

Clustering in bubble swarm with DNS and Front-Tracking method

April, 4 2023

Gabriel RAMIREZ^{1,2}, <u>Alan BURLOT</u>¹, Frédéric RISSO², Guillaume BOIS¹, Rémi ZAMANSKY²

¹ CEA PARIS-SACLAY (FRENCH ATOMIC ENERGY COMISSION)
² INSTITUT DE MÉCANIQUE DES FLUIDES, TOULOUSE - CNRS/TOULOUSE INP

Introduction

- General purpose: get a better understanding of boiling flows
- Development of multiphase RANS modeling for design and safety analysis
- Along experimental apparatus, use DNS to improve our understanding of physical mechanisms

Industrial purposes and boiling flows

Boiling crisis

- Safety issue for press. water reactor
- Rode cladding integrity failure
- Decrease heat transfer at the wall: melting!

Boiling flows

- Many different flow regimes
- Concern about the transition between bubbly and slug flows
- Bubbles at the wall → heat transfer increase
- Importance of the void fraction prediction
- A lack of understanding of dynamical phenomena (dispersion forces, turbulent dispersion, bubble-induced turbulence)

Today's focus: clustering

Why this concern?

- Numerous possible effects of clustering on modeling: local temperature, coalescence, momentum change and energy transfer mechanisms.
- Work of Bunner & Tryggvason (2002), Roghair et al. (2012)
- Many configurations to be considered (void fraction, viscosity effect, surface tension, etc.) At high pressure, high void fraction flow stays bubbly.
- Need to explore its behavior to correctly model the transition to more complex regimes (for instance Kuidjo et al. (2023))

Can we identify clustering effect in our simulations? Is there an influence of turbulence?

TRUST/TrioCFD & FieldZ

- TRUST/TrioCFD : Open-source C++ code for DNS, LES, RANS modeling of single and two-phase flows
- Interface capturing method using a mixed VOF/Front-Tracking method
- RK3 time scheme
- One-fluid formulation

$$\begin{aligned} \frac{\partial \chi_{k} \rho_{k} \vec{u}_{k}}{\partial t} + \nabla \cdot \left(\chi_{k} \rho_{k} \vec{u}_{k} \otimes \vec{u}_{k} \right) &= \nabla \left(\chi_{k} p_{k} \right) + \chi_{k} \rho_{g} \vec{g} \\ &+ \nabla \cdot \left(\chi_{k} \mu_{k} \left[\nabla \vec{u}_{k} + \nabla^{T} \vec{u}_{k} \right] \right) - \left(p_{k} \vec{n}_{k} - \vec{\tau}_{k} \cdot \vec{n}_{k} \right) \cdot \nabla \chi_{k} \end{aligned}$$

with

- χ_k the phase indicator function (equals 1 in phase k, 0 otherwise)
- velocity continuity
- interfacial normal stress balance: $\Sigma_k \left(p_k \vec{n}_k \vec{\tau}_k \cdot \vec{n}_k \right) = -\sigma \kappa \vec{n}$
- FieldZ: R. ZAMANSKY's spectral code, used for a posteriori spectal analysis in G. RAMIREZ'S PhD

10 10 10 10

Turbulence forcing

- External random forcing proposed by Eswaran & Pope (1987)
- Used in two-phase flow by Chouippe & Uhlman (2015)
- Two parameters
 - T_L the characteristic time scale of the random process
 - an effective dissipation $\varepsilon^* = T_L \times \sigma$ with σ the random process variance
- Objective (G. RAMIREZ's PhD, not today's focus): how turbulence will affect the kinetic energy budget?
- Forcing on the 3 largest Fourier modes: no direct coupling with the bubble dynamics.

Bubbles and the swarm

Geometrical parameters

- Domain length: L
- Bubble diameter: d_b
- Cell size: Δ_x

Physical parameters

- Liquid phase: ρ_I ; μ_I
- Vapor phase: ρ_ν; μ_ν
- Void fraction: α
- Surface tension: σ
- Gravity: g

Non-dimentional parameters

- Mesh convergence: $\frac{d_b}{\Delta_x} \ge 20$
- Non-overlapping: $\frac{L}{d_b} \ge 30$
- Simulation cost: $N^3 = (\frac{L}{\Delta_x})^3 \approx 600^3 \sim 10^8$
- Ratio liquid vapor: $\frac{\rho_l}{\rho_v} = 13$; $\frac{\mu_l}{\mu_v} = 1$
- Deformation: $Bo = \frac{\Delta_{\rho} g d_b^2}{\sigma} = 0.6$
- Wake Instability: $Ar = \frac{d_b \sqrt{\frac{\Delta r}{\rho_l} g d_b}}{\nu} = 300$
- Void fraction: $\alpha = 3\%$; 6% ($N_b = 1825$ and $N_b = 3650$, resp.)
- Bubble Reynolds number: Re_b = 319

Results

Swarm of 3650 bubbles ($\alpha = 6\%$)

1 PDFs of liquid and vapor horizontal and vertical velocities

- 2 Kinetic energy spectra of BIA, THI and the coupled THI-BIA computations
- 3 **PDFs of the Voronoï volumes** for a 3 % and 6 % computations (with a few words on modelling it)
- 4 Radial distribution functions, compared with a random distribution

PDFs

- BIA = bubbles-only, THI = single-phase forcing only, THI+BIA = coupled simulation of bubbles+forcing
- Top = liquid, bottom = vapor. Left = axial, right = transverse

Spectra

- Forcing adjusted not to wipe BIA energy
- Magenta curve: THI + BIA kinetic energy spectra

Voronoï method

- Voronoï volumes equivalent to concentration field
- Small volumes means high concentration
- 3D tesselation using SciPy

2D Voronoï tesselation, from Wikipedia

- R. MONCHAUX et al. "Analyzing Preferential Concentration and Clustering of Inertial Particles in Turbulence". International Journal of Multiphase Flow 40 (2012), p. 1-18
- Y. TAGAWA et al. "Three-Dimensional Lagrangian Voronoï Analysis for Clustering of Particles and Bubbles in Turbulence". *Journal of Fluid Mechanics* 693 (2012), p. 201-215
- Y. LIU et al. "Life and Death of Inertial Particle Clusters in Turbulence". Journal of Fluid Mechanics 902 (2020)

Voronoi tesselation, $\alpha = 6\%$

- Lots of work with particles or very small bubbles
- Objective: identify a parameter that characterizes the cluster
- Turbulence tends to spread the distribution: more small volumes
- Random = random distribution at startup with exclusion zone

Voronoi tesselation, $\alpha = 6\%$

- Can we model the distribution?
- Litterature suggests BIA is close to a log-normal distribution
- Litterature suggests THI+BIA should be closer to a Γ function f(V, std(V))
- Ferenc2007: $f(V) = \frac{3125}{24}V^4 \exp(-5V)$

Radial distribution function, $\alpha = 6\%$

- Right: divided by the random distribution
- In coherence with Voronoï measure, bubble concentration at small radius
- RDF = 1, uniform concentration. RDF > 1, excess concentration

Comparison between $\alpha = 3\%$ and $\alpha = 6\%$

- Voronoï pdfs, abscissa normalized by mean Voronoï volume to superimpose curves
- Turbulence removes differences between $\alpha = 3\%$ and $\alpha = 6\%$

Finale

Conclusion

- Preliminary results!
- Effect of turbulence forcing on concentration:
 - Iarger vapor velocity fluctuations and higher probability of concentration
 - Same concentration on both $\alpha = 3\%$ and $\alpha = 6\%$
- Not shown: no horizontal packing as in Roghair or Brenner papers for large swarm, but packing for smaller swarms?

Ongoing

- Plot angular distribution
- Larger void fractions?
- Small domain effect?
- Study bubbles trajectories

Finale

Conclusion

- Preliminary results!
- Effect of turbulence forcing on concentration:
 - larger vapor velocity fluctuations and higher probability of concentration
 - Same concentration on both $\alpha = 3\%$ and $\alpha = 6\%$
- Not shown: no horizontal packing as in Roghair or Brenner papers for large swarm, but packing for smaller swarms?

Ongoing

- Plot angular distribution
- Larger void fractions?
- Small domain effect?
- Study bubbles trajectories

Questions? alan.burlot@cea.fr