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Abstract

Mathematical models can serve as a tool to formalize biological knowledge from diverse sources, to investigate biological
questions in a formal way, to test experimental hypotheses, to predict the effect of perturbations and to identify underlying
mechanisms. We present a pipeline of computational tools that performs a series of analyses to explore a logical model’s
properties. A logical model of initiation of the metastatic process in cancer is used as a transversal example. We start by
analysing the structure of the interaction network constructed from the literature or existing databases. Next, we show how
to translate this network into a mathematical object, specifically a logical model, and how robustness analyses can be
applied to it. We explore the visualization of the stable states, defined as specific attractors of the model, and match them
to cellular fates or biological read-outs. With the different tools we present here, we explain how to assign to each solution
of the model a probability and how to identify genetic interactions using mutant phenotype probabilities. Finally, we con-
nect the model to relevant experimental data: we present how some data analyses can direct the construction of the net-
work, and how the solutions of a mathematical model can also be compared with experimental data, with a particular focus
on high-throughput data in cancer biology. A step-by-step tutorial is provided as a Supplementary Material and all models,
tools and scripts are provided on an accompanying website: https://github.com/sysbio-curie/Logical_modelling_pipeline.

Key words: pipeline of tools; logical modelling; genetic interaction; robustness analysis; data integration; step-by-step
tutorial
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Introduction

Signalling pathways can be defined as sets of proteins and genes
that transmit environmental signals from the membrane to the
nucleus. They are of utmost importance, as this is the way that
the cell senses its surroundings and communicates with other
cells. Moreover, these pathways are entangled into complex net-
works [1, 2] and can be highly deregulated in diseases such as
cancer, often described as a network-alteration disease [3].

To fully understand the cellular complexity, the regulations
and crosstalks between the important signalling pathways can be
recapitulated in the form of a network. This network can be of sev-
eral types [4], but for our study, we will focus on influence or regu-
latory networks (referred to as activity flow diagrams in Systems
biology graphical notation (SBGN) standard format [5, 6]), where
nodes represent genes, mRNAs, proteins, complexes or processes,
and where edges correspond to the influence of a source onto tar-
get entities. The topology of these networks can be studied and
constitutes a valuable source of information per se, especially
when accurate annotations allow for relevant descriptions of this
architecture. These networks can also be translated into mathe-
matical models and provide more insights on the contextual regu-
lation of the processes described and their dynamics.

Mathematical models serve as tools to answer a biological
question in a formal way, to detect blind spots and thus better
understand a system, to organize, into a consensual and com-
pact manner, information dispersed in different articles, to
identify new hypotheses and to test experimental hypotheses
and predict their outcome. In short, a mathematical model can
help reason on a problem.

Discrete models (stemming from the logical models) are
becoming more popular for exploring cell fate decisions, or
particular dysfunctions in biological processes [7–12]. Logical
models are particularly appropriate when the question is qualita-
tive, e.g. which genomic alterations can lead to an increase of cell
proliferation and which genomic alterations need to be combined
to cause resistance to some particular drugs or combinations
thereof. In biomedical literature, there are few time-resolved data
on the detailed dynamics of molecular processes of tumours, as
well as reported kinetic rates of the reactions, but above all, there

is frequently only approximate understanding of the precise bio-
chemical reactions that are involved in the malfunctioning of the
normal cell. Logical modelling is an approach, which is abstract
enough to work under these constraints and still can deliver
interesting insights into the systems’ behaviour. This formalism
has already been fruitful to identify the role of molecular entities
in the cellular response to various perturbations, such as muta-
tions, in the context of cancer [7, 13–17] but also in T-cell differen-
tiation [18], in development in Drosophila [19] among others.

We propose a framework of computational methods that we
have developed to answer biological questions using logical for-
malism (Figure 1). Overall, the set of tools presented here builds
up a pipeline that allows users to characterize and summarize
properties of a logical model by following simple and automatic
procedures. We also present different ways to knit data on top
of the interaction network as a way to understand system-wide
effects, or to understand the data through the model.

Methodology

In the present work, we apply a set of tools that characterize a
mathematical model oriented towards the study of phenotypes
and their regulation. These tools can be applied to any logical
model stored in the standard SBML qual format [20]. As a working
example, we use a previously published logical model focusing on
pathways leading to the early steps of the metastatic process [13].

A detailed account of all the steps followed to obtain the
results presented in this work can be found in Supplementary
File 1. We also provide another example on a gastric cancer logi-
cal model [21] in the models’ folder of the GitHub repository. All
models used to illustrate the pipeline, tools and scripts, together
with a Dockerfile (to use them in a Docker container) are pro-
vided on an accompanying website at the following address:
https://github.com/sysbio-curie/Logical_modelling_pipeline. A
stewardship script (Stew.sh) can be used to automatize the dif-
ferent sections of the pipeline and retrieve basic plots with the
most probable phenotypes. It is meant to be used together with
the docker container and requires minimum information from
user (model files and definition of input and output nodes). This
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Figure 1. Modelling pipeline. Some tasks (in red, central column) can be performed at different levels (in blue, left column): on the regulatory network, the mathemati-

cal model or using experimental data. The results of the possible tasks (in grey, right column) can take several forms.
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script can be found in ‘run all analyses’ folder of the GitHub
repository. We have detailed the tools used in the present pipe-
line in Table 1, as well as other tools that could perform the dif-
ferent tasks for the sake of completeness. Additionally, we have
done performance tests of the different sections of the pipeline
in Unix, Windows and Mac systems (Supplementary Table S1 in
the doc folder of the GitHub repository).

The regulatory network

The construction of a regulatory network that recapitulates the
processes participating in the biological study should start from

a clear and precise question. The formulation of this question
then leads to identifying which molecular entities need to be
included to characterize these processes, how much detail is
needed to answer the question and how many signalling path-
ways should be described. Once this is done, we can study how
the nodes in the network affect each other, what the crosstalks
between the studied pathways are and how phenotypes depend
on the activity of these pathways.

In the example used here, the question focuses on identify-
ing necessary pathways for the commitment of the cell to a
pro-metastatic phenotype. The model describes mechanisms
of early steps of tumour invasion, by showing epithelial-to-

Table 1. Tools used in present logical modelling framework

Pipeline part Tools used Other tools that could be used

Constructing the model network Cytoscape [22], GINsim [23],
Databases

CellDesigner [24], SIGNOR [25], OmniPath [26], PHONEMeS [27]

Translation of the network into a
mathematical model

GINsim, MaBoSS [28] BoolNet [29], CellNOpt [47]

Identification and analyses of asymp-
totic solutions

GINsim, MaBoSS, R [31] BoolNet, EpiLog (http://epilog-tool.org/), Gene Network
Analyzer [32], PyBoolNet [33], SQUAD [34], AVATAR [35],
CellNOpt, Pint [72]

Model reduction BiNoM [36], GINsim
Mutant analyses BiNoM, MaBoSS, R,

ViDaExpert [37]
GINsim, BoolNet, EpiLog, Gene Network Analyzer, PyBoolNet,

SQUAD, AVATAR, CellNOpt
Robustness analysis of logical gates BiNoM, MaBoSS, R,

ViDaExpert
SQUAD

Using the model as a scaffold for data
integration

ROMA [38] NaviCell [39], GSEA [40], network inference methods (for
review, [41])

Using data as priors of model
construction

Lemon-Tree [42], ROMA CLR [43], IRWRLDA [44], PBMDA [45]

Figure 2. Influence network of the metastasis process taken from Cohen et al. [13].
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mesenchymal transition, by invading surrounding tissues, and/
or by escaping apoptosis. The model was initially built from dis-
seminated sources of information gathered into a network. In
this particular case, nodes represent genes, proteins, complexes
or molecular processes, and edges are positive or negative influ-
ences. The influence network was then translated into a logical
model. The model we use as an example comprises 4 input
nodes (ECMicroenv, DNAdamage, GF and TGFbeta), 6 output
nodes (EMT, Invasion, CellCycleArrest, Apoptosis, Migration and
Metastasis), 24 internal nodes and 157 interactions (Figure 2).
More details can be found at [13].

The mathematical model
Translating the network into a mathematical model

A mathematical model can apprehend the biological problems
that are formulated in an exact and unambiguous language, on
some counter-intuitive observations or help explain their
causes. The regulatory network is converted into a mathemati-
cal model by associating some mathematical terms to each
node of the network. This translation needs to reproduce the
expected dynamics and comply to the possible constraints of
the model (phenotypes of known mutations, or reported experi-
mental conditions). There exist a variety of mathematical for-
malisms to be used and the choice depends on the scope of the
question and the types of data available. Some reviews already
expose panels of existing formalisms and computational simu-
lation methods and can help in choosing the best mathematical
formalism for a particular case [4].

We chose to focus on logical (also termed discrete and
Boolean) modelling. A brief glossary of the terms used in logical
formalism can be found in Supplementary File 2. Logical model-
ling is best appropriate when the questions are qualitative,
when the experimental data are discrete, when there is limited
information about the reactions rates or when the detailed
mechanisms of the biochemical reactions are poorly known.
Despite scarcity or discreteness of data, logical modelling gives
an array of qualitative results describing various perturbations
on the model structure or dynamics that are of interest for the
scope of our question.

To explore and simulate the behaviours of logical models,
one can find a handful of different software, e.g. BoolNet [29],
GINsim [23], SQUAD [46], CellNOpt [47], MaBoSS [28, 48] and
Avatar [35]. These tools are able to communicate, as most of
them directly support the standard format SBML qual [20]. We
focus on two of them: first, GINsim can be used for the friendli-
ness of the interface and long-term support of software devel-
opment. GINsim can easily inform on all stable states of the
model, the functionality of positive and negative circuits or pro-
pose reduced models. MaBoSS software has been developed to
perform stochastic simulations on the logical model and offers
a more quantitative outcome of the asymptotic solutions, as
shown below.

For the case of our example (referred to as ‘the metastasis
model’), the first tasks consist in validating that the network
model accounts for what is known about the regulation proc-
esses leading to metastases, and thus, that the structure of the
network is coherent with published experimental observations
and the data that could be gathered. A logical rule was associ-
ated with each node of the network according to the available
information. If rules could not be deduced from the literature,
they were defined to fit all the constraints that the model
should comply with. These constraints can be experimental

results and are usually qualitative, of the type ‘mutant of gene
A has a reduced apoptosis’ or ‘expression of gene B is increased’.
This model verification can be traced on Cohen et al. [13]
Supplementary Material and are not detailed here.

Analysing asymptotic solutions

Given different sets of inputs, the system exhibits different sets
of solutions, which, in a logical model, are called attractors.
They can be fixed points, or stable state solutions, correspond-
ing to a final state in the state transition graph, which recapitu-
lates the dynamics of the model. They can be complex
attractors, or limit cycles, when a set of model states cycles
with no outgoing transition in the state transition graph; thus,
there is no escape from it (see Supplementary File 2 for defini-
tion of these terms).

In the metastasis model, nine stable states are identified.
These stable states can be grouped into phenotypes: four of
them are related to Apoptosis commitment, two of them to
EMT, two of them to Metastasis with EMT and the remaining
one is Homeostasis, where all nodes have 0 value, except for an
internal node: CDH1. These results can be studied in
Supplementary File 1 and their biological conclusions can be
found in [13].

One way to visualize the solutions of the model is to reduce
the dimension of the table recapitulating the stable state values.
The simplest approach consists in applying the principal com-
ponent analysis (PCA) on the collection of all stable states
(Figure 3). PCA plots allow the user to group the stable state sol-
utions into clusters and determine which variables contribute
the most to the cluster characterization. In Figure 3, EMT stable
states (FP6 and FP7) ‘jump’ to Metastasis (FP8 and FP9) when
TGFbeta is activated (or downstream members of the TGFbeta
pathway, such as SMAD and DKK1), highlighting the role of the
TGFbeta pathway in triggering metastasis. This analysis is
insightful, for instance, to find the underlying model’s mecha-
nisms and to quickly spot dependencies among phenotypes.
Note that in this analysis, complex attractors such as limit cycle
solutions are not considered. The identification of complex
attractors is harder in large models and is currently the object
of methodological studies [49]. To produce the PCA plots, sev-
eral packages in R software such as FactoMineR [50] can be
used.

In addition to studying what the stable states of the model
are and characterizing them, some questions can arise on the
reachability conditions for these stable states, e.g. if transient
effects can be observed and play a role in cell fate decision and
if the model solutions are robust to small perturbations. For this
purpose, MaBoSS [28, 48], a Cþþ software for stochastically sim-
ulating continuous/discrete time Markov processes defined on
the state transition graph describing the dynamics of a logical
model, can be used. In MaBoSS framework, the rates up (change
from OFF to ON) and down (from ON to OFF) for each variable of
the model can be explicitly defined to represent physical kinetic
rates of the variables’ turnover [48]. Probabilities to reach a phe-
notype are thus computed by simulating random walks on the
probabilistic state transition graph. In this example, the outputs
of MaBoSS focused on the read-outs of the model, but it can be
done for any node of a model. The nine stable states are
assigned one of the four ‘meta-phenotypes’: Apoptosis, EMT,
Metastasis and Homeostasis. In the Apoptosis phenotype, the
node Apoptosis is 1; in the EMT phenotype, EMT is 1 and
Metastasis is 0; in Metastasis phenotype, the nodes EMT,
Invasion, Migration and Metastasis are 1; and for the
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Homeostasis phenotype, only an internal node, CDH1 is acti-
vated in this stable state.

For each simulation in MaBoSS, some initial conditions are
defined and a maximum time is set to ensure that the simula-
tions reach asymptotic solutions (Supplementary File 2). There
are two ways to visualize the results: (1) the trajectories for par-
ticular model states (states of nodes) can be interpreted as the
evolution of a cell population as a function of time (Figure 4A);
that way, transient effects could be highlighted. Alternatively,
(2) asymptotic solutions can be represented as pie charts to
illustrate the proportions of cells in particular model states.
This representation is particularly handy when two cell condi-
tions (e.g. altered environment conditions or component pertur-
bations) are compared and the proportions of the model states
change from one condition to another (Figure 4B and C).

Simplifying the model structure
When models are too complex (with a high number of varia-
bles), it becomes difficult to get insight on which molecular
mechanisms described by the network are responsible for
which behaviours or simply, to simulate the model. It is impor-
tant to know that this reduction will come at the cost of losing
details and granularity of the model. This trade-off is usually
accepted by the modellers. One solution is to reduce the model
to a small number of variables while maintaining the number of
solutions of the initial comprehensive model.

There are several ways to reduce a logical network model:
among them, masking nodes or lumping nodes into modules.
For the former, GINsim [23] allows selecting components for
reduction; their regulators then regulate their targets whose
logical rules are appropriately modified. This reduction

maintains the stable states. This may be interesting when some
parts of the model can be hidden to focus elsewhere, or when
different parts of the model have different temporal scales (the
reduction considers that the reduced components are faster).
Alternatively, Cytoscape plugin BiNoM [39, 51] helps the model-
ler in the reduction of the regulatory network by lumping nodes
into modules, focusing solely on the structure of the network
and not the logical rules. The modules become nodes of the
model, and should represent the global behaviour of the nodes
inside the module. So far, the inference of the signs of the edges
and the assignment of the logical rules of the reduced model
need to be done manually. This is usually a complex task as the
solutions of the reduced model and the original model need to
be the same. The approaches of GINsim and BiNoM answer dif-
ferent types of questions: the first one maintains the dynamics
of the complete model but concentrates on some players (as
can be seen in [14]), whereas the second one highlights mecha-
nisms or motifs (modules) that generate particular response
behaviours (as can be seen in [3]). Both methodologies are
showcased in Supplementary File 1, where detailed step-by-
step procedures can be found.

Analysing mutants

The construction of a logical model involves a step of model val-
idation that is the verification that the model is coherent with
known facts or experiments. In this section, we show how a pri-
ori knowledge is used as constraints the model must comply.
These constraints can be qualitative information related to
mutants of genes of the model (in the form of statements like
‘TP53 deleted mutant in mice leads to reduction of apoptosis’),

Figure 3. PCA bi-plot of stable state solutions of the metastasis model. The nine fixed points are represented here: FP1 corresponds to the homeostatic stable state (HS),

FP2–FP4 to the apoptotic stable states, FP6 and FP7 to the EMT stable states and FP8 and FP9 to the metastatic stable states. The arrows show the directions of the con-

tributions. PC1 shows that the EMT regulators contribute the most to the EMT and Metastasis stable states, whereas PC2 shows that TGFbeta pathway promotes

Migration and thus Metastasis.
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or conditions for experiments (‘cells in response to TGFbeta
have increased EMT’). Simulating these constraints consists in
modifying the logical rule or node’s value of the genes related to
the experiment. A TP53-deleted mutant will be simulated by
setting the activity of the node p53 to 0, ignoring the initial rule
of p53. In the case of a TP53 mutant where experiments would
report a reduction in apoptosis [52], the model states related to
apoptosis (the output node Apoptosis in the example) should
exhibit a diminished probability when compared with the wild
type. The model needs to comply with all (or most of) the con-
straints to claim that the model is coherent with the known bio-
logical facts. For the mutants that have not been experimentally
performed yet, the model solutions can be treated as predic-
tions of their behaviour.

We provide a set of scripts that computes and simulates all
single (one gene altered in one cell) and double mutants (two
genes altered in one single cell) of any logical model using
MaBoSS. Our methodology quickly determines probabilities for
all mutants’ phenotypes. Mutant probabilities can be compared
with the wild type to see the extent of the different phenotype
probabilities’ shifts. Using MaBoSS, one can study and compare
quantitatively the effects of mutants on a given phenotype such
as Metastasis. Combinations of mutations are of particular
interest, as they can be used to conclude if two alterations are,
for instance, synergistic (the alteration of the double mutant
has more effect on a phenotype than the sum of the single alter-
ations) or synthetic lethal (the double mutant is not viable,
while single mutants are viable). These terms are different cases
of epistasis behaviours: when the effect of one gene in the phe-
notype is either not modified or increased in the presence of
another genetic alteration.

Predicting genetic interactions

The mutant probabilities obtained with MaBoSS in the previous
step can be used to analyse the effect of mutations on double
mutants. This epistasis study explores the combined effects of all
double mutations in comparison with wild type and single mutants
[53]. The method was applied to the metastasis model [13, 53] with
respect to all outputs: Homeostasis, EMT, Migration, Metastasis,
Apoptosis and Cell Cycle Arrest (Figure 5).

The Metastasis phenotype revealed to be the one showing the
highest deviation from the wild-type probability: 45.77% of the
mutant combinations abolish this phenotype probability to 0
(Supplementary Figure S4 in Supplementary File 1). In fact, these
938 mutants are mainly combinations of knockouts of genes that
are necessary for the activation of the Migration node (which is
the node whose activation depends on the highest number of
internal nodes) as well as overexpression of genes that are anti-
migratory or pro-apoptotic. These genes can be considered as
candidates for drug-targeted therapies, as they might consider-
ably reduce the occurrence of metastases.

Additionally, double alterations in some pairs of genes are
predicted to increase significantly the triggering of metastasis,
which highlights alterations, or mechanisms, that should be
carefully monitored in cancer patients, as they may have a role
in increasing metastatic predisposition that could lead to aggra-
vated cancer condition. These alterations were gains of functions
of three genes: AKT2, SNAI1 and TWIST1 that, indeed, correspond
to patients with bad prognosis [54]. In Figure 5, AKT2, SNAI1 and
TWIST1 gains of function are the single mutants that move the
wild-type state the most towards Metastasis and EMT pheno-
types (AKT2_oe, SNAI1_oe and TWIST1_oe, dark red dots). We

A

B C

Figure 4. Plot of the metastasis asymptotic solutions using MaBoSS. Initial conditions were chosen such that: all internal nodes had initial values set to 0 and inputs

nodes (ECMicroenv, DNAdamage, GF and TGFbeta) were randomly set to 0 or 1. (A). Evolution of the probabilities of read-outs of the model (phenotypes), based on

50 000 trajectories; (B) Pie chart of asymptotic solutions for the wild-type case; (C) Pie chart of asymptotic solutions for the NICD overexpressed mutant. EMT stands for

Epithelial to mesenchymal transition, HS stands for Homeostatic state.
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can also identify that the three epistatic pairs that have more
effect on these two phenotypes are the combinations of AKT2
gain of function with SNAI1, SNAI2 and TWIST1 gains of functions
(grey dots with labels). We further discuss the use of these PCA
figures in Supplementary File 1.

Robustness analysis of the logical model

The logical rules are often written such that the global behav-
iour is in accordance with reported facts in both the wild type
and the perturbed conditions (mutations, drug treatments, etc.).
In a logical framework, it is often difficult to justify the choice of
the logical rules biologically and to ensure that the obtained
model generates compatible dynamics with what is known.
Also, we expect that there exists more than one set of logical
rules that can comply with the model constraints, but some log-
ical rules need to be written more carefully than others because
they play an important role in reaching a given phenotype. One
way to address this issue is to modify the logical rules and
check how the solutions vary from those of the initial model.
There are more than one way to do it. Hereby, we propose to
modify automatically one operator at a time (from AND to OR
and vice versa) and compute how different the perturbed model
solutions are compared with the wild-type solutions, either at
the level of the phenotype probabilities, or at the level of stable
state solutions. The model can be robust with respect to either
aspect when a threshold for assessing robustness is defined
and met.

For the example presented here, a phenotype is considered
to be robust when >50% of the (logical rules) model variants
have the same probability than the wild-type model. We define
a model variant as a model for which one logical operator was
changed when compared with the initial model. Using MaBoSS,
only two types of rule modifications are explored: one or two
operators (AND in OR and vice versa) are changed per rule. Note
that the provided scripts can also perform three changes: one

operator in one rule, two operators in one rule or one operator
in two different rules. More changes can be made but the com-
putations might become heavy then because of a combinatorial
number of possibilities. It was concluded that, for the metasta-
sis model, all phenotypes were robust to changes except for
Homeostasis. This is because of the fact that Homeostasis is a
phenotype that is active when no input is present. Thus, all
changes that end up activating a pathway will cause an altera-
tion in Homeostasis activation.

In fact, looking at the combined meta-phenotype identified
as the Metastasis phenotype (equivalent to the nodes
Migration/Metastasis/Invasion/EMT/CellCycleArrest ON), 66.4%
of the model (logical) variants have the same probability to
reach this phenotype than the wild type (Figure 6), whereas for
the Homeostasis phenotype, 22% of model variants have the
same probability as the wild type (Supplementary Figure S1).

This robustness analysis can highlight ‘weak’ rules in the
regulation of genes whose alteration suppresses the Metastasis
phenotype. These alterations are found in the logical rules of
nodes such as AKT1 (by far the biggest contributor) and p53, and
they represent 9.2% of the total model variants.

Another possibility of interpretation is to check the robust-
ness with respect to the stable states. For that, a distance from
the stable states of the variant of the model to the closest stable
states of the wild type is calculated. This distance corresponds
to the minimal number of changes in the node activities (with 0
or 1 values) between all the stable states of the reference wild-
type model and each stable state of a variant model. This com-
puted distance, called Hamming distance, is a measurement of
the perturbation suffered by the model variant on the logical
operator change. This way, it is possible to identify which stable
states are most robust to logical operator’s perturbations and,
thus, which rules should be considered a priority to check when
simulations do not tally experimental data. Further discussion
on these results can be found in Supplementary File 1 and in
Supplementary Figure S2.

Figure 5. PCA bi-plot of the probability profiles over the set of four studied meta-phenotypes. The probabilities of all overexpressed (oe) or knockout (ko) single (red)

and double (grey) mutants are plotted with the wild type (WT—yellow) as the centre of origin. The arrows show the contribution of the four phenotypes to each single

or double mutant.

1244 | Montagud et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/20/4/1238/4716963 by C

EA user on 22 January 2024

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbx163#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbx163#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbx163#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbx163#supplementary-data


Data to model and model to data

We can further use our model to compare its results with exper-
imental data. This allows the use of mathematical models as a
tool to understand data in a more insightful way [13, 47, 52, 55,
56]. Conclusions from experiments can be interpreted under the
light of the model, and unveil mechanisms that contribute to a
disease state. As an illustration, we chose a data set of eight
colon cancer patients treated with cetuximab: four that
responded to the treatment and four that did not respond. We
explored these data using the metastasis model used through-
out the present work. This data set can be found at Gene
Expression Omnibus under the code GEO: GSE56386 (http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi? acc¼GSE56386).

Mapping omics data on gene regulatory networks

The visualization of data on top of a network can be informa-
tive. It is possible to show the expression of a particular protein,
or gene, on the network and get some insight about the activity
of its neighbours, its mechanism or the whole pathway. Taking
transcriptomics data as an example, we mapped data onto the
network to easily visualize the differential gene expression
between two conditions, such as responders versus non-
responders. Nodes that represent a gene are associated to a
gene from the data set (HUGO name). The mean expression
value of the two groups for each gene of the network is
computed and the expression is then mapped onto the influ-
ence network using Cytoscape (Supplementary Figure S9 in
Supplementary File 1). Focusing, for instance, on the EMT regu-
lator module, it is difficult to conclude on the activation of EMT
or not, as some transcription factors, the main players of the
EMT response, show differences in expression and others do

not. We conclude that the expression of individual genes does
not provide any insight about the activity of the process.

Another approach consists in considering the activity of a
gene set rather than individual genes. For the case of a tran-
scription factor, the expression of the target genes can inform
on its activity more accurately than the expression of the tran-
scription factor itself. For the case of signalling pathways, the
expression of the genes that compose the pathway can also
account for its activity. Using ROMA (Representation Of Module
Activity) [38], a score based on a weighted sum of the expression
of the genes that compose the module can be associated. For
this analysis, the modular (or reduced) network is appropriate.
As mentioned above, for the transcription factors of the EMT
module, for example, the gene sets correspond to their target
genes, and for some pathways such as Notch or Wnt, the genes
that participate in the pathway are considered, according to
pathway databases, such as KEGG [57], Reactome [58] or ACSN
[59] (more details on methodology on Supplementary File 1).

In Figure 7, the mean activity of each module and for each
group of patients, responders and non-responders, is mapped
onto the network. EMT node appears more active in non-
responders than responders, which corresponds to what is
expected from resistance mechanisms. In the responder group,
p53 and microRNA (miRNA) nodes seem to have a higher
activity, thus able to trigger Apoptosis, whereas in the non-
responder group, stronger activation of the Extracellular micro-
environment, TGFbeta, Notch pathways and Akt1 is observed.
Interestingly, the E-cadherin module is more activated in non-
responders, which is a mechanism that needs to be further
explored. The significance of these differences of activity
between two groups can also be statistically assessed (by com-
puting P-values in ROMA). The gene sets used for this analysis

Figure 6. Robustness analysis. A distribution of ratio between Migration/Metastasis/Invasion/EMT/CellCycleArrest phenotype probability to wild-type probability. The

bin centred at the wild-type value has been marked with dark red colour.
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were described in the initial publication and are provided in the
GitHub.

Using data for selecting appropriate components

Data exploration can also be used as a prior step to guide the
model construction, and to identify relevant pathways in high-
throughput data or highly variable sets of genes. Before con-
structing the network that would eventually be converted into a
model, the data can be explored to search for appropriate com-
ponents that need to be included in the model and that will per-
mit some non-intuitive predictions.

We could start with a statistical test identifying the most dif-
ferentially expressed genes, but the list might end up being too
long and linking them might lead to tedious manual curation.
Rather than working on individual genes, we propose to explore
signalling pathways that are specific to the cancer model we
wish to study or to the data set itself.

We present here two tools that we have used as means to
identify pathways and mechanisms that should be included if
we wanted to have such a data-specific model. We choose the
same data set used for ROMA analysis (GEO: GSE56386). We can
explore the content of pathway databases to find significant
pathways that can represent these data. In MSigDB [40] (http://
software.broadinstitute.org/gsea/msigdb), for instance, lists of
pathways can be found. According to ROMA results, the mod-
ules that appear significantly over- or under-activated can be
considered as candidates for an initial list of pathways (and
thus candidate genes or proteins) that would need to be
included in the model to fully capture the data. ROMA was
applied to the data set of eight colon cancer patients to compute
the activity score of gene sets downloaded from the KEGG data-
base [57]. Among the top significant differentially activated
pathways between the two groups of patients, some new ones
were identified as potentially involved in the disease progres-
sion, such as pathways related to the immune response [60, 61].

Figure 7. Gene expression data mapped onto an influence network composed of functional modules for the two groups of patients, the non-responders (upper panel)

and the responders (bottom panel).
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Including these pathways in the network would tailor the model
to these specific data.

To build a network tailored to the data, network inference
methods have been widely applied. The idea is to exploit high-
throughput data sources to infer regulatory relationships
between genes and thus reconstruct a network from experi-
mental data. A wide range of network inference methods have
been developed [41, 62, 63] and successfully applied to various
biological problems [43, 64–69]. Similarly, tools, such as the con-
text likelihood of relatedness (CLR, [43]) algorithm, can also be
used to identify interactors.

Network inference can thus be used in the context of build-
ing a logical model to prioritize the genes to be included.
Lemon-Tree is one of these software frameworks dedicated to
module network inference [42]. The tool can be used to assign
and prioritize candidate regulators to module of co-expressed
genes and thus determine which entity has an essential role
and should be kept or could be otherwise discarded. The list of
candidate regulators is built by using prior independent infor-
mation, such as ontologies describing the biological function of
a gene. In the example here, the initial list of genes from the
first version of the network was used as input for Lemon-Tree
together with the expression profiles of eight colon cancer
patients. The results suggest that top regulator genes, such as
CDC42SE1, MKNK1 and FGFR3, should be part of the model to
build a specific colon cancer model that explains differential
cetuximab response.

These aforementioned analyses aim at listing important
genes. Tools such as SIGNOR [25] or more generally OmniPath
[26] can then be used to complete the network. Omipath
searches in existing databases links between genes to have a
comprehensive and cohesive network. Further analyses can be
performed using the network structure: one can extract the
minimal cut sets [70, 71] or predict association of miRNAs [45] or
long non-coding RNAs (lncRNAs) [44] to diseases.

Conclusions

In the present work, we have showcased how to extract infor-
mation from an existing logical model. Through a series of anal-
yses on a model of the early steps of metastases, we have
exposed different methods and tools that could be used as pre-
dictions. Many of the functionalities presented here use the out-
puts of the modelling tool MaBoSS, which stands as a way to fill
the gap between qualitative and quantitative modelling. It is
based on continuous time Markov process applied on a Boolean
state space in which we explicitly specify the transition rates
for each node to describe the temporal evolution of the biologi-
cal process we wish to model. That way, transient effects are
represented by the dynamics probability distributions, defined
with a physical continuous time (unlike the standard Boolean
approach where the time is discrete). The results of MaBoSS are
interpretable in terms of cell population dynamics.

We have recommended several methods that can exploit
the data to parameterize the model, to ensure that the most
important pathways and genes are included in the model, as
well as to verify the coherence of the model. In the example
used in the present article, the model that describes early
tumour invasion steps was built out of current knowledge to be
generic, and the data were chosen to illustrate the methods.
The model successfully explains colon cancer data if these are
bundled in functional modules. Furthermore, if we wish to
apply this model to a particular cancer, the model would need
to be adapted, specified and extended. In this case, the model

expansion depends on the data, and we suggest some methods
to identify relevant pathways and genes, such as ROMA and
Lemon-Tree that.

Future perspectives of this work are to expand this pipeline
with other existing tools to include other analyses and studies
and by doing so, to be able to improve the current results of
models. For instance, tools such as BoolNet [29] or CellNOpt [47]
could be easily integrated in the analysis of asymptotic solu-
tions section of the pipeline, and tools such as AVATAR [35] or
PyBoolNet [33] could be also used to study mutants of the mod-
els. Additionally, in a longer term, we plan to devise a graphical
user interface that performs all the steps detailed in
Supplementary File 1 to further ease the use of this pipeline.
Our vision is that the present pipeline would be used as a
benchmarking routine for published models, allowing for the
comparison of models that have similar underlying scientific
questions and the spread of its uses. To this end, this work
is a contribution to the community-effort of the CoLoMoTo con-
sortium (http://colomoto.org/) of enabling exchange and reus-
ability of logical models for a variety of tools developed in the
logical modellers’ community.

We propose a pipeline of methods and resources that takes
the user from a logical model to data integration and model
simulations. This pipeline can be of used by novices as well as
experienced modellers that are looking for a streamlined way of
characterizing their biological system of interest. Our pipeline’s
step-by-step procedures can be followed from Supplementary
File 1. The pipeline was applied to another example of multival-
ued model of gastric cancer and is provided as a Supplementary
File. All data, scripts and examples can be downloaded from
https://github.com/sysbio-curie/Logical_modelling_pipeline.

Key Points

• A wide range of free tools and resources for the study
of genes’ regulation networks have become available in
recent years. These tools can be used in a streamlined
manner to perform different kind of analyses.

• Tools presented here cover a wide range of studies that
can be performed on regulatory networks, from model
building to omics data analysis.

• We provide scripts and software access, so that the
community can benefit from this pipeline.

Supplementary Data

Supplementary data are available online at http://bib.ox-
fordjournals.org/.
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