
HAL Id: cea-04408832
https://cea.hal.science/cea-04408832v1

Submitted on 22 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FPGA implementation of MLP, 1D-CNN and TTTratio
algorithms for neutron/gamma-ray discrimination using

plastic scintillator
Ali Hachem, Yoann Moline, Gwenolé Corre, Frédérick Carrel, Imane

Belachheb

To cite this version:
Ali Hachem, Yoann Moline, Gwenolé Corre, Frédérick Carrel, Imane Belachheb. FPGA implementa-
tion of MLP, 1D-CNN and TTTratio algorithms for neutron/gamma-ray discrimination using plastic
scintillator. NorCAS 2023 - 2023 IEEE Nordic Circuits and Systems Conference, Oct 2023, Aalborg,
Denmark. �10.1109/NorCAS58970.2023.10305446�. �cea-04408832�

https://cea.hal.science/cea-04408832v1
https://hal.archives-ouvertes.fr


FPGA Implementation of MLP, 1D-CNN and
TTTratio algorithms for Neutron/Gamma-ray

Discrimination using Plastic Scintillator
Ali Hachem

Université Paris-Saclay,
CEA-List, Palaiseau, France

ali.hachem@cea.fr

Imane Belalchheb
Université Paris-Saclay,

CEA-List, Palaiseau, France
imane.belachheb@cea.fr

Yoann Moline
Université Paris-Saclay,

CEA-List, Palaiseau, France
yoann.moline@cea.fr

Frédérick Carrel
Université Paris-Saclay,

CEA-List, Palaiseau, France
frederick.carrel@cea.fr

Gwenolé Corre
Université Paris-Saclay,

CEA-List, Palaiseau, France
gwenole.corre@cea.fr

Abstract—Pulse shape discrimination algorithms, such as Tail-
to-Total integral ratio (TTTratio) have been commonly integrated
on edge devices for online neutron/gamma discrimination us-
ing organic scintillators. These algorithms have a number of
limitations, especially with plastic scintillators which have low
intrinsic discriminating ability. Machine learning (ML) models
have recently been explored as a way to improve discriminating
performance. Most of these methods are proposed for liquid
and stilbene scintillators and do not address the embedded
implementation. The aim of this study is to compare the FPGA
implementation of TTTratio algorithm, Multi Layer Perceptron
Neural Network (MLP), and 1D Convolution Neural Network
(1D-CNN) models that are trained for neutron/gamma-ray dis-
crimination using EJ276 plastic scintillator. Therefore, the com-
parison between the different methods can be done according to
the discrimination performance, latency and resource consump-
tion. The objective is to achieve a latency shorter than the signal
duration (500 ns) while using minimal resources.

Index Terms—EJ276, Neutron/Gamma Discrimination, Plastic
Scintillator, Organic Scintillators, Embedded Machine Learning,
MultiLayer Perceptron Model, 1D-CNN, FPGA, AI Accelerator

I. INTRODUCTION
Organic scintillators have been developed to detect neutrons

and gamma-rays in many applications such as homeland
security. TTTratio algorithm, which is also called Charge
Comparison Method (CCM), has been widely used to dis-
criminate the detected events [1]–[6]. This algorithm relies
on the shape difference between the signals to classify them.
The interaction of a neutron results in a longer signal than that
generated by a gamma-ray (Fig. 1) [7]. In liquid and stilbene
scintillators, the difference between the two resulting signals
is more significant than the plastic counterpart. Consequently,
this discrimination approach offers better performances with
these types of detectors [8]–[10]. In contrast, plastic scintilla-
tors have several advantages. They can be manufactured in a
larger volume, have a lower cost, and are non-toxic [11].

In our recent work we showed that a two hidden layer
MLP model can outperform the TTTratio algorithm for
neutron/gamma-ray discrimination in EJ276 plastic scintillator,
especially for low energy radiations ([100, 250] keV) [12].

Fig. 1. Average of neutron and gamma-ray signals detected by EJ276
plastic scintillator at 250 MHz. Use of a 252Cf neutron source. Min-max
normalization is applied on the average signals.

In some applications, the classification should be achieved
online, requiring the implementation of a discrimination ap-
proach on an embedded system. Therefore, the comparison
between different discrimination approaches should not only
be limited to the discrimination performance. Their embedded
implementations should also be compared.

Field-Programmable Gate Arrays (FPGA) is a type of
integrated circuit that provides a versatile platform for ML
acceleration on edge devices due to its reconfigurable nature,
parallel processing capability, low latency and high energy
efficiency [13]–[15]. By integrating ML algorithms directly
into an FPGA, it becomes possible to perform complex
computations at high speeds and with low power consumption.
The main components of this reconfigurable device are: Look-
up tables (LUTs), Flip-Flops (FFs), Block RAM (BRAM) and
Digital Signal Processing units (DSPs).

This article compares the FPGA implementation of
TTTratio, trained MLP and 1D-CNN algorithms to discrimi-
nate online neutron/gamma-ray using EJ276 plastic scintillator.
The comparison between these discrimination approaches is
based on discrimination performance, execution time, and



resources consumption. The main objective is to achieve the
embedded implementation without a significant degradation in
discrimination performance while ensuring an execution time
less than the signal duration and using the minimal amount of
resource. Thus, we can avoid the loosing of the next pulse. In
the presented case, the signal duration required to perform the
discrimination is 500 ns.

Section II describes the settings and process employed for
FPGA implementation of the three discrimination methods. In
section III, the quantization of the MLP and 1D-CNN models,
the dataset used for their training, and the comparison of their
performances after quantization are presented. Thereafter, sec-
tions IV, V, and VI, respectively explain the implementation
details on FPGA of TTTratio, MLP and 1D-CNN. Finally, in
section VII, the article draws the main conclusions resulting
from this study and based on the obtained implementation
results.

II. CONFIGURATION AND IMPLEMENTATION PROCESS

In the past, FPGA technology could only be reconfigured
by engineers with a deep understanding of digital hardware
design using Hardware Description Languages (HDLs) such
as VHDL or Verilog. The rise of High Level Synthesis (HLS)
tools, however, is changing the rules of FPGA programming.
HLS is a design methodology that allows designers to describe
digital circuits at a higher level of abstraction using software
programming languages, such as C/C++ or SystemC. Then
these tools automatically convert these high-level descriptions
into synthesizable hardware descriptions, which can be used
to generate the bit file for FPGA programming.

The circuit synthesis of each discrimination method can
be more optimized directly using HDL code instead of using
the HLS approach. Nevertheless, the later can be sufficient to
achieve the embedded comparison between the different dis-
crimination approaches. The HLS software used in this work
is Vitis HLS (2021.2). Furthermore, we only proceeded as far
as the C/RTL co-simulation step, and the reports generated in
the synthesis step used as the basis for comparing the different
discrimination methods. For each discrimination algorithm,
the code was first written and validated in C++ using fixed-
point arbitrary precision type instead of floating point types.
Fixed point data types (ap fixed <m, n>) represent data as
a combination of integer and fraction bits, where m is the
total number of bits and n is the number of bits dedicated
to the integer part. By optimizing the number of bits for
each variable in the code without significantly degrading the
discrimination performance, the area of the synthesized circuit
can be reduced. Following the validation and tuning of the
number of bits, the synthesis process was optimized to meet
the required time constraint while using minimal amount of
resources. The final step involved validating the synthesized
circuit through the C/RTL co-simulation.

Furthermore, the synthesis of the four discrimination algo-
rithm was performed at a clock frequency of 200 MHz (5 ns
per cycle) using the Xilinx part number xc7z020-clg484-3. The
input was quantized to 12 bits, where all bits were allocated

to the decimal part. This quantization approach was chosen
because the data was acquired through a 12-bit resolution
Analog Digital Converter (ADC), and the maximum signal
amplitude is less than one volt. A test bench created from
the dataset used to train the ML models (1000 samples) was
used for the validation in the C++ simulation and C/RTL co-
simulation steps. Qkeras python library (version 0.9.0) was
used to quantize the MLP and 1D-CNN models aware training.
It has been proved that this approach was more effective than
quantizing the model after training [16].

III. DESIGN AND TRAINING OF MLP AND 1D-CNN

The dataset used to train and assess the proposed MLP and
1D-CNN models are the same as those used in [12]. They were
prepared at 250 MHz using EJ276 plastic scintillator, where
number of neutron and gamma-ray samples are 40600 and
66800, respectively. The signals are separated into 80% for the
training and 20 % for the validation. The signal duration is 500
ns which corresponds to 126 sample points. The MLP model
trained in [12] for neutron/gamma-ray discrimination consists
of an input, an output and two hidden layers of 32 neurons
each. The input layer has n neurons, which is the number
of points encoding a signal. The output layer is one neuron
representing the probability that a signal will be a neutron or a
gamma-ray. ReLu and Sigmoid are respectively the activation
functions of the hidden and last layers.

The quantization of this MLP model was tuned for both
the weights and the outputs of each layer using Qkeras
framework. The minimal representation avoiding a significant
degradation in the discrimination performance is 8-bit, all of
them dedicated to the decimal part (Fig. 2). For an energy
range of [100, 250] keV where the discrimination process
is the most challenging, the True Positive Rate (TPR) is
decreased from 87% to 85%, for a False Positive Rate (FPR)
equal to 2% (Table I). More information about the energy
calibration of the dataset can be found in [12].

Concerning the architecture of 1D-CNN model, first, the
number of layers, number of filters in each layer and size
of filter were adjusted to optimize the proposed 1D-CNN
model size, which is critical to reduce the inference time.
The obtained optimal model has one hidden convolution layer
(CL). The number of filters, the filter width and stride are
equal to 4, 3 and 3, respectively. The input and output layers
are the same compared to the MLP model. The obtained
results in Fig. 3 show that the main difference of performances
between the implemented 1D-CNN and MLP models lies in
the detection of low energy radiations ([100, 250 keV]). In
this range, the former model outperforms the latter. For FPR
equal to 2%, the TPRs achieved by the two models are 91%
and 87%, respectively. For energy levels exceeding 250 keV,
the Receiver Operating Characteristic (ROC) curves of both
models overlap (Fig. 3). These results validate the previous
conclusion, indicating that the discrimination between neu-
trons and gamma-rays in the presented case is challenging
when dealing with low energy radiations ([100, 250 keV]).



Fig. 2. ROC curves obtained by TTTratio algorithm, quantized and non
quantized MLP and 1D-CNN models on a validation dataset for the energy
range [100, 250] keV.

TABLE I
TPR FOR FPR = 2% OBTAINED BY TTTratio ALGORITHM, QUANTIZED
AND NON QUANTIZED MLP AND 1D-CNN MODELS ON A VALIDATION

DATASET FOR THE ENERGY RANGE [100, 250] KEV.

Model TPR for FPR = 2%
MLP 87%

MLP (8 bits) 85%
1D-CNN 91%

1D-CNN (16 bits) 90%
TTTratio 81%

Thereafter, regarding the MLP model, the quantization of
the trained 1D-CNN model was adjusted during training to
fine-tune the number of bits used to represent the weights and
output of each layer. The obtained optimal representation with-
out significantly impacting the discrimination performance is
16 bits, with 4 bits to the integer part. Furthermore, the
obtained results in Fig. 2 and Table I indicate that the quantized
1D-CNN model outperforms the non quantized MLP model.

IV. TTTratio IMPLEMENTATION

TTTratio algorithm is based on the decay time difference
between neutron and gamma-ray interactions to differentiate

Fig. 3. ROC curves obtained by MLP and 1D CNN models on validation
dataset at 250 MHz.

them (Fig. 1). It computes the ratio between the tail and total
integral of the signals, as shown in equation 1.

TTTratio =
Qtail

Qtotal
(1)

where Qtail =
∫ tlong

tshort
f(t) and Qtotal =

∫ tlong

0
f(t)

tshort and tlong parameters were tuned to optimize the
discrimination performance using the optimization algorithm
implemented in [17], with the resulting optimum values being
20 ns and 500 ns, respectively. Qtail and Qtotal integrals in
this optimization algorithm are calculated using trapezoidal
numerical integration method with delta equal to one.
Qtail and Qtotal integrals in this optimization algorithm are

calculated using trapezoidal numerical integration method with
delta equal to one, which is represented by equation 2. The
latter indicates that the computing of this numerical method
involves one multiplication by a constant (0.5) and k addition
operations, where k is the integral length. Thus, the main
operations to calculate this ratio and achieve the synthesis for
a signal of length n are n and m addition operations for the
Qtotal and Qtail integrals, and one division between both of
them.

∫ k

0

f(t) dt ≈ x0 + xk

2
+

k−1∑
i=1

xi (2)

The algorithm of this method was first coded in C++.
Then, the numbers of bits of the parameters responsible for
storing the two integral calculation results and their ratio
were tuned. ap fixed <18, 10> is the optimal obtained
type for the three variables without significant degradation of
the discrimination performance. Subsequently, the code was
synthesized by paralyzing the calculation of the two integrals.
Moreover, experimental results showed that computing the
inverse of Qtot integral, then multiplying it by the result
of Qtail integral, consumes less time compared to directly
dividing the two integrals. The computation of the inverse was
done using hls::recip() method implemented in Vitis HLS,
specifically designed for fixed-point types. ap fixed <18,
10> type was used to store the result of the inverse operation.
The obtained synthesis report indicates a total latency of 215
ns using 9 DSPs for hls::recip(), 4325 FFs and 3848 LUTs.

V. MLP IMPLEMENTATION

Different approaches have been proposed to optimize the
inference of MLP on FPGA [13], [18], [19]. The works by
[18] and [19] explain the implementation of two MLP models
trained for medical diagnosis and digital recognition tasks,
respectively. The authors in [13] developed and evaluated a
general MLP flow that can take arbitrary datasets as input and
automatically produce optimized neural network architectures
and hardware designs based on a set of constraints and
fitness functions such as the accuracy, latency, number of
operation per second and throughput. They demonstrated that
executing a MLP trained model on a FPGA is faster than on



a GPU. Their framework is based on evolutionary optimiza-
tion algorithms, OpenCL framework and 2D systolic array
configuration. In the presented case we worked to optimize
the embedded implementation of the trained MLP model in
section III for the neutron/gamma-ray discrimination task,
while respecting the time constraint. Building an automatic
framework is not an objective of this study.

The trained MLP model in the presented case has three
main components: dense layer, ReLu and Sigmoid activation
functions (Fig. 4). The equation of Sigmoid is 1/(1+exp−x),
where x is the output of the last dense layer. Calculating the
exponential component of this function can be computationally
challenging for hardware implementation. Therefore, to speed
up the hardware computation, Sigmoid function can be approx-
imated using piecewise linear approach and a lookup table.
First, a lookup table is created, dividing the input range into
N segments and calculating Sigmoid values for each segment
using the standard Sigmoid function. This created table is
stored in BRAM during the synthesis. Then, the segment
index of x is calculated based on the input range, where the
obtained index corresponds to the position of the element in
the created lookup table representing the Sigmoid value of x.
The input range and the number of segments N should be
tuned to preserve a similar precision of the standard Sigmoid
function. Concerning the ReLu function, its computation is
fully unrolled during the synthesis for all layers.

Dense layer is the fundamental component of a MLP model.
The computation of this layer is done via two nested for
loops. The first one iterates over the number of neurons (m)
in the dense layer, and the second one iterates over the input
length (n), as shown in algorithm 1. In other words we have
n*m Multiply–Accumulate (MAC) operations for one layer.
The two loops of each layer can be unrolled to optimize the
synthesis, where the unrolling factor of a loop is a divisor
of its number of iterations. The parallel execution of the
first loop requires to copy the data k times, where k is the
unrolling factor of the loop, as shown in Fig. 5. Therefore,
the parallel execution of the second loop of all the layers
has the first priority. However, there is a memory dependency
problem when the second loop is unrolled. In algorithm 1, the
next iteration reads the variable output[i], while the previous
iteration writes data to output[i]. Consequently, the subsequent
iteration cannot start until the prior one is completed. An adder
tree structure can be a solution to this problem (Fig. 6). In this
approach, all n multiplication operations from the second loop
are first computed and loaded into a temp array of length n.
Subsequently, the sum of the elements in temp is calculated
using the adder tree function, which significantly reduces the
calculation complexity from O(n) to O(log(n)).

The trained MLP model in section III consists of three
dense, two ReLu and one Sigmoid operations (Fig. 4). The
dimensions of the weight matrices (loop parameters) for these
layers are (32, 126), (32, 32), and (1, 32) respectively. The
structure of this model was first implemented in C++. Then,
the synthesis was optimized by tuning the unrolling factors
for each layer. The obtained optimal unrolling factors for the

Algorithm 1 Dense algorithm
Input: input array with length n and weight matrix (w) with
dimensions m× n
Output: output array with length n

function Dense(input, weight)
for i← 0 to m do

output[i]← b[i]
for j ← 0 to n do

output[i] += input[j] · w[i][j]
end for

end for
return output

loop iterations in the three layers are (1, 126), (1, 32), and (1,
32) respectively, with corresponding latency of 39, 37, and 6
cycles. The Sigmoid function uses 1 BRAM for lookup table
and takes 2 cycles for execution, with input range (-8, 8) and
1024 segments. The first layer consumes 126 DSPs for MAC
operations, while the MAC operations of the second and third
layers are computed by LUTs. This feature in Vitis HLS, can
only be applied when the multiplication operation involves
numbers represented by a maximum of 8 bits each. Weight
storage in FFs and LUTs is preferred over BRAMs to avoid
latency increase due to read and write operations. The obtained
synthesis report in Table II indicates a total latency of 490 ns
(98 cycles) using 126 DSP units, 46,059 LUTs, 17,657 FFs,
and 1 BRAM.

Another synthesis approach can yield a latency value of 350
ns. In this proposed solution, the unrolling factors of the three
layers are (32, 3), (32, 4) and (1, 32). This solution enables
the parallel computation of 256 multiplications. It should be
noticed that only 96 DSP units are employed for the first
layer, with the remaining 160 multiplications being executed
by LUTs. However, in this solution the weights of first and
second layers and 32 copies of the input signal are stored in
BRAMs. Therefore, the number of BRAMs is increased to 220
(Table II). In summary, a trade-off exists between the latency
and resources of both solutions. The choice between them
depends on the specific requirements of the target application.

VI. 1D CNN IMPLEMENTATION

Different methods for incorporating machine learning into
FPGA devices primarily focus on 2D-CNNs for image recog-
nition tasks [20]–[28]. Different studies have addressed the im-
plementation of 1D-CNN on FPGA for 1D signal applications
[14], [29]. The implementation of a trained 1D-CNN designed
for underwater target spectrum recognition is optimized in
[29]. The authors used three main techniques: quantization,
loop unrolling and tilling. Moreover, they assessed the impact
of these techniques on the resource consumption of their 1D-
CNN model implementation. The authors in [14] propose a
pyramid layer-folding pipeline structure to implement a 1D-
CNN model trained for speaker recognition task.

The trained 1D-CNN model has four components: 1D CL,
dense layer, ReLu and Sigmoid activation functions. The



Fig. 4. The inference flow of the trained MLP model.

Fig. 5. Illustration of the first loop unrolling in dense layer.

Fig. 6. Adder tree structure

calculation in the 1D CL goes through four nested for loops.
They iterate over the output length (out size), number of filters
(nf ), number of input channels (nc), and kernel width (k),
respectively (algorithm 2). Thus, the total number of MAC
operations for a layer is out size ∗ nf ∗ nc ∗ k.

The parallel execution of the first loop involves copying
(k-s) * nc columns of the input data and the kernel matrix
of the layer m times, where m and s are unrolling factor of
the loop and the stride, respectively (Fig. 7(a)). The parallel
execution of the second loop requires duplicating the input
data m times (Fig. 7(b)), while the unrolling of third and
fourth loops does not impact the data size (Fig. 7(c)). In our
approach, the primary focus is on the parallel execution of
the third and fourth loops for all layers. Subsequently, if these
unrolling steps do not help to meet the time constraint, we
tune the unrolling factor of first and second loop. The dense
layer is the output layer including a single neuron. The number
of multiplications performed in this layer is determined by
multiplying the output length of the last CL by its number
of channels. To optimize the implementation, it is necessary
to tune the unrolling factor, which should be a divisor of this
multiplication result, along with other unrolling parameters of
the CLs. The Sigmoid and ReLu activation functions can be

synthesized in the same manner than in the MLP model.

Algorithm 2 1D Convolution layer algorithm
Input: input and weight (w) matrices with dimensions nc×n
and nc× k ×nf
Output: output matrix with dimensions outsize× nf

1: function 1DCNN Layer(input, weight)
2: for i← 0 to outsize do
3: for j ← 0 to nf do
4: output[j, i]← b[i]
5: for c← 0 to nc do
6: for p← 0 to k do
7: output[j, i] += input[m, s ∗ (p− 1)+ k] ·w[m][p][j]
8: end for
9: end for

10: end for
11: end for
12: output

First, the structure of the obtained quantized 1D-CNN model
in section III was implemented in C++ using ap fixed type.
The results obtained from the Vitis HLS simulation showed
that the performance of the model was significantly degraded,
even when a higher number of bits (higher than 16) was used.
This may be due to the difference between the implementation
of the quantization methods in Qkeras and Vitis HLS, leading
to variations in quantization errors. Some information is lost
during quantization by Vitis HLS due to rounding errors,
which can impact the model performance as observed in the
presented case. To address this problem, increasing the size of
the model can be a potential solution. A larger model might
be more resilient to quantization errors as it can distribute
the errors across more parameters and absorb the quantization
noise, leading to less performance drop.

Therefore, the size of the model was tuned by quantizing
various model sizes aware training and then assessing their
discrimination performances through C++ simulation in Vitis
HLS. The obtained optimal model consists of two CLs, two
ReLu, one dense and one Sigmoid operations (Fig. 8). The
optimal number of bits for quantization is 16, with 4 of them
dedicated to the integer part. Both CLs have 4 filters, a stride
(S) of 3, and a filter width of 3. In other words, the dimensions
of the four loops for the CL layers are (42, 4, 1, 3) and (14,
4, 4, 3) respectively. The input length of the dense layer is 56,
obtained by multiplying the output length of the second CL
(14) by its number of filters.

To optimize the synthesis process, fine tuning is made to
unrolling factors for each CL layer, number of segments,
and input range of the Sigmoid function, resulting in optimal



(a) Unrolling of first loop, s=1, k=3, and nc=2 (b) Unrolling of second loop, nc=2, nf =3 (c) Unrolling of third and fourth loops

Fig. 7. Illustration of 1D CL loops unrolling

Fig. 8. The inference flow of the trained 1D-CNN model.

TABLE II
SUMMARY REPORT OF SYNTHESIS FOR 1D CNN, MLP, AND TTTratio

NEUTRON/GAMMA-RAY DISCRIMINATION METHODS.

Model Latency BRAM DSP FF LUT
MLP 1 490 (ns) 1 126 17657 46059
MLP 2 350 (ns) 220 96 20580 51177

1D CNN 490 (ns) 2 228 193625 156833
TTTratio 215 (ns) 0 9 4325 3848

values of (42, 1, 1, 3), (1, 4, 4, 3), 2048, and (-32, 32)
respectively. The dense layer was fully unrolled. As a result,
the total latency achieved is 490 ns (Table II). The 2 consumed
BRAMs are dedicated for the lookup table of the Sigmoid.
The 228 consumed DSPs are distributed as follows: 128 for
the first CL, 44 for the second CL, and 55 for the dense layer.

These results demonstrate that, in the presented case, the
MLP model can be effectively implemented on a FPGA for
online classification with fewer resources compared to the 1D-
CNN model, while achieving the same latency (Table II). How-
ever, it is important to note that the discrimination performance
of the 1D-CNN model is higher than that of the MLP model.
Furthermore, Table II indicates that both the latency and
resource usage of TTTratio algorithm are considerably lower
than those of ML models. Nevertheless, for relatively low
energy range ([100, 250] keV), this discrimination method is
significantly less efficient than ML models [12]. Therefore, in
applications involving classification of low energy radiations,
the higher resources consumed by MLP and 1D-CNN models
can be justified. In contrast, for the discrimination of higher
energy radiations, this algorithm is more advantageous as it
achieves the same discrimination performance as ML models
with lower latency and resource consumption.

VII. CONCLUSION

This study compared the embedded FPGA implementations
of the TTTratio discrimination algorithm, MLP, and 1D-CNN
models for neutron/gamma-ray discrimination using EJ276
plastic scintillator. The main objective was to optimize the
implementation of each method, aiming for a latency lower
than the signal duration while minimizing resource consump-
tion. Based on discrimination performance as the evaluation
metric, the 1D-CNN model outperforms the MLP model,
which, in turn, outperforms the TTTratio algorithm, especially
for low energy radiations ([100, 250] keV). However, when the
comparison is based on latency and resource consumption, the
order of the three methods is completely inverted. Therefore,
the choice of the method depends on the target application
and the available resources for implementation. For a more
accurate comparison between the three methods, a hardware
implementation should be considered for future work.

REFERENCES

[1] J. Adams and G. White, “A versatile pulse shape discriminator for
charged particle separation and its application to fast neutron time-of-
flight spectroscopy,” Nuclear Instruments and Methods, vol. 156, no. 3,
pp. 459–476, 1978.

[2] O. McCormack, L. Giacomelli, G. Croci, A. Muraro, G. Gorini,
G. Grosso, R. Pasqualotto, E. P. Cippo, M. Rebai, D. Rigamonti, et al.,
“Characterization and operational stability of ej276 plastic scintillator-
based detector for neutron spectroscopy,” Journal of Instrumentation,
vol. 16, no. 10, p. P10002, 2021.

[3] A. Tomanin, J. Paepen, P. Schillebeeckx, R. Wynants, R. Nolte, and
A. Lavietes, “Characterization of a cubic ej-309 liquid scintillator
detector,” Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment,
vol. 756, pp. 45–54, 2014.

[4] M. Grodzicka-Kobylka, T. Szczesniak, M. Moszyński, K. Brylew,
L. Swiderski, J. Valiente-Dobón, P. Schotanus, K. Grodzicki, and
H. Trzaskowska, “Fast neutron and gamma ray pulse shape discrimi-
nation in EJ-276 and EJ-276G plastic scintillators,” Journal of Instru-
mentation, vol. 15, no. 03, p. P03030, 2020.



[5] N. Zaitseva, A. Glenn, A. Mabe, M. Carman, C. Hurlbut, J. Inman,
and S. Payne, “Recent developments in plastic scintillators with pulse
shape discrimination,” Nuclear Instruments and Methods in Physics Re-
search Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, vol. 889, pp. 97–104, 2018.

[6] E. Ryabeva, I. Urupa, E. Lupar, V. Kadilin, A. Skotnikova, Y. Kokorev,
and R. Ibragimov, “Calibration of ej-276 plastic scintillator for neutron–
gamma pulse shape discrimination experiments,” Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrome-
ters, Detectors and Associated Equipment, vol. 1010, p. 165495, 2021.

[7] F. Brooks, “Development of organic scintillators,” Nuclear Instruments
and Methods, vol. 162, no. 1-3, pp. 477–505, 1979.

[8] T. Laplace et al., “Comparative scintillation performance of EJ-309, EJ-
276, and a novel organic glass,” Journal of Instrumentation, vol. 15,
no. 11, p. P11020, 2020.

[9] F. Ferrulli, N. Dinar, L. G. Manzano, M. Lablme, and M. Silari,
“Characterisation of stilbene and EJ-276 scintillators coupled with a
large area sipm array for a fast neutron dose rate detector,” Nuclear
Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, p. 165566, 2021.

[10] M. Grodzicka-Kobylka, T. Szczesniak, M. Moszyński, K. Brylew,
L. Swiderski, J. Valiente-Dobón, P. Schotanus, K. Grodzicki, and
H. Trzaskowska, “Fast neutron and gamma ray pulse shape discrimi-
nation in EJ-276 and EJ-276G plastic scintillators,” Journal of Instru-
mentation, vol. 15, no. 03, p. P03030, 2020.

[11] G. F. Knoll, Radiation detection and measurement. John Wiley & Sons,
2010.

[12] A. Hachem, Y. Moline, G. Corre, J. Gauthier, and F. Carrel, “Multilayer
perceptron model vs charge comparison method for neutron/gamma
discrimination in plastic scintillator according to sampling frequency
and energy radiation,” IEEE Transactions on Nuclear Science, pp. 1–1,
2023.

[13] P. Colangelo, O. Segal, A. Speicher, and M. Margala, “Automl for mul-
tilayer perceptron and fpga co-design,” in 2020 IEEE 33rd International
System-on-Chip Conference (SOCC), pp. 265–266, IEEE, 2020.

[14] J. Xu, S. Li, J. Jiang, and Y. Dou, “A simplified speaker recognition
system based on fpga platform,” IEEE Access, vol. 8, pp. 1507–1516,
2019.

[15] S. I. Venieris, A. Kouris, and C.-S. Bouganis, “Toolflows for mapping
convolutional neural networks on fpgas: A survey and future directions,”
ACM Computing Surveys (CSUR), vol. 51, no. 3, pp. 1–39, 2018.

[16] M. Nagel, M. Fournarakis, R. A. Amjad, Y. Bondarenko, M. Van Baalen,
and T. Blankevoort, “A white paper on neural network quantization,”
arXiv preprint arXiv:2106.08295, 2021.

[17] C. Lynde, E. Montbarbon, M. Hamel, A. Grabowski, C. Frangville, G. H.
Bertrand, G. Galli, F. Carrel, V. Schoepff, and Z. El Bitar, “Optimization
of the charge comparison method for multiradiation field using various
measurement systems,” IEEE Transactions on Nuclear Science, vol. 67,
no. 4, pp. 679–687, 2020.

[18] A. Sanaullah, C. Yang, Y. Alexeev, K. Yoshii, and M. C. Herbordt,
“Real-time data analysis for medical diagnosis using fpga-accelerated
neural networks,” BMC bioinformatics, vol. 19, pp. 19–31, 2018.

[19] I. Westby, X. Yang, T. Liu, and H. Xu, “Fpga acceleration on a multi-
layer perceptron neural network for digit recognition,” The Journal of
Supercomputing, vol. 77, no. 12, pp. 14356–14373, 2021.

[20] C. Zhang, G. Sun, Z. Fang, P. Zhou, P. Pan, and J. Cong, “Caffeine:
Toward uniformed representation and acceleration for deep convolutional
neural networks,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 38, no. 11, pp. 2072–2085, 2018.

[21] K. Guo, L. Sui, J. Qiu, J. Yu, J. Wang, S. Yao, S. Han, Y. Wang,
and H. Yang, “Angel-eye: A complete design flow for mapping cnn
onto embedded fpga,” IEEE transactions on computer-aided design of
integrated circuits and systems, vol. 37, no. 1, pp. 35–47, 2017.

[22] X. Wei, C. H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu, Y. Liang,
and J. Cong, “Automated systolic array architecture synthesis for high
throughput cnn inference on fpgas,” in Proceedings of the 54th Annual
Design Automation Conference 2017, pp. 1–6, 2017.

[23] Y. Shen, M. Ferdman, and P. Milder, “Maximizing cnn accelerator
efficiency through resource partitioning,” ACM SIGARCH Computer
Architecture News, vol. 45, no. 2, pp. 535–547, 2017.

[24] A. Aimar, H. Mostafa, E. Calabrese, A. Rios-Navarro, R. Tapiador-
Morales, I.-A. Lungu, M. B. Milde, F. Corradi, A. Linares-Barranco,
S.-C. Liu, et al., “Nullhop: A flexible convolutional neural network
accelerator based on sparse representations of feature maps,” IEEE

transactions on neural networks and learning systems, vol. 30, no. 3,
pp. 644–656, 2018.

[25] X. Zhang, J. Wang, C. Zhu, Y. Lin, J. Xiong, W.-m. Hwu, and D. Chen,
“Dnnbuilder: An automated tool for building high-performance dnn
hardware accelerators for fpgas,” in 2018 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pp. 1–8, IEEE, 2018.

[26] Y. Guan, H. Liang, N. Xu, W. Wang, S. Shi, X. Chen, G. Sun, W. Zhang,
and J. Cong, “Fp-dnn: An automated framework for mapping deep
neural networks onto fpgas with rtl-hls hybrid templates,” in 2017 IEEE
25th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), pp. 152–159, IEEE, 2017.

[27] C. Hao, X. Zhang, Y. Li, S. Huang, J. Xiong, K. Rupnow, W.-m. Hwu,
and D. Chen, “Fpga/dnn co-design: An efficient design methodology for
iot intelligence on the edge,” in Proceedings of the 56th Annual Design
Automation Conference 2019, pp. 1–6, 2019.

[28] Y. Liang, L. Lu, Q. Xiao, and S. Yan, “Evaluating fast algorithms
for convolutional neural networks on fpgas,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 39,
no. 4, pp. 857–870, 2019.

[29] W. Wang, X. Zhao, and D. Liu, “Design and optimization of 1d-cnn for
spectrum recognition of underwater targets,” Integrated Ferroelectrics,
vol. 218, no. 1, pp. 164–179, 2021.


