L_{ref}U_{ref}}{rac{\lambda}{
ho_{ref}C_{
ho}}}$$

In a nuclear reactor, Re >> 1, Pe >> 1, M << 1 (||u|| << c)
 We need more precision on *p* than on other variables

Low Mach asymptotics

For well prepared initial data ($M \ll 1$ initially)

$$\begin{cases} \rho(\vec{x}, t=0) = \rho_* + O(M)(\vec{x}) \\ p(\vec{x}, t=0) = \rho_* + O(M^2)(\vec{x}) \\ \mathbf{u}(\vec{x}, t=0) = \mathbf{u}_*(\vec{x}) + O(M)(\vec{x}) \end{cases}$$

the solution $(\rho, \rho, \mathbf{u})(t, \vec{x})$ to the compressible Euler equations takes the form

$$\begin{cases}
\rho(\vec{x},t) = \rho_* + O(M)(\vec{x},t) \\
p(\vec{x},t) = \rho_* + O(M^2)(\vec{x},t) \\
u(\vec{x},t) = \tilde{u}(\vec{x},t) + O(M)(\vec{x},t)
\end{cases}$$

where \tilde{u} is the solution of the incompressible Euler equations with initial data $\tilde{u}(\vec{x}, 0) = u_*(\vec{x})$

Numerical schemes should preserve this asymptotics

4

C22 The limitations of colocated methods

- Upwind based FV colocated methods (Godunov, Roe, ...) do not option the low Mach commutation X
 - do not satisfy the low Mach asymptotics X
- Centered FV colocated methods
 - − satisfy the low Mach asymptotics... ✓
 - but generate spurious checkerboard oscillations X

Lid driven cavity test :

Figure: Implicit upwind scheme

Figure: Implicit centered scheme

Colocated vs staggered FV methods

Empirical numerical observations :

- ► Colocated FV → lack robustness
 - "Corrected" Riemann solvers based on the theory of hyperbolic systems of conservation law
 - Predictor-corrector solvers inspired by the incompressible regime (projection methods)
- ► Staggered FV → more robust wrt source terms but
 - Often based on non conservative formulations
 - Extension to general meshes is delicate

Staggered shelf	Colocated shelf		
no sound speed involved	conservation form		
OK for incompressible fluids	linear stability		
no checkerboard modes	general meshes		

Table: Our shopping list

Roadmap :

- find a theoretical framework for the design and analysis of staggered schemes
- rethink the (vectorial) upwinding of colocated schemes
- give up the geometric intuition behind staggered schemes
- familly of schemes instead of a single one

Context

Low Mach precision vs checkerboard modes

Numerical diffusion of classical schemes

A new class of staggered schemes

Numerical results

Conclusion and perspectives

C22 The numerical diffusion (1D for short)

Most schemes have a numerical diffusion operator

e.g. a 1D first order non linear PDE

$$\partial_t U + A(U)\partial_x U = 0. \tag{3}$$

yields as $\Delta x \rightarrow 0$:

$$\partial_t U + A \partial_x U = -\Delta x \partial_x D_{disc} \partial_x U + o(\Delta x).$$
 (4)

- D_{disc} is connected to stability and precision of the scheme
- One can derive the numerical diffusion of the scheme
- Exercise : Compute D_{disc} for colocated and staggered schemes

C22 Example 1 : centered scheme

(Wave system)
$$\begin{cases} \partial_t \rho + \partial_x q = 0\\ \partial_t q + c^2 \partial_x \rho = 0 \end{cases}$$

ightarrow linear hyperbolic system with eigenvalues $\pm c$.

Centered discretisation :

$$\begin{cases} \partial_t \rho_i + \frac{q_{i+1}-q_{i-1}}{2\Delta x} = \mathbf{0} \\ \partial_t q_i + c^2 \frac{\rho_{i+1}-\rho_{i-1}}{2\Delta x} = \mathbf{0} \end{cases}, \quad U_i = \begin{pmatrix} \rho_i \\ q_i \end{pmatrix}.$$

• $D_{centre} = 0$ (scheme is order 2)

- D_{centre} is diagonalisable
- odd/even decoupling (Ker(D) is too rich)

10/26

Example 2 : upwind scheme

(Wave system)
$$\begin{cases} \partial_t \rho + \partial_x q = 0\\ \partial_t q + c^2 \partial_x \rho = 0 \end{cases}$$

Upwind discretisation

$$\begin{cases} \partial_t \rho_i + \frac{q_{i+1} - q_{i-1}}{2\Delta x} = \boldsymbol{c} \frac{\rho_{i+1} - 2\rho_i + \rho_{i-1}}{\Delta x} \\ \partial_t q_i + \boldsymbol{c}^2 \frac{\rho_{i+1} - \rho_{i-1}}{2\Delta x} = \boldsymbol{c} \frac{q_{i+1} - 2q_i + q_{i-1}}{\Delta x} \end{cases}, \quad \boldsymbol{U}_i = \begin{pmatrix} \rho_i \\ q_i \end{pmatrix}.$$

$$D_{upwind} = |A_{wave}| = \left(egin{array}{cc} c & 0 \ 0 & c \end{array}
ight), \quad A_{wave} = \left(egin{array}{cc} 0 & 1 \ c^2 & 0 \end{array}
ight).$$

same diffusion rate on each equation
 D_{upwind} is diagonalisable on ℝ

(Wave system)
$$\begin{cases} \partial_t \rho + \partial_x q = 0\\ \partial_t q + c^2 \partial_x \rho = 0 \end{cases}$$

Staggered discretisation (simple version)

$$\begin{cases} \partial_t \rho_i + \frac{q_{i+1/2} - q_{i-1/2}}{\Delta x} = \mathbf{0} \\ \partial_t q_{i+1/2} + c^2 \frac{\rho_{i+1} - \rho_i}{\Delta x} = \mathbf{0} \end{cases}, \quad U_i = \begin{pmatrix} \rho_i \\ q_{i+1/2} \end{pmatrix}$$

$$D_{stag} = \left(egin{array}{cc} 0 & 1 \ -c^2 & 0 \end{array}
ight), \quad A_{wave} = \left(egin{array}{cc} 0 & 1 \ c^2 & 0 \end{array}
ight).$$

- most of the numerical diffusion is on the second equation
- D_{stag} is not diagonalisable on \mathbb{R}
- usually based on non conservative forms.

12/26

Context

Low Mach precision vs checkerboard modes

Numerical diffusion of classical schemes

A new class of staggered schemes

Numerical results

Conclusion and perspectives

C22 Stability analysis : Symetrisation and energy

After linearisation, we have the linear hyperbolic system $\partial_t U + A \partial_x U = 0, \quad F(U) = AU$

A must be diagonalisable \Rightarrow symetrisation is possible

$$S = P^{-1}AP, \quad {}^tS = S$$

• change of variables
$$\bar{U} = PU$$
 :
 $\partial_t \bar{U} + S \partial_x \bar{U} = 0$

after symetrisation, the energy is constant in time

$$\partial_t \int_{\mathbb{R}} ||ar{U}||^2 \mathrm{d}x = 0.$$

Hence the stability at the continuous level:

$$\|\bar{U}(\cdot,t)\|_{L^2} = \|\bar{U}_0\|_{L^2}.$$

13/26

Stability and precision

Same steps as in the continuous case

- 1 Consider a general numerical diffusion operator D
- 2 Compute the evolution of the norm in the symetrising basis

$$\partial_t \int_{\mathbb{R}} ||ar{U}_h||^2 \mathrm{d}x = -h \int {}^t (\partial_x ar{U}_h) (ar{D} + {}^t ar{D}) (\partial_x ar{U}_h) + o(h).$$

the dissipation rate is given by the spectrum of $\overline{D} + {}^t\overline{D}$ 3 We conclude that

- the scheme is stable provided

$$ar{D} + {}^tar{D} \geq 0$$

$$\Rightarrow \|\bar{U}_{h}(\cdot,t)\|_{L^{2}} \le \|\bar{U}_{h0}\|_{L^{2}}.$$
(5)

– the scheme is precise provided $\bar{D} + {}^t\bar{D}$ does not involve the sound speed

Ceal Revisit examples on the wave system

Upwind scheme :

 $D_{upwind} = c\mathbb{I}_d, \quad ar{D}_{upwind} = c\mathbb{I}_d, \quad ar{D}_{upwind} + {}^tar{D}_{upwind} = c\mathbb{I}_d.$

- Strong coupling between cell \checkmark
- Numerical dissipation is too strong if $c \gg \|\mathbf{u}\| \times$

centered scheme :

$$D_{centered} = 0, \quad \bar{D}_{centered} = 0, \quad \bar{D}_{centered} + {}^t \bar{D}_{centered} = 0.$$

- Odd/even decoupling X
- staggered scheme :

$$D_{stag} = \left(egin{array}{cc} 0 & 1 \ -c^2 & 0 \end{array}
ight), ar{D}_{stag} = \left(egin{array}{cc} 0 & c \ -c & 0 \end{array}
ight), ar{D}_{stag} + {}^t ar{D}_{stag} = 0.$$

- Numerical dissipation is zero \checkmark
- Strong coupling between neighbouring cells \checkmark

15/26

22 Design pattern

1 Choose a matrix *D* satisfying the stability and precision criteria

- $\bar{\underline{D}} + {}^t \bar{\underline{D}} \ge 0$ (stability)
- $\bar{D} + {}^t \bar{D}$ does not involve the sound speed *c* (precision)

$$F_{i,j} = rac{F(U_i) + F(U_j)}{2} + Drac{U_i - U_j}{2}$$

Remarks :

- The scheme us conservative
- The scheme can be colocated or staggered
- The scheme is generally implicit if $Sp(\overline{D}) \subset i \mathbb{R}$
- One can have zero numerical dissipation $\|\bar{U}_h(\cdot, t)\|_{L^2} = \|\bar{U}_{h0}\|_{L^2}$ and non zero numerical diffusion \bar{D}

Example with the Euler equations - I

We consider the following Euler equations :

$$\partial_t \rho + \nabla \cdot (\rho \vec{u}) = 0$$
 (6)

$$\partial_t(\rho \vec{u}) + \nabla \cdot (\rho \vec{u} \otimes \vec{u}) + \vec{\nabla} \rho = 0$$
 (7)

$$\partial_t(\rho(e+\frac{1}{2}||\vec{u}||^2)) + \nabla \cdot ((\rho e+\frac{1}{2}\rho||\vec{u}||^2+\rho)\vec{u}) = 0$$
 (8)

Symmetrisation with $\frac{\partial p}{\partial \rho}\Big|_{e}$, $\frac{\partial p}{\partial e}\Big|_{\rho}$ not appearing on the diagonal :

$$\boldsymbol{S} = \begin{pmatrix} \boldsymbol{u} & \sqrt{\frac{\partial \boldsymbol{p}}{\partial \boldsymbol{\rho}}} & \boldsymbol{0} \\ \sqrt{\frac{\partial \boldsymbol{p}}{\partial \boldsymbol{\rho}}}_{\boldsymbol{e}} & \boldsymbol{u} & \sqrt{\frac{\partial \boldsymbol{p}}{\partial \boldsymbol{e}}}_{\boldsymbol{\rho}} \frac{\boldsymbol{p}}{\boldsymbol{\rho}^{2}} \\ \boldsymbol{0} & \sqrt{\frac{\partial \boldsymbol{p}}{\partial \boldsymbol{e}}}_{\boldsymbol{\rho}} \frac{\boldsymbol{p}}{\boldsymbol{\rho}^{2}} & \boldsymbol{u} \end{pmatrix}$$

.

Example with the Euler equations - II

In the symetrising basis :

$$\bar{D}_{Stag} = \begin{pmatrix} |u| & \sqrt{\frac{\partial p}{\partial \rho}} \\ -\sqrt{\frac{\partial p}{\partial \rho}} \\ e & |u| & -\sqrt{\frac{\partial p}{\partial e}} \\ p \\ 0 & \sqrt{\frac{\partial p}{\partial e}} \\ p \\ \rho^2 & |u| \end{pmatrix}$$

In the physical basis :

$$D_{Stag} = \begin{pmatrix} |u| - u & 1 & 0 \\ -\frac{\partial p}{\partial \rho}\Big|_{e} - u^{2} + \frac{1}{\rho} \frac{\partial p}{\partial e}\Big|_{\rho} \left(\frac{u^{2}}{2} - e\right) & u + |u| - \frac{u}{\rho} \frac{\partial p}{\partial e}\Big|_{\rho} & \frac{1}{\rho} \frac{\partial p}{\partial e}\Big|_{\rho} \\ -u \left(c^{2} + E - \frac{p}{\rho} + \frac{1}{\rho} \left(\frac{u^{2}}{2} - e\right) \frac{\partial p}{\partial e}\Big|_{\rho} \right) & E - \frac{p}{\rho} - \frac{u^{2}}{\rho} \frac{\partial p}{\partial e}\Big|_{\rho} & \frac{1}{\rho} (u \frac{\partial p}{\partial e}\Big|_{\rho} + |u|\rho) \end{pmatrix}$$

Context

Low Mach precision vs checkerboard modes

Numerical diffusion of classical schemes

A new class of staggered schemes

Numerical results

Conclusion and perspectives

Incompressible flow correspond to $c
ightarrow \infty$

- Choose a staggered type upwinding (complex eigenvalues)
- use primitive variables (p, u) instead of $(\rho, q = \rho u)$
- check that there is no blow-up when $c
 ightarrow \infty$
- note that the scheme should be implicit if $c = \infty$

$$\mathcal{D} = \textit{sign}(ec{u}_{ij} \cdot ec{n}) \left(egin{array}{ccc} rac{ec{u}_{ij} \cdot ec{n}}{c_{ij}^2} &
ho(p)^t ec{n} \ -ec{n} - rac{(ec{u}_{ij} \cdot ec{n})}{c_{ij}^2} ec{u}_{ij} &
ho(p)(ec{u}_{ij} \otimes ec{n} + (ec{u}_{i,j} \cdot ec{n}) \mathbb{I}_d) \end{array}
ight)$$

Ceal Incompressible flow with gravity

Numerical tests description :

- incompressible flow
- external force $\vec{f} = \rho \vec{g}$ the gravity
- reach stationary state
- exact velocity is constant
- exact pressure is constant

Implicit pstaggered scheme for isothermal Euler equations

Présentation du benchmark de Toro (1997)

Problèmes de Riemann difficiles

- Evaluation de la Tests robustesse de méthodes numériques
- ► Solutions exactes disponibles → évaluation de la précision
- Evaluation des méthodes numériques en présence d'ondes de choc et de contact
- La loi d'état est celle d'un gaz parfait

Test	ρ_L	u _L	p_L	ρ_R	U _R	p _R
Toro1	1	0.75	1	0.125	0	0.1
Toro2	1	-2	0.4	1	2	0.4
Toro3	1	0	1000	1	0	0.01
Toro4	5.99924	19.5975	460.894	5.99242	-6.19633	46.0950
Toro5	1	-19.5975	1000	1	-19.59745	0.01
Toro6	1.4	0	1	1.4	0	1
Toro7	1.4	0.1	1	1	0.1	1

Table: Initial data for the seven tests Toro1, ... , Toro7

Résultats du benchmark de Toro

- Convergence de 6 tests sur 7
- Echec du test Toro2 (densité négative car régime proche du vide)

Figure: Densité du test Toro4

Nécessité d'un benchmark similaire diphasique Benchmark 2D et/ou avec termes source pour vérification des codes de calcul

22/26

Cea Canal bouillant (diphasique)

- Canal 1D
- chauffage
- changement de phase

Cavité entrainée : donnée initiale

- fluide au repos $\vec{v} = \vec{0}$
- 3 parois fixes
- 1 paroi mobile
- ► Grille rectangulaire 50x50

Nombre de Mach : 1e - 3

Cea Régime stationnaire

Figure: Colocalisé conservatif (schéma de Roe implicite)

Schéma décalé conservatif :

- Prise en compte de la viscosité
- Bonne précision à faible nombre de Mach
- Pas de modes en échiquiers

Figure: Décalé conservatif

25/26

Context

Low Mach precision vs checkerboard modes

Numerical diffusion of classical schemes

A new class of staggered schemes

Numerical results

Conclusion and perspectives

Cea Conclusion and perspectives

With the new "staggered" class

- Simulation of shock waves
- Simulation of boiling flows
- Simulation of low Mach flows
- Simulation of incompressible flows

Convergence to the analytial solution (except near void).

Checkerboard analysis : formalised TVD analysis (FVCA10).

We can now study

- More complex models (6 equations)
- Entropy balance
- 'porosity' jumps
- general meshes
- saddle point issue

Thanks! Any questions?