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Oseen problems

The Oseen problem appears in
� viscous incompressible flows with convection
� Picard linearisation of Navier-Stokes equations

and can be written as:
−ν∆~u + ~v · ∇~u +∇p = ~f ,

∇ · ~u = 0,

in Ω with the boundary conditions on ∂Ω = ∂ΩD ∪ ∂ΩN :

~u = ~w on ∂ΩD ,

∂~u
∂n
− ~np = ~s on ∂ΩN .
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Discrete Oseen problems

Discretizations lead to the saddle-point system:(
F BT

B −C

)(
u
p

)
=

(
f
g

)
� F : convection-diffusion block (non symmetric)
� B and BT : discrete divergence and gradient
� C: stabilization block (0 for naturally stable methods)
� Variable convective flow: no linear-time solver robust wrt both the mesh size and the viscosity
ν (i.e. Reynolds number)

� AMG methods: struggle with the C pressure block: 0 or small elements.
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AMG methods

Multigrid methods are efficient solvers for elliptic PDEs.
Two main components: the smoother and the coarse-grid correction

� smoother: simple iterative scheme (Jacobi, GS) corrects high frequency part of the error
⇒ the error well approximated on a coarser grid

� coarse-grid construction: prolongation operator P (v = Pvc)
⇒ coarse matrix Ac = PT AP

� coarse-grid correction: amounts to solve system with Ac as system matrix.

Multigrid (MG): recursive application.
Algebraic multigrid (AMG): uses only the system matrix A
⇒ black-box approach.
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Aggregation
� Classic AMG: P interpolation operator⇒ often leads to denser Ac

� Aggregation: definition of small subsets of the unknowns (= aggregates)
� Prolongation defined as constant by aggregate⇒ P logical matrix and Pij indicates whether

the i th (fine) unknown belongs to the j th aggregate.
� Ac keeps the same sparsity pattern as A.

Figure 1: Representation of plain aggregation.
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Transform-then-solve approach

Algebraic transformation of the system to give it a more "suitable" structure:
� Sign of the pressure equation is changed
� Change of variables: (

u
p

)
=

(
I −D−1

u BT

I

)(
û
p̂

)
,

where Du is typically the diagonal of the F block. The matrix system becomes:

A =

(
F BT

−B C

)(
I −D−1

u BT

I

)
=

(
F (I − FD−1

u )BT

−B C + BD−1
u BT

)
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Transform-then-solve approach

A =

(
F (I − FD−1

u )BT

−B C + BD−1
u BT

)
Diagonal blocks: structure compatible with AMG methods:

� F : convection-diffusion matrix
� Ĉ = C + BD−1

u BT : similar to discrete Laplacian.

Naive approach: independent definition of the MG components:
� Velocity: based on F ⇒ Pu (and Du)

� Pressure: based on Ĉ ⇒ Pp (and Dp)

P =

(
Pu

Pp

)
⇒ does not work for NS
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Convergence theory: context

Theoretical framework:
� Two-grid method

� Jacobi-type smoother ω−1D = ω−1
(

Du

Dp

)
� Prolongation of the form P =

(
Pu

Pp

)
� Galerkin coarse grid correction Ac = PT AP
� One (pre)-smoothing step only.
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Convergence theorem [PLB,Notay - 2022]

The norm of the iteration matrix is bounded

min
τ
‖I − τ K‖ ≤

√
1− α (δu, δp, γu, γp)

if all 4 constants, which depend on the multigrid components, are bounded
� δu

(
FS , Pu , Du

)
: if Pu and Du form an efficient TG for FS

� δp
(
Ĉ , Pp , Dp

)
: if Pp and Dp form an efficient TG for Ĉ

� γu (Du,F ): if Du is a good smoother for F , e.g. diag(F )

� γp (Dp,S,Pp): ?
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Evaluation of the constants

� Numerical evaluation for model problem: finite differences on staggered grid, constant
convection flow (θ orientation), Jacobi smoother

� Only free parameter to control γp(Dp,S,Pp): aggregation of the pressure Pp
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Evaluation of the constants
� Numerical evaluation for model problem: finite differences on staggered grid, constant

convection flow (θ orientation), Jacobi smoother
� Only free parameter to control γp(Dp,S,Pp): aggregation of the pressure Pp

Boxwise aggregation Linewise aggregation

Figure 2: Schematic representation of the two choices of aggregation.
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Evaluation of the constants
� Numerical evaluation for model problem: finite differences on staggered grid, constant

convection flow (θ orientation), Jacobi smoother
� Only free parameter to control γp(Dp,S,Pp): aggregation of the pressure Pp

Boxwise Linewise Boxwise Linewise
δp δp γp γp

θ = 0
ν = 10−2 5.7 9.1 17.0 3.5
ν = 10−4 5.7 9.1 192.8 6.0
ν = 10−6 5.7 9.1 219.6 6.1

θ = π/4
ν = 10−2 5.7 9.1 1.3 1.3
ν = 10−4 5.7 9.1 1.3 1.3
ν = 10−6 5.7 9.1 1.3 1.3

Table 1: Evaluation of the constants related to the convergence analysis (h = 1/16).
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Analysis of the constants

Proof of uniform convergence for constant convection flow if aggregation in
the direction of the flow: γp ≤ 13

2

(
1 +

2ν+vy h
2ν+vx h

)
< 13.
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Figure 2: γp and its analytical bound for boxwise and linewise aggregation.
MG for Oseen - PLB 29/06/23 15



Definition of the aggregation

Aggregation of velocity: driven by convection (bound δu)
⇒ algebraic aggregation based on F
Aggregation of pressure: driven by convection (bound γp)
⇒ algebraic aggregation NOT based on Ĉ = C + BD−1

u BT

How to define the aggregation of the pressure unknowns to be driven by
convection?

Use of a geometric artifice:
� Build auxilary convection-diffusion matrix X on pressure points
� Algebraically aggregate the points based on auxilary matrix X .

⇒ Similar aggregation pattern to velocity
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Numerical experiments: settings

� Convection-diffusion problems on staggered grid (FD): recirculating flows
� Smoother: 1 SOR iteration for pre- and post-smoothing with ω = 2/3
� Aggregation defined by applying AGMG [Notay, Napov] software to

� velocity block F : Pu
� auxilary matrix X : Pp

⇒ aggregates aligned with the flow (quality aware aggregation)
� Galerkin coarse grid matrix
� Two-grid method used as a preconditioner for GCR (mathematically equivalent to GMRES).

MG for Oseen - PLB 29/06/23 18



Numerical experiments: recirculating flows

Recirculating Flow ESW

-1 -0.5 0 0.5 1
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1

2D1: ~v =

(
x(1− x)(2y − 1)
−(2x − 1)y(1− y)

)
2D2: ~v =

(
cos(πx) sin(πy)
− sin(πx) cos(πy)

)
ESW1: ~v =

(
2y(1− x2)
−2x(1− y2)

)

1ESW: Elman, Silvester, Wathen, 2005.
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Numerical experiments: recirculating flow (cont’d)

h = 1/128 h = 1/256

Flow
ν

10−2 10−4 10−6 10−8 10−2 10−4 10−6 10−8

2D1 15 36 48 49 14 30 49 51
2D2 14 39 47 49 15 37 46 53
ESW 14 40 42 42 13 38 44 44

Table 2: Recirculating flows: number of iterations until ‖rrel‖ ≤ 10−6.
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Transition from two- to multigrid

Ac =

(
PT

u
PT

p

)(
F (I − FD−1

u )BT

−B C + BD−1
u BT

)(
Pu

Pp

)
=

(
Fc BTc

−Bc Ĉc

)

For significant convection, linewise aggregates are required, e.g. along x−axis:

Ĉ :

 1
1 −4 1

1

 ⇒ Ĉc :

 4
1 −10 1

4


Anistropy in the orthogonal direction

MG for Oseen - PLB 29/06/23 22



Limits of the transform-then-solve approach

� Anisotropy introduced in the (isotropic) pressure block
� Aggregation driven by the velocity not suited to coarser levels
� Degradation of the δu but γp stays well bounded

Level 1 Level 2 Level 3 Level 4
γp δp γp δp γp δp γp δp

ν = 10−2 1.8 6.8 1.7 31.2 1.7 181.3 1.7 982.5
ν = 10−4 3.8 6.8 4.6 36.9 2.8 1354.9 1.7 2962.0
ν = 10−6 3.9 6.8 5.4 37.1 5.4 381.9 2.6 4591.7
ν = 10−8 3.9 6.8 5.4 37.1 5.6 382.2 2.7 4627.0

Table 3: Evaluation of the constants related to the convergence analysis (h = 1/32).
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Naive attempts

Introduction of anisotropy in Ĉ causes the method to break down¸
1 Adaptation of the aggregation at coarse levels:

� boxwise aggregation (to mitigate the anisotropy)
� orthogonal linewise aggregation (to counter anisotropy)

A mediocre coarse grid correction can still lead to a viable multigrid method with a
more involved smoother

2 Vanka or Braess-Sarrasin smoothers

3 Go back to theory
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More involved smoothers
Jacobi-type smoother: (

Du
Mp

)
� Du = diag(F )
� Mp: approximation of the pressure block by the AGMG preconditioner

� δp should be close to 1 for all ν
� γp stays bounded for all ν

h = 1/64 h = 1/128

θ
ν

10−2 10−4 10−6 10−8 10−2 10−4 10−6 10−8

0 80 71 72 71 89 113 113 113
π/16 69 63 63 63 105 86 85 85
π/4 74 69 69 69 104 97 97 97

Table 4: Constant convection flow: number of multigrid iterations until ‖rrel‖ ≤ 10−6.
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Conclusions and perspectives

Conclusions:
� Theoretical analysis of the convergence (in norm) for Oseen problems
� Robustness of the resulting two-grid method on recirculating flows
� Transition to multigrid NOT straightforward

Perspectives:
� Two-grid as a tool as a building block
� Full algebraization of the method
� Application to Navier-Stokes equations (Picard linearization).

Questions?
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