

Towards a monolithic multigrid method for Oseen problems

29th Biennial Conference on Numerical Analysis

June 29th, 2023

P.-L. Bacq (pierre-loic.bacq@cea.fr), Y. Notay CEA DEN/ISAS/DM2S/STMF/LMEC SACLAY, UNIVERSITÉ LIBRE DE BRUXELLES

Proposed approach

Brief theoretival overview

Numerical Results

From Two- to Multigrid

Proposed approach

Brief theoretival overview

Numerical Results

From Two- to Multigrid

Oseen problems

The Oseen problem appears in

- viscous incompressible flows with convection
- Picard linearisation of Navier-Stokes equations

and can be written as:

$$-\nu\Delta \vec{u} + \vec{v} \cdot \nabla \vec{u} + \nabla \rho = \vec{f},$$

$$\nabla \cdot \vec{u} = 0,$$

in Ω with the boundary conditions on $\partial \Omega = \partial \Omega_D \cup \partial \Omega_N$:

$$\vec{u} = \vec{w} \text{ on } \partial \Omega_D,$$

 $\frac{\partial \vec{u}}{\partial n} - \vec{n}p = \vec{s} \text{ on } \partial \Omega_N.$

MG for Oseen - PLB

Discrete Oseen problems

Discretizations lead to the **saddle-point** system:

$$egin{pmatrix} {m F} & {m B}^{T} \ {m B} & -{m C} \end{pmatrix} egin{pmatrix} {m u} \ {m p} \end{pmatrix} = egin{pmatrix} {m f} \ {m g} \end{pmatrix}$$

- F: convection-diffusion block (non symmetric)
- *B* and *B*^T: discrete divergence and gradient
- C: stabilization block (0 for naturally stable methods)
- Variable convective flow: no linear-time solver robust wrt both the mesh size and the viscosity ν (*i.e.* Reynolds number)
- AMG methods: struggle with the *C* pressure block: 0 or small elements.

AMG methods

Multigrid methods are efficient solvers for elliptic PDEs. Two main components: the **smoother** and the **coarse-grid correction**

- **smoother**: simple iterative scheme (Jacobi, GS) corrects high frequency part of the error ⇒ the error well approximated on a coarser grid
- coarse-grid construction: prolongation operator $P(\mathbf{v} = P\mathbf{v}_c)$ \Rightarrow coarse matrix $A_c = P^T A P$
- **coarse-grid correction**: amounts to solve system with A_c as system matrix.

Multigrid (MG): recursive application.

Algebraic multigrid (AMG): uses only the system matrix A

 \Rightarrow **black-box** approach.

Aggregation

- Classic AMG: *P* interpolation operator \Rightarrow often leads to denser A_c
- Aggregation: definition of small subsets of the unknowns (= aggregates)
- Prolongation defined as constant by aggregate ⇒ P logical matrix and P_{ij} indicates whether the *ith* (fine) unknown belongs to the *jth* aggregate.
- *A_c* keeps the same sparsity pattern as *A*.

Figure 1: Representation of plain aggregation.

Proposed approach

Brief theoretival overview

Numerical Results

From Two- to Multigrid

Transform-then-solve approach

Algebraic transformation of the system to give it a more "suitable" structure:

- Sign of the pressure equation is changed
- Change of variables:

$$egin{pmatrix} \mathbf{u} \ \mathbf{p} \end{pmatrix} = egin{pmatrix} I & -D_{\mathbf{u}}^{-1}B^{\mathsf{T}} \\ I \end{pmatrix} egin{pmatrix} \hat{\mathbf{u}} \\ \hat{\mathbf{p}} \end{pmatrix} \,,$$

where D_{u} is typically the diagonal of the *F* block. The matrix system becomes:

$$A = \begin{pmatrix} F & B^{T} \\ -B & C \end{pmatrix} \begin{pmatrix} I & -D_{\mathbf{u}}^{-1}B^{T} \\ I \end{pmatrix} = \begin{pmatrix} F & (I - FD_{\mathbf{u}}^{-1})B^{T} \\ -B & C + BD_{\mathbf{u}}^{-1}B^{T} \end{pmatrix}$$

Transform-then-solve approach

$$A = \begin{pmatrix} F & (I - FD_{\mathbf{u}}^{-1})B^T \\ -B & C + BD_{\mathbf{u}}^{-1}B^T \end{pmatrix}$$

Diagonal blocks: structure compatible with AMG methods:

- F: convection-diffusion matrix
- $\hat{C} = C + BD_{u}^{-1}B^{T}$: similar to discrete Laplacian.

Naive approach: independent definition of the MG components:

- Velocity: based on $F \Rightarrow P_u$ (and D_u)
- Pressure: based on $\widehat{C} \Rightarrow P_p$ (and D_p)

$$P = \begin{pmatrix} P_{u} \\ P_{p} \end{pmatrix} \Rightarrow$$
 does not work for NS

Proposed approach

Brief theoretival overview

Numerical Results

From Two- to Multigrid

Convergence theory: context

Theoretical framework:

- Two-grid method
- Jacobi-type smoother $\omega^{-1}D = \omega^{-1} \begin{pmatrix} D_{\mathbf{u}} \\ D_{p} \end{pmatrix}$
- Prolongation of the form $P = \begin{pmatrix} P_{u} \\ P_{p} \end{pmatrix}$
- Galerkin coarse grid correction $A_c = P^T A P$
- One (pre)-smoothing step only.

Convergence theorem [PLB,Notay - 2022]

The norm of the iteration matrix is bounded

$$\min_{\tau} \|I - \tau K\| \leq \sqrt{1 - \alpha \left(\delta_{\mathbf{u}}, \delta_{\boldsymbol{\rho}}, \gamma_{\mathbf{u}}, \gamma_{\boldsymbol{\rho}}\right)}$$

if all 4 constants, which depend on the multigrid components, are bounded

- $\delta_{u}(F_{S}, P_{u}, D_{u})$: if P_{u} and D_{u} form an efficient TG for F_{S}
- $\delta_{\rho}(\widehat{C}, P_{\rho}, D_{\rho})$: if P_{ρ} and D_{ρ} form an efficient TG for \widehat{C}
- $\gamma_{\mathbf{u}}(D_{\mathbf{u}}, F)$: if $D_{\mathbf{u}}$ is a good smoother for F, *e.g.* diag(F)
- $\gamma_{p}(D_{p}, S, P_{p})$: ?

Evaluation of the constants

- Numerical evaluation for model problem: finite differences on staggered grid, constant convection flow (θ orientation), Jacobi smoother
- Only free parameter to control $\gamma_p(D_p, S, P_p)$: aggregation of the pressure P_p

Evaluation of the constants

- Numerical evaluation for model problem: finite differences on staggered grid, constant convection flow (θ orientation), Jacobi smoother
- Only free parameter to control $\gamma_p(D_p, S, P_p)$: aggregation of the pressure P_p

Figure 2: Schematic representation of the two choices of aggregation.

Evaluation of the constants

- Numerical evaluation for model problem: finite differences on staggered grid, constant convection flow (θ orientation), Jacobi smoother
- Only free parameter to control $\gamma_p(D_p, S, P_p)$: aggregation of the pressure P_p

		Boxwise	Linewise	Boxwise	Linewise
		δ_{p}	δ_{p}	$\gamma_{oldsymbol{ ho}}$	γ_{p}
	$ u = 10^{-2} $	5.7	9.1	17.0	3.5
$\theta = 0$	$ u = 10^{-4}$	5.7	9.1	192.8	6.0
	$ u = 10^{-6}$	5.7	9.1	219.6	6.1
	$ u = 10^{-2} $	5.7	9.1	1.3	1.3
$ heta=\pi/4$	$ u = 10^{-4}$	5.7	9.1	1.3	1.3
	$ u = 10^{-6}$	5.7	9.1	1.3	1.3

Table 1: Evaluation of the constants related to the convergence analysis (h = 1/16).

Analysis of the constants

Proof of uniform convergence for constant convection flow if aggregation in the direction of the flow: $\gamma_p \leq \frac{13}{2} \left(1 + \frac{2\nu + v_y h}{2\nu + v_x h}\right) < 13.$

29/06/23

NV W

Definition of the aggregation

Aggregation of velocity: driven by convection (bound $\delta_{\mathbf{u}}$) \Rightarrow algebraic aggregation based on FAggregation of pressure: driven by convection (bound γ_p) \Rightarrow algebraic aggregation **NOT** based on $\widehat{C} = C + BD_{\mathbf{u}}^{-1}B^T$

Definition of the aggregation

Aggregation of velocity: driven by convection (bound δ_{u}) \Rightarrow algebraic aggregation based on *F* Aggregation of pressure: driven by convection (bound γ_{p})

 \Rightarrow algebraic aggregation **NOT** based on $\widehat{C} = C + BD_{u}^{-1}B^{T}$

How to define the aggregation of the pressure unknowns to be driven by convection?

Use of a geometric artifice:

- Build auxilary convection-diffusion matrix X on pressure points
- Algebraically aggregate the points based on auxilary matrix X.
- \Rightarrow Similar aggregation pattern to velocity

Proposed approach

Brief theoretival overview

Numerical Results

From Two- to Multigrid

Numerical experiments: settings

- Convection-diffusion problems on staggered grid (FD): recirculating flows
- Smoother: 1 SOR iteration for pre- and post-smoothing with $\omega = 2/3$
- Aggregation defined by applying AGMG [Notay, Napov] software to
 - velocity block F: Pu
 - auxilary matrix $X: P_p$
 - \Rightarrow aggregates aligned with the flow (quality aware aggregation)
- Galerkin coarse grid matrix
- Two-grid method used as a preconditioner for GCR (mathematically equivalent to GMRES).

Numerical experiments: recirculating flows

Recirculating Flow ESW

2D1:
$$\vec{v} = \begin{pmatrix} x(1-x)(2y-1) \\ -(2x-1)y(1-y) \end{pmatrix}$$

2D2: $\vec{v} = \begin{pmatrix} \cos(\pi x)\sin(\pi y) \\ -\sin(\pi x)\cos(\pi y) \end{pmatrix}$
ESW¹: $\vec{v} = \begin{pmatrix} 2y(1-x^2) \\ -2x(1-y^2) \end{pmatrix}$

¹ESW: Elman, Silvester, Wathen, 2005.

cez

Numerical experiments: recirculating flow (cont'd)

	h = 1/128				h = 1/256			
ν Flow	10 ⁻²	10 ⁻⁴	10 ⁻⁶	10 ⁻⁸	10 ⁻²	10 ⁻⁴	10 ⁻⁶	10 ⁻⁸
2D1	15	36	48	49	14	30	49	51
2D2	14	39	47	49	15	37	46	53
ESW	14	40	42	42	13	38	44	44

Table 2: Recirculating flows: number of iterations until $\|\mathbf{r}_{rel}\| \le 10^{-6}$.

Proposed approach

Brief theoretival overview

Numerical Results

From Two- to Multigrid

Transition from two- to multigrid

$$A_{c} = \begin{pmatrix} P_{\mathbf{u}}^{T} & \\ & P_{\rho}^{T} \end{pmatrix} \begin{pmatrix} F & (I - FD_{\mathbf{u}}^{-1})B^{T} \\ -B & C + BD_{\mathbf{u}}^{-1}B^{T} \end{pmatrix} \begin{pmatrix} P_{\mathbf{u}} & \\ & P_{\rho} \end{pmatrix} = \begin{pmatrix} F_{c} & BT_{c} \\ -B_{c} & \widehat{C}_{c} \end{pmatrix}$$

For significant convection, linewise aggregates are required, *e.g.* along x-axis:

$$\widehat{C}: \begin{bmatrix} 1 \\ 1 & -4 & 1 \\ 1 & 1 \end{bmatrix} \Rightarrow \widehat{C}_{c}: \begin{bmatrix} 4 \\ 1 & -10 & 1 \\ 4 \end{bmatrix}$$

Anistropy in the orthogonal direction

Limits of the transform-then-solve approach

- Anisotropy introduced in the (isotropic) pressure block
- Aggregation driven by the velocity not suited to coarser levels
- Degradation of the $\delta_{\mathbf{u}}$ but γ_{ρ} stays well bounded

	Level 1		Level 2		Level 3		Level 4	
	γ_{p}	δ_{p}	γ_{p}	δ_{p}	γ_{p}	δ_{p}	γ_{p}	δ_{p}
$ u = 10^{-2}$	1.8	6.8	1.7	31.2	1.7	181.3	1.7	982.5
$ u = 10^{-4}$	3.8	6.8	4.6	36.9	2.8	1354.9	1.7	2962.0
$ u=$ 10 $^{-6}$	3.9	6.8	5.4	37.1	5.4	381.9	2.6	4591.7
$ u = 10^{-8}$	3.9	6.8	5.4	37.1	5.6	382.2	2.7	4627.0

Table 3: Evaluation of the constants related to the convergence analysis (h = 1/32).

Naive attempts

Introduction of anisotropy in \widehat{C} causes the method to break down,

- 1 Adaptation of the aggregation at coarse levels:
 - boxwise aggregation (to mitigate the anisotropy)
 - orthogonal linewise aggregation (to counter anisotropy)

Naive attempts

Introduction of anisotropy in \widehat{C} causes the method to break down,

- 1 Adaptation of the aggregation at coarse levels:
 - boxwise aggregation (to mitigate the anisotropy)
 - orthogonal linewise aggregation (to counter anisotropy)

A mediocre coarse grid correction can still lead to a viable multigrid method with a more involved smoother

- 2 Vanka or Braess-Sarrasin smoothers
- 3 Go back to theory

More involved smoothers

Jacobi-type smoother:

 $\begin{pmatrix} D_u \\ M_p \end{pmatrix}$

• $D_u = \text{diag}(F)$

- *M_p*: approximation of the pressure block by the AGMG preconditioner
 - δ_p should be close to 1 for all ν
 - γ_p^{\prime} stays bounded for all ν

	h = 1/64				h = 1/128			
θ^{ν}	10 ⁻²	10 ⁻⁴	10 ⁻⁶	10 ⁻⁸	10 ⁻²	10 ⁻⁴	10 ⁻⁶	10 ⁻⁸
0	80	71	72	71	89	113	113	113
$\pi/16$	69	63	63	63	105	86	85	85
$\pi/4$	74	69	69	69	104	97	97	97

Table 4: Constant convection flow: number of **multigrid** iterations until $\|\mathbf{r}_{rel}\| \le 10^{-6}$.

Proposed approach

Brief theoretival overview

Numerical Results

From Two- to Multigrid

Conclusions and perspectives

Conclusions:

- Theoretical analysis of the convergence (in norm) for Oseen problems
- Robustness of the resulting two-grid method on recirculating flows
- Transition to **multigrid** NOT straightforward

Perspectives:

- Two-grid as a **tool** as a building block
- Full algebraization of the method
- Application to Navier-Stokes equations (Picard linearization).

Conclusions and perspectives

Conclusions:

- Theoretical analysis of the convergence (in norm) for Oseen problems
- Robustness of the resulting two-grid method on recirculating flows
- Transition to **multigrid** NOT straightforward

Perspectives:

- Two-grid as a **tool** as a building block
- Full algebraization of the method
- Application to Navier-Stokes equations (Picard linearization).

Questions?