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Fluides (STMF), CEA Centre de Saclay, Gif-sur-Yvette, 91191, France

Abstract

This article addresses the issue of reduced models to describe turbulent
two-phase flows in industrial applications. A spatially-averaged mixture or
drift-flux model is derived theoretically from the local instantaneous Navier-
Stokes description. Reynolds-averaging and space-averaging are applied suc-
cessively. Between these two steps, a model reduction is achieved to account
for the non-equilibrium between phases via algebraic relations. Applications
of this work are not limited to porous media but also include macroscopic de-
scriptions to model high-shear regions developing near the walls for internal
flows. Thermal effects, heat transfer at the wall and phase-change are also
considered and briefly discussed. The final model describes the evolution of
mixture variables, including effects of both sub-filter spatial variations, tur-
bulence, and local non-equilibrium in velocity, pressure and enthalpy. This
analysis provides bridges between different approaches to model two-phase
flows (local instantaneous description, two-fluid model, local drift-flux model
and spatially-averaged drift-flux model). It clarifies the content of each model
involved by defining them in terms of local instantaneous quantities. Turbu-
lent fluctuations and phase intermittency are crucial mechanisms. Important
effects to model also include void fraction dispersion and turbulent diffusion;
then, it is necessary to model the relative velocity, including the drift velocity
orthogonal to gravity induced by the complex interactions between turbulent
velocity fluctuations and the interfacial momentum transfer.

The final macroscopic (spatially-averaged) mixture formulation is open,
in the sense that expressions to model the various terms representing the
physics of the small scales are not provided; instead, the physical sense and
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the origin of these models are discussed. The paper is meant as a basis on
which analyses on local imbalance assumptions or relative velocity closures
can be assessed. CFD simulations can provide information to complement
experiments in technically challenging physical conditions or on processes
essential to the models yet difficult to access experimentally (such as interfa-
cial transfers for instance). Different kinds of two-fluid models can be tested
to analyse their consequences on the macroscopic spatially-averaged model.
In addition, a new path to calibrate closure laws or propose new models is
opened based on finer-scale descriptions. Guidelines to use fine simulations
along with the open expressions to derive closure relations either for the local
drift-flux or for the spatially-averaged models are presented. They concern
the modelling of the local relative velocity, the spatial average of the diffusion
of void fraction and of the pressure drop.

Keywords: Two-phase flow, volume averaging, homogenisation, up-scaling,
two-fluid model, turbulent dispersion, effective diffusion, sub-channel
modelling, drift-flux model

Nomenclature1

Acronyms2

CFD Computational Fluid Dynamics3

CHF Critical Heat Flux4

CMFD Computational Multi-Fluid Dynamics5

DNS Direct Numerical Simulation6

EOS Equation Of State7

LHS Left Hand Side8

PDE Partial Differential Equation9

RANS Reynolds-Averaged Navier Stokes10

REV Representative Elementary Volume11

RHS Right Hand Side12
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Subscript13

∇P pressure-induced14

< viscous-induced15

disp dispersion16

pd pressure drop17

f fluid18

k k phase19

l liquid phase20

M macroscopic property (mean and volume-averaged)21

m mixture property22

r relative23

v vapour phase24

w wall25

z axial component26

Greek symbols27

α void fraction28

χ phase indictor function29

χf indicator function of the fluid phase30

δ Dirac (delta) function31

ΓM macroscopic vaporisation term (〈Γv〉f )32

Γv interfacial mass (evaporation) flux33

κ curvature34

λ conductivity or axial liquid pressure gradient, Eq. (23)35

3



µ viscosity36

µ? combination of viscosities37

φ porosity38

ρ density39

σ surface tension40

τ viscous stress (local)41

ω curl of velocity42

Latin43

cp thermal capacity at constant pressure44

ṁv interfacial phase-change rate45

hr enthalpy difference h
v

v − h
l

l46

pbl
l

bubble-induced pressure perturbation, Eq. (22)47

pSPl
l

liquid pressure in the absence of the perturbation, Eq. (22)48

pr pressure difference pvv − pll49

Lvap latent heat of vaporisation50

M macroscopic mechanism51

N dimensionless group52

T t turbulent stress53

T v viscous stress (mean)54

T dr diffusion stress (due to relative velocity)55

Re Reynolds number56

uD macroscopic drift velocity, uD1 + uD2, Eq. (50)57
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um barycentric velocity58

ur relative velocity59

uv→m drift or diffusion velocity60

nv interface normal (towards liquid)61

u velocity62

x local position vector (x, y, z)63

Dr macroscopic diffusion tensor (
〈
T dr
〉
f
)64

DM macroscopic dispersion, Eq. (47)65

e unit vector66

I identity tensor67

MRANS
k momentum interfacial transfer into phase k from the other phase68

(MRANS
v + MRANS

l = 0)69

MM mixture momentum source (〈Mm〉f )70

Mk interfacial transfer into phase k71

Mm mixture momentum source72

Q heat flux73

Qc correlation heat flux, Eq. (33)74

Qf conduction heat flux, Eq. (37)75

SM deviatoric part of the macroscopic stress tensor, Eq. (54)76

T macroscopic turbulent tensor (〈T t〉f )77

V macroscopic viscous tensor (〈T v〉f )78

p̃l reference pressure79

c vapour mass fraction80
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CD drag coefficient81

db bubble mean diameter82

Dh hydraulic diameter83

e channel width84

g gravitational acceleration85

h enthalpy86

K closure parameters (KD, KL and KDisp for the drag, lift and dispersion87

respectively)88

KM tensor set of coefficients to model T, Eq.(53)89

lξ microscopic scale of variation of the variable ξ90

L〈ξ〉 macroscopic scale of variation of the filtered variable 〈ξ〉91

p pressure92

p? dynamic pressure93

r radial coordinate94

r0 characteristic lengthscale of the filter kernel95

T temperature96

t time97

V averaging volume98

y wall-normal coordinate99

z axial coordinate100

Mathematical symbols101

δφ deviation of φ from the Favre filtering φ̃102

δsφ deviation of φ from the volume average 〈φ〉f103
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φ̃ Favre averaging (fluid- and density-weighted filtering) of quantity φ,104

Eq. (43a)105

φ
k

phase average of φ106

φ statistical average of φ107

[[ ]] interfacial jump (liquid/vapour difference)108

〈 〉f weighted volume average109

〈 〉 volume average or space filter110

Du One-fluid local viscous operator111

∇† sum of the gradient and its transpose (∇+∇T )112

∇φ· divergence weighted by porosity (∇φ · ζ = 1
φ
∇ · (φζ))113

∇s· surface divergence114

‖v‖ norm of v115

φ′ fluctuation of φ with respect to the phase average116

D/Dt material or substantial derivative117

Superscript118

† sum of a second-order matrix and its transpose119

sat saturation property120

mod model121

ref reference122

extra Reynolds stresses of the dispersed phase123

AM added mass124

c cross-correlation125

D drag126
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i interfacial127

L lift128

LD laminar dispersion129

SP single phase130

t turbulent131

TD turbulent dispersion132

1. Introduction133

Many industrial applications involve complex two-phase flows for trans-134

port, chemical reactors or heat exchangers. They are central to the develop-135

ment of the oil and gas or nuclear industries. These flows are very strongly136

dominated by interfacial transfers; interfacial forces or heat and mass trans-137

fers have to be characterised and modelled. A particular concern of the138

nuclear industry is the presence of bubbles at the wall where boiling char-139

acteristics strongly depend on the distribution and trajectories of bubbles.140

Hence, the prediction of local and time-averaged void fraction is a major141

issue determinant in safety analysis and to know the conditions of Critical142

Heat Flux (CHF) occurrence.143

The physical behaviour of two-phase bubbly flows is strongly related to144

local phenomena occurring in the surroundings of bubbles or interfaces (an145

increase of the dissipation close to the interfaces, boundary layer growth146

and detachment, wake’s structure and interactions). Classical experiments147

struggle to clearly isolate the individual role of each of these phenomena. A148

detailed description of all the interfaces and the associated transfers is out-149

of-reach for most of industrial applications. Thus, two-fluid models [1, 2, 3]150

have been developed to assess and predict this local distribution of void frac-151

tion. To this end, they rely in particular on interfacial force models to build152

a two-fluid Euler-Euler description of the Reynolds-Averaged Navier-Stokes153

(RANS) equations where the evolution of each phase is described separately154

by a set of conservation equations. Conservation principles lead to an under-155

determined set of equations and additional local relations are necessary to156

achieve a determined set; they are usually inferred from experimental mea-157

surements [see e. g., 4, for the determination of the drag force]. Because158

of the strong dominance of buoyancy and strong convection in industrial159
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applications, most efforts were focused on the accuracy of one-dimensional160

closures, and the precise modelling of void fraction distribution in the cross-161

flow plane due to other interactions still lags behind, with a lower accuracy162

and more difficulties to provide generally applicable relations. Liu et al. [5]163

propose a generic framework for multi-field two-phase flow based on the two-164

fluid model for applications to any flow regime by the consideration of several165

fields within each phase.166

In the end, even this local two-fluid approach gets expensive to accurately167

capture boundary layers and the effect of complex geometries. Hence, in order168

to further reduce the computational cost and enable extensive parametric169

studies that are required in industrial applications (for instance for design,170

operation or safety analysis), coarser models have been developed. They rely171

on averaging techniques to incorporate the effect of (time-averaged) local172

gradients. The development of models based on homogenisation techniques173

is an essential feature of the description of flows in porous media [6] with174

applications to soil science or petroleum engineering and many other fields.175

Macro-scale modelling1 has been very active in this community. In many of176

the applications to fluid flows in porous media, Darcy’s law is used as an177

approximate momentum equation for each phase [7, 8]; Darcy-Forchheimer178

model has also been used to obtain a macro-scale description of turbulence179

in porous media [9]. Capillary effects and contact line motion are also often180

dominant features of the flow considered. For instance, Gray et al. [10]181

provide guidelines for closure relations based on a constraint to the energy of182

the system derived from the second law of thermodynamics. Jackson et al.183

[7] derive averaged models satisfying similar thermodynamic constraints.184

In this paper guided by nuclear applications, flows with very high Reynolds185

numbers are considered. Macroscopic models (i. e., obtained by spatial av-186

eraging) for turbulent flows were initiated for nuclear applications though it187

was mostly applied to the macroscopic description of fuel assemblies where188

the exact description of wall structures become prohibitively expensive; this189

methodology leads to models referred to as sub-channel or component models190

and codes. Several works [1, 2, 11, 12, 13, 14, 15, 16, 17] present a specific191

derivation for targeted applications with appropriate simplifications. Most192

often, drastic simplifications lead to one-dimensional models fully-averaged193

1In this paper, the terminology macro-scale or macroscopic refers to spatial averaging
or homogenised description.

9



over the cross-sectional area, associated with empirical closure relations. To194

the best of our knowledge, the homogenised equations for the general three-195

dimensional case are not derived from local principles, yet the cross-sectional196

distribution of velocity and void fraction shows significant variations in ge-197

ometry such as tube bundles or flat rectangular channels. The complete 3D198

description of the partially-averaged system is then necessary.199

In parallel to the distinction between the local and macroscopic ap-200

proaches that comes from resorting to a space-averaging operator, another201

key differentiating feature between the models is the consideration of the202

two phases either as a mixture or as separate entities. When the mixture203

balance equations are considered, different models can be derived depend-204

ing on the assumption of equilibrium or non-equilibrium between the phases205

for the velocity, the enthalpy and the pressure. When total equilibrium is206

assumed, the homogeneous equilibrium model is obtained. Alternately, non-207

equilibria can be considered either by additional transport equations or by208

algebraic closures. When an algebraic closure for the relative velocity in-209

troduces mechanical non-equilibrium [see e. g., 18, 19, for the application of210

the homogenised drift-flux to gas-liquid flows in vertical or horizontal pipes],211

the drift-flux model [20] is obtained as a simpler formulation in comparison212

to the more complete two-fluid formulation. Most modelling efforts were213

carried in one dimension (with the notable exception [21]). Consequently,214

generalisation of the drift-flux model’s closures to multi-dimensional flows215

and geometries is not straightforward. Besides, in practical applications, it216

is used in conjunction with area-averaging. Here, we will be interested by the217

local three-dimensional description of the drift-flux model as an intermediate218

step.219

The drift-flux model can only be used with dedicated closure relations,220

sometimes based on local considerations and principles [as in e. g., 22, for the221

modelling of the cross-section averaged void fraction accounting for both the222

distribution of concentration across the duct and the effect of local relative223

velocity between the two-phases] or on fully empirical correlations. However,224

these approaches do not naturally integrate all the principles embedded in225

the local conservation laws. As a consequence, the closure relations provided226

may not satisfy them all locally. On the contrary, the methodology proposed227

here relies on local solutions that satisfy these local governing equations and228

henceforth ensures that they are preserved at the macroscopic scale; we utilise229

conservation laws and governing equations on local phase quantities to pro-230

vide constraints to mixture and spatially-homogenised quantities. Therein,231
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the approach used here is, in essence, fundamentally different from works of232

for instance [18, 22] or subsequent efforts that assume local distributions of233

void fraction or velocity to derive correlations for mean flow description. It is234

also very different for example from the work of [4] on the drag force closure,235

which derives correlations for the drag coefficient and relative velocity from236

partial observations of local fields, independently of conservation principles.237

To the best of our knowledge, rigorous derivations of macroscopic models238

have been applied mostly to single-phase applications [23, 24, 25, 26, 27, 28,239

29, 30]. Some works were also dedicated to the accurate description of the240

transition between the porous region and the flow in a free region [31, 32, 33].241

Another example provided by the work of Soulaine and Quintard [9] focused242

on the effect of the microscopic structure of the porous media on the macro-243

scale description of turbulence, with the prospect of deriving for instance an244

apparent permeability tensor. We can also cite the contribution of Clavier245

et al. [34] focused on the modelling of friction closure laws in inertial multi-246

phase flows or a review by Wang et al. [35] on meso-scale drag modelling247

that reveal very different methodologies for deriving averaged models.248

There are two essential differences of the approach proposed here. First,249

the methodology is applied to two-phase turbulent flows, where turbulent250

fluctuations and phase intermittency are crucial. The second major difference251

is that the filtering and homogenisation proposed here can be applied in free252

regions of the flow and not necessarily to porous regions where the goal is to253

eliminate the need for the description of the actual solid structure topology254

and to replace it by modelled sources. Indeed, our objective is to describe the255

flow at the macroscopic scale (i. e., to capture only the gradients of spatially256

averaged fields) and to account for high-shear regions indirectly by means257

of models. Applying this methodology to multiphase flows increases the258

complexity.259

In this article, a two-step up-scaling strategy from the local instantaneous260

description to the macroscopic (sub-channel) model is presented. In brief, the261

intent is to provide a sound and coherent basis for the up-scaling in which the262

various macroscopic models will consistently depend on the underlying local263

fields. To the best of our knowledge, we derive a local equation governing264

the relative velocity (equation (16)) that is not available in the literature;265

our derivation enables both (i) a better understanding of the diverse effects266

competing to govern the void fraction distribution, in particular in the cross-267

sectional direction, and (ii) the clear connection between the two-fluid and268

the drift-flux models at the local scale. Various degrees of simplification of269
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this equation are possible to build intermediate models. When reduced to an270

instantaneous local closure, this Partial Differential Equation (PDE) becomes271

algebraic and it completes the description of a local three-dimensional drift-272

flux model.273

The paper is organised around the various scales and simplifications con-274

sidered. Section 2 describes the steps taken to reach the macroscopic de-275

scription from the local instantaneous balance. Along with definitions of276

the different approaches, it gives the objectives of the procedure based on277

fine-scale models and simulations, and it exposes the scope of application.278

The first up-scaling step is very classical and leads to the widely-used279

Euler-Euler two-fluid model. It is based on the local instantaneous govern-280

ing equations describing two-phase flows introduced in section 3; this step281

leads to the two-fluid model presented in section 4 and some important is-282

sues relative to its closure are discussed. In particular, we have selected the283

proposal of du Cluzeau et al. [36] for interfacial transfers because it involves284

fewer assumptions regarding local non-equilibrium of pressure and interfacial285

momentum transfer compared to the more classical one-pressure two-fluid ap-286

proaches. This distinction is important because its effect remains visible at287

the end of the second up-scaling step.288

Then, the second up-scaling step involves a space averaging of the RANS289

two-fluid model. But instead of a direct application of the spatial filter to290

the two-fluid model, we are interested in this work in the homogenisation of291

a simpler local drift-flux model. Thus, the two-fluid model with two separate292

sets of equations is simplified into a drift-flux model in section 5. The second293

up-scaling step (space-averaging) is then applied to this simplified system294

to lead to the set of equations governing the macroscopic description of the295

mixture as used in sub-channel codes (section 6).296

Lastly, section 7 gives some insights into various possibilities offered by297

the present derivation; it details the procedure to apply in order to inform298

macroscopic models. We show how the equation derived for the local relative299

velocity can be simplified to various degrees to develop intermediate models300

between the local two-fluid and a local drift-flux model. We also illustrate301

how to apply the up-scaling methodology on two important mechanisms for302

industrial applications, namely the void fraction dispersion and the macro-303

scopic pressure drop. Finally, section 8 draws the main conclusions of this304

work and presents prospects in terms of validation and model developments305

based on this up-scaling methodology.306
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2. Scope and objectives307

This section presents the up-scaling strategy as illustrated on figure 1.308

Two important aspects define each system: (i) the consideration of the fluid309

system and (ii) the temporal and spatial scale examined. From these ele-310

ments, the local instantaneous description of the two-fluid system is given311

by governing balance equations and interfacial jump conditions. Statistical312

averaging generates the local two-fluid system from which the local drift-flux313

model can be obtained by reduction of the number of variables (via algebraic314

expressions for the non-equilibria between phases). Lastly, the macroscopic315

scale is achieved by volume-averaging the local drift-flux model.

Local
instantaneous Statistical

Volume-averaged

T
w

o
-

fl
u

id

Direct
method:
χ,ul,uv,
pl, pv, hl, hv

Two-fluid:
α,ull,u

v
v,

pll, p
v
v, h

l

l, h
v

v

Closure :
Mk,Q

i
k, . . .

D
ri

ft
-

fl
u

x

Local drift:
c,um, pm, hm

Closure :
ur, pr, hr, . . .

Volume-
averaged drift:
cM ,uM , pM , hM

Closure :
uD, . . .

Macroscopic

Figure 1: Up-scaling description with the scales considered, the fluid-system and the oper-
ations connecting them. Definitions of scales: local instantaneous, statistical and macro-
scopic (both statistical and volume-averaged). Consideration of the two-phase system:
two-fluid or drift-flux. Connecting mechanisms: statistical averaging (dotted horizontal
arrow), volume averaging (continuous horizontal arrow), model reduction (dashed vertical
arrow).

316

This derivation aims to fully describe the theoretical content of the macro-317

scopic models and express it in terms of local instantaneous flow description.318

Then, we will analyse this content with reference simulations.319
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Obviously, developping closure relations from numerical simulations per-320

formed by the two-fluid model requires careful validation of it; in particular,321

it is essential that the model, considered as a reference, be capable of accurate322

predictions of the local mechanisms involved such as cross-flow void fraction323

distribution. Indeed, in this up-scaling analysis of numerical simulations, the324

closures’ derivation relies on the averaging of microscopic correlations (of ve-325

locities, etc.) and forces. Besides, because of the paramount importance of326

the interfacial transfers at the local scale and their influence on the determi-327

nation of the local void fraction distribution, our efforts in the derivation of328

the two-fluid model are attentive to the recent progress in the modelling of329

these transfers and of the corresponding pressure non-equilibrium. We be-330

lieve that these elements are essential to correctly model the mechanisms in331

the cross-flow direction and should be considered properly during the model332

reduction and homogenisation.333

In other words, we need to have a reliable two-fluid model to produce334

reference data that captures relevant local physical phenomena. In order335

to take the maximum advantage of the local model capabilities, it is neces-336

sary to have explicit relations between the various scales considered, even if337

the macroscopic system obtained is under-determined and will require addi-338

tional closures; it will then be the specific purpose of dedicated CFD studies339

to propose and assess these closure relations, with the support of experimen-340

tal data. The basic idea behind our approach is to take advantage of the341

resolution of local fields provided by the two-fluid model to inform averaged342

models by the derivation of closure relations either for a local drift-flux model343

or for a spatially-averaged macroscopic description.344

Thus, the complex requirements to transform the under-determined sys-345

tem into a determined one, called closure relations, can be interpreted in346

terms of local quantities (as shall be seen in section 6) and therefore, it will347

be easier to model them in two parts (one from the closure of the two-fluid348

model itself and the other provided by the variations of the local two-fluid349

variables), separated in between by the two-fluid numerical resolution (see350

Figure 1). This intermediate resolution requires a validated model but en-351

sures the consistency of the solution with basic principles, whilst granting ac-352

cess to secondary quantities (i. e., additional variables that are not the main353

unknown transported and solved in the system) in a more consistent and ac-354

curate way. Some of these secondary variables are useful to provide reference355

information to be integrated into a macroscopic model. Indeed, we shall see356

that, in the process, it will be necessary to access the local variations of com-357
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plex quantities (such as interfacial transfers for instance), which cannot be358

observed directly on experiments. This new approach, usually referred to as359

up-scaling methodology, relies on so-called numerical experiments. It has re-360

cently become a plausible alternative to the historical model derivation with361

the increasing capabilities of Computational Multi-Fluid Dynamics (CMFD)362

because numerical solutions to the local two-fluid model can be produced in363

relevant conditions and for a broad range of physical conditions.364

Finally, our intent is to progress in modelling the evolution of macroscopic365

variables in two- or three-dimensions. The purpose of the macroscopic model366

is to comprehend the effect of the geometry on the complex macroscopic flow367

reorganisation. In this way, this model aims at applying the essence of the368

two-fluid model to larger geometries to extend its applications. Macroscopic369

models are also perfectly suitable for parametric studies in design or safety370

analyses to reduce the computational cost. By clarifying the intermediate371

steps and assumptions, we expect to provide a better understanding of the372

complex evolution of the relative velocity and void-fraction distribution in373

the three-dimensional case.374

3. Local instantaneous governing equations375

This section introduces the local variables, the conservation equations and
the interfacial jump conditions. The reader familiar with this description
can go to section 4. We consider a liquid-vapour flow, with phase-change
occurring at discontinuous interfaces. The formulation relies on the classical
basis for Direct Numerical Simulations (DNS), namely the one-fluid Navier-
Stokes equations [37, 38], given by

∂χv
∂t

+ ui · ∇χv = 0, (1a)

∂ρ

∂t
+∇ · (ρu) = 0, (1b)

∂ρu

∂t
+∇ · (ρu u) = −∇p+ ρg +Du + σκnvδ

i, (1c)

∂ρ h

∂t
+∇ · (ρuh) = ∇ · (λ∇T ) +

∂p

∂t
+∇ · (pu)−

[[
p
ρ

]]
ṁvδ

i (1d)

where each of the one-fluid variables is defined as a mixture of phase vari-
ables: ψ =

∑
k χkψk (ψ can be u, p, h, T , ρ, µ or λ, respectively the velocity,
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pressure, enthalpy, temperature, density, dynamic viscosity or conductiv-
ity) and the notation [[ ]] refers to the jump through the interface defined as
[[1/ρ]] = 1/ρl − 1/ρv. The main variables of the local description are illus-
trated on figure 2. The subscript k refers to the phase (either l for liquid or
v for vapour). Physical properties are assumed constant within each phase.
Both phases are considered incompressible. g is the gravity vector, σ is the
surface tension. δi is a three-dimensional Dirac impulse at the interface i.
κ = −∇s · nv is twice the mean curvature (usually negative for bubbles)
defined from the surface divergence (∇s·) of the unit normal to the interface
nv, oriented towards the liquid. The normal vector is related to the phase
indicator function χv by ∇χv = −nvδ

i where χv is equal to one in the vapour
and zero in the liquid. This phase indicator function is transported in equa-
tion (1a) by the interfacial velocity ui defined from the phase velocities uk
at the interface vicinity as:

ui = uk −
ṁk

ρk
nk (2)

κ = − 2
r

Interface δi : ṁ, κ

vapour
χv = 1,uv, pv, hv

liquid
χl = 1,ul, pl, hl

nv

Figure 2: Definition of local variables.

376

This equation is valid on both sides of the interface thanks to the jump377

conditions at the interface [14, 39, 40, 41, 42].378

The last term in the RHS of equation (1c) ensures that the momentum
equation implicitly contains the correct stress boundary condition at the
interface. The diffusion term Du is defined by

Du = ∇ ·
[
µ
(
∇†u + 2ṁv [[1/ρ]] nv nvδ

i
)]

(3)
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where ∇† = ∇ + ∇T is the sum of the gradient and its transpose. As we379

consider incompressible phases with constant viscosity, the diffusive effect of380

∇Tu is limited to an interfacial contribution. The last term of equation (3)381

finds its origin in the velocity jump due to phase change. It has to be con-382

sidered accurately to avoid the appearance of non-physical pressures at the383

interface.384

Similarly, the last term in the energy balance (1d) appears to compensate
for the interfacial dirac generated by ∇ · (pu) (this divergence includes a
dirac delta function because p and u are two Heaviside functions). Energy
production by viscous and gravitational forces is neglected in the balance of
enthalpy by comparison to heat transfers. The interfacial phase-change rate
ṁk is related to velocities at the interface by:

ṁk = ρk(u
i
k − ui) · nik (4)

The equation system (1) and the subsequent definitions describe the local385

and instantaneous evolution of the two-phase system. It allows to determine386

the evolution of the vapour phase indicator function χv, the interfacial phase-387

change rate ṁv, and the one-fluid velocity u, pressure p and enthalpy h. Its388

direct resolution requires very fine spatial and temporal discretisations to389

enable the resolution of the broad range of scales involved. In order to have390

a determined system, it is important to provide a relation to determine the391

temperature from the enthalpy and pressure (T = T (h, p)) and a constraint392

to the interfacial temperature T i (for instance, equality to the saturation393

temperature T i = T sat reflecting local thermodynamic equilibrium of chemi-394

cal potential). It enables the determination of the phase-change rate at the395

interface from the jump in heat flux: [[λ∇T ]]·nv = ṁv [[hsat]]. This interfacial396

jump is naturally included in the one-fluid formulation of equation (1d) ([37,397

Eq. (39)] or [41]).398

4. Statistical averaging: the RANS Euler-Euler two-fluid model399

Based on the local description of conservation equations for each phase400

and jump conditions at the interface [37] summarised in the previous section,401

two-fluid models can be established by application of a statistical averaging402

operator. An intense and thorough work on closure development is then re-403

quired to achieve a set of equations that can be used in industrial applications404

[2, 3]. In the following section (section 4.1), a focus on momentum conserva-405

tion in each phase is presented. Then, section 4.2 introduces an alternative406
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(but equivalent) description of the two-fluid model based on relative and407

mixture velocities. This formulation clearly shows the connections between408

the two-fluid model and the drift-flux model derived in section 5.2. In sec-409

tion 4.4, connections between forces (or more generally closure relations) and410

the relative velocity are discussed in view of modelling possibilities. Lastly,411

the global two-fluid system is completed in section 4.5 by the mass and energy412

conservation equations.413

4.1. Statistical average of phase momentum equations414

For any quantity ψ, we define a statistical average ψ with the classical
properties of a Reynolds averaging operator. Phase-averaging is obtained

by weighting this average by the phase-indicator function ψk
k

= χkψk/χk.
The average of the vapour indicator function is called the void fraction
α = αv = χv. Then, the decomposition into time-averaged and fluctuating
quantities is performed with respect to the phase-averaging operator; for in-
stance, the velocity uk is split into mean and fluctuating parts uk = uk

k + u′k.
Applying the statistical average to the Navier-Stokes equations written sep-
arately for each phase and using the jump conditions at the interface, one
gets [2, 36]

D
(
αkρkuk

k
)

Dt
= −∇

[
αk
(
pk
k − p̃l

)]
+ αkρkg +∇ ·

(
T vk − αkρku′ku′k

k
)

+ Mk

with k ∈ [l, v] and Ml + Mv = σκ∇χv (5)

where D
(
αkρkuk

k
)
/Dt = ∂

(
αkρkuk

k
)
/∂t + ∇ ·

(
αkρkuk

kuk
k
)

is the ma-
terial or substantial derivative. The interfacial transfer Mk is defined by
Mk = (ṁkuknk + pkI− µk∇†uk) · ∇χk with I the identity tensor. Indices l
and v are respectively related to liquid and gas phases. The sum of hydro-
static and dynamic pressures p is defined relatively to an arbitrary reference
pressure p̃l (constant). It is worth mentioning that the condition of adher-
ence applied to the local instantaneous velocity fields (classical in continuum
mechanics) remains verified after the statistical average and leads to a nil
phase-averaged velocity at the wall for both phases. T vk is the mean viscous

stress defined as T vk = χkµk∇†uk = αkτk
k with τk = µk∇†uk. However,

for accuracy and completeness, it is important to stress that τk
k cannot

be expressed fully in terms of averaged variables (αk and ukk) due to the
non-commutativity of the phase-averaging operator with space derivatives
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(∇uk
k 6= ∇ukk). As a consequence, we have :

T vk = χkµk∇†uk = αkτk
k = αkµk∇†ukk + µk

(
ukk∇αk − uk∇χk

)†
(6)

This expression reveals that the closed equivalent to the mean viscous stress415

τ̆k = αkµk∇†ukk must be completed by the symmetric viscous effect of the416

cross correlation
(
ukk∇αk − uk∇χk

)†
between fluctuations at the interface of417

phase velocities and interface orientation. This closure issue is overlooked418

in most descriptions of the two-fluid model [1, 2, 3] and it will be neglected419

without physical justification here; in theory, a magnitude assessment or an420

appropriate modelling of this term would be required. T tk = αkρku′ku
′
k

k
is the421

turbulent stress in phase k. Mm = σκ∇χv is the mixture momentum source422

due to surface tension effects [2, p. 99]. In the terminology of this article, we423

distinguish the interfacial transfer Mk that goes from the interface to phase424

k, from the inter-phase transfer MRANS
k (defined below by equation (8)) that425

goes from the other phase into phase k.426

The pressure term is classically written as a pressure gradient whereas the427

remaining part (pk
k − p̃l)∇αk is introduced into the inter-phase momentum428

transfer MRANS
k along with the interfacial transfer Mk. The pressure gra-429

dient considered is relative to the sub-part pSPl
l

of the true liquid pressure,430

considered in the absence of the perturbation induced by the bubbles pbl
l
[36].431

432

Then, with the pressure decomposition pll = pSPl
l

+ pbl
l
, the averaged

Navier-Stokes equations are written in the Euler-Euler RANS formalism as

∂αvρvuv
v

∂t
+∇ · (αvρvuv

vuv
v) = −αv∇pSPl

l −∇ ·
(
T tv − T vv

)
+ αvρvg + MRANS

v

(7a)

∂αlρlul
l

∂t
+∇ ·

(
αlρlul

lul
l
)

= −αl∇pSPl
l −∇ ·

(
T tl − T vl

)
+ αlρlg + MRANS

l

(7b)

MRANS
l = −MRANS

v + σκ∇χv −∇
[
αv
(
pvv − pll

)]
−∇pbl

l
(7c)

where relations between interfacial Mk and inter-phase MRANS
k transfers are

given by du Cluzeau et al. [36] as:

MRANS
v = Mv − αv∇pbl

l −
(
pll − p̃l

)
∇αv −∇

[
αv
(
pvv − pll

)]
(8a)

MRANS
l = Ml − αl∇pbl

l
+
(
pll − p̃l

)
∇αv (8b)
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Equations (8a) and (8b) define the inter-phase transfers MRANS
k from the433

interfacial transfers Mk and the pressure contributions. Because interfaces434

accumulate momentum in the mixture momentum source Mm by means of435

surface tension, these transfers are different. The inter-phase transfers satisfy436

by definition MRANS
l +MRANS

v = 0, whereas for the interfacial transfers we437

have : Ml + Mv = Mm.438

Hydrodynamic constitutive relations for interfacial transfer are discussed
for instance in [2, Chap. 12]. For dispersed two-phase flows, the inter-phase
momentum transfer on the gas phase MRANS

v is classically modelled as the
sum of various forces (drag, lift, added mass, turbulent dispersion and wall
lubrication forces). Depending on the mechanisms considered as important,
other forces can be considered such as the Basset force, the virtual mass, a
bubble collision force, the bubble dispersion force [43], the wall lubrication
force [44, 45], etc. For more complex flow regimes such as churn-turbulent
flows, extensions are available mostly for the drag force [2, Chap. 12, p.
345]. For separate phases as in annular flows, models for interfacial friction
are usually considered. In the following of this section, the discussion is
limited to the dispersed bubbly-flow regime. In du Cluzeau et al. [36], the
authors recently suggested deep modifications to this simplified viewpoint
inherited from the particle approach. Classical closures can be used as an
example to illustrate the methodology but in the following, we will also em-
phasise the consequences of these differences and express the potential gain
in modelling capacities that can derive from a richer local description. In
the standard approach, the simplifications provided by the assumption of a
negligible mixture momentum (Mm = 0) and by the pressure equilibrium

hypothesis (p = pll = pvv = pSPl
l

and pbl
l

= 0) lead to the following simplified
transfer

MRANS
v = −MRANS

l = MD + MAM + ML + MTD (9)

where MD, MAM, ML and MTD refer to drag, added-mass, lift and turbulent439

dispersion respectively. Closures can be provided by classical correlations as440

discussed in Ishii and Hibiki [2] or by Mimouni et al. [46], Neptune CFD441

Development Team [47].442

For a more complete description of the local physical mechanisms, the
momentum transfer can be expressed as a series of forces as proposed in
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du Cluzeau et al. [36]:

MRANS
v = MD + MAM + MTD + Mextra + ML

< + ML
∇P + MLD, (10a)

MRANS
l = −MD −MAM −MTD −Mextra −ML

< +
αl
αv

(
ML
∇P + MLD

)
.

(10b)

ML
< and ML

∇P are lift induced effects produced respectively by the viscous443

stress and the pressure. The pressure part ML
∇P does not apply symmetri-444

cally to both phases due to surface tension. In addition to classical drag,445

added-mass and turbulent dispersion forces, two supplementary forces are446

considered. The first one Mextra = ∇·
(
αvρvu′vu′v

v)
is related to the Reynolds447

stresses of the dispersed phase. The second one MLD is a dispersion force448

introduced and modelled in du Cluzeau et al. [48]. In practice in the clas-449

sical Euler-Euler framework, the hypothesis MRANS
v = −MRANS

l is always450

assumed and the impact of the laminar dispersion MLD and of the additional451

term Mextra related to velocity fluctuations in the gas phase is neglected.452

It is important to stress that MRANS
v and MRANS

l are not the total453

interfacial forces applied to each phase, but only the momentum transferred454

from the other phase. Thus, interfacial tension and pressure differences are455

excluded from it. Concerning the effect of surface tension, an important point456

demonstrated in du Cluzeau et al. [36] is that the local imbalance of interfacial457

forces do not vanish locally, even after statistical averaging. This is because458

of interfaces’ deformations (even for small almost spherical bubbles) and their459

consequences on the pressure fields are not randomly distributed. In addition460

to inter-phase transfers, a careful consideration of the different pressures461

involved in the system is important for the subsequent developments. It462

will be important to connect them properly to the mixture pressure before463

the second up-scaling step involving space-averaging. Consequently, these464

considerations have an impact on the connections between the local two-fluid465

solution and the exact definitions of diffusive terms in the final homogenised466

description. Equations (7a) and (7b) are written in the Euler-Euler RANS467

two-fluid one pressure formalism (with a liquid pressure gradient also in the468

gas momentum equation). In the RANS Euler-Euler approach, the liquid469

pressure in the absence of bubbles pSPl
l

is included in the resolution of the470

system as a main variable whereas the pressure inside the bubbles pvv and471

the liquid pressure induced by bubbles through surface tension effects have472

to be closed. The interpretation of the resolved pressure in a classical RANS473
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Euler-Euler calculation is thus tricky. The part of pressure due to surface474

tension pbl
l

has an impact on the balance equation of forces (mainly in the475

lift force). Thus, this part which is not directly solved is considered through476

interfacial forces.477

Here, we begin to see that an improved or richer two-fluid model involving478

several (and different) pressures (for instance by means of algebraic closures479

as initiated in du Cluzeau et al. [36] and du Cluzeau et al. [48]) will lead to a480

more complex mixture pressure gradient; in turn, this will create additional481

diffusion in the macroscopic mixture model. It will not only be due to the482

consideration of the mixture momentum Mm but it will be strengthened by483

the pressure imbalance pll − pvv and by the surface-tension-induced pressure484

pbl
l
. We will see that the effect of these closures remains even after considering485

the local mixture model (section 5) and its homogenised version (section 6).486

4.2. From phase velocities to mixture and relative velocities487

The relative velocity, mixture velocity and mixture momentum are defined
as

ur = uvv − ull (11a)

um = cuvv + (1− c)ull (11b)

ρmum = αρvu
v
v + (1− α)ρlu

l
l (11c)

where ρm = αρv + (1− α)ρl is the mixture density and c is the vapour mass
fraction. um is the centre of mass velocity called barycentric velocity. c is
related to the void fraction (noted α instead of αv to lighten the notations)
by the relations

cρm = αρv or c =
αρv

αρv + (1− α)ρl
(12a)

(1− c)ρm = (1− α)ρl or 1− c =
(1− α)ρl

αρv + (1− α)ρl
(12b)

and the mixture density can also be expressed as:

ρm =
ρlρv

(1− c)ρv + cρl
(12c)
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Also, phase velocities can be derived from the mixture and relative velocities
by:

uvv = um + (1− c)ur (12d)

ull = um − cur (12e)

Then, the mixture momentum ρmum obtained from the sum of momen-
tum equations (7a) and (7b) is driven by [see also 2, Eq. (5.42) p. 103 for
more information]

∂ρmum
∂t

+∇ · (ρmumum) = −∇pm + ρmg (13)

−∇ ·
(
cρmu′vu′v

v
+ (1− c)ρmu′lu

′
l

l

︸ ︷︷ ︸
T t: Turbulent

−T vl − T vv︸ ︷︷ ︸
−T v: Viscous

−c(1− c)ρmurur︸ ︷︷ ︸
T dr: Diffusion

)
+ Mm

where equation (7c) has been used to reduce the sum of interfacial momen-488

tum transfers Mk to a surface tension force and a pressure imbalance. This489

pressure imbalance naturally disappears from the mixture momentum be-490

cause the mixture pressure is consistently defined as pm = (1− α)pll + αpvv491

with pll = pSPl
l
+ pbl

l
. All the terms responsible for the imbalance in equa-492

tion (7c) are recovered in this budget either in the mixture pressure gradient493

∇pm or in the mixture momentum source term Mm. The respective effects494

of ∇pbl
l

and Mm are unknown in practical applications and it will be the495

concern of future works to assess their role based on two-fluid simulations to496

know if there are conditions where they can cancel each other out. Similarly497

to the diffusion equation (19) (see section 4.3), the diffusion term connected498

to the relative velocity T dr arises in the momentum equation due to the use499

of the mixture velocity to express the convective term.500

Furthermore, the combination of equations (7a) and (7b) can also lead to
a second equation, this time driving the behaviour of the relative velocity ur

∂ur
∂t

+ uvv · ∇uvv − ull · ∇ull +

(
uvv
αvρv

+
ull
αlρl

)
Γv =

(
1

ρl
− 1

ρv

)
∇pm

+
1

(1− c)ρm
∇
(
αlρlu′lu

′
l

l − αlτll
)
− 1

cρm
∇
(
αvρvu′vu′v

v − αvτvv
)

+
1

c(1− c)ρm
MRANS

v − 1

(1− c)ρm
Mm +

1

(1− c)ρm
∇
(
αvpr + pbl

l
)

(14)
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where mass conservation in each phase (18b) has been used to write the left501

hand side (LHS) of equation (14) in a non-conservative way. Γv = −ṁvδi502

is the interfacial mass flux due to evaporation (Γv > 0 in evaporation, see503

equation (17)). The effect of surface tension is evidenced by the mixture504

momentum source Mm but also through the pressure imbalance pr = pvv − pll.505

Lastly, pbl
l
traduces the effect of bubble obstacles to the flow, thus generating506

a dedicated pressure gradient force.507

Phase velocities in the LHS of equation (14) are expressed in terms of
relative and mixture velocities (ur and um) using equations (12d) and (12e).
After simplifications, one gets the relation

uvv ·∇uvv−ull ·∇ull = um ·∇ur+ur ·
(
∇um + (1− 2c)∇ur

)
−(ur · ∇c) ur (15)

that can be injected into the previous PDE for the relative velocity (equa-
tion (14)) to get:

∂ur
∂t

+ ur ·
(
∇um + (1− 2c)∇ur

)
+ um · ∇ur − (ur · ∇c) ur +

um + (1− 2c)ur
c(1− c)ρm

Γv =

(
1

ρl
− 1

ρv

)
∇pm +

1

(1− c)ρm
∇ ·
(
T tl − T vl

)
− 1

cρm
∇ ·
(
T tv − T vv

)

+
1

c(1− c)ρm
MRANS

v − 1

(1− c)ρm
Mm +

1

(1− c)ρm
∇
(
αvpr + pbl

l
)

(16)

Independently of the system of equations considered, the role of interfacial508

transfers is not fully eliminated. They have disappeared from the mixture509

momentum equation (13) as only the mixture is considered, but their effect510

has to be accounted for in the closure of the relative velocity ur. These511

closures are of paramount importance to determine the distribution of void512

fraction, in particular in the plane orthogonal to the flow; in turn, this dis-513

tribution will play a key role during the modelling of dispersive terms at the514

macroscopic scale, in the homogeneous description (section 6).515

4.3. Total and vapour mass conservations516

The two-phase flow can either be described for each phase separately, or517

alternatively, one can consider the conservation of total mass and vapour518

mass separately. The latter option is equivalent but it is in closer agree-519

ment with the description of mixture velocity and momentum introduced in520

section 4.2.521
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Based on the local equations for mass and interfacial evolution (equa-
tions (1a) and (1b)), application of the statistical average leads to mass
conservation in each phase:

∂αkρk
∂t

+∇ ·
(
αkρku

k
k

)
= Γk = − ṁvnv · nkδi with k ∈ [l, v] (17)

Summing equation (17) over both phases leads to the total mass conserva-
tion while this equation written for the vapour phase governs vapour mass
conservation. Expressed in terms of mixture variables (with the help of rela-
tions (12a) and (12d)), conservation of total and vapour mass are then given
by:

∂ρm
∂t

+∇ · (ρmum) = 0 (18a)

∂ρmc

∂t
+∇ ·

(
ρmcum + ρmc(1− c)ur

)
= Γv (18b)

Equation (18b) is also known as the void propagation equation widely used
by Wallis [11]. It expresses the change in vapour mass fraction c and involves
a diffusion process with a diffusion velocity uv→m = uvv − um = (1 − c)ur
defined as the relative velocity of the vapour phase with respect to the centre
of mass of the mixture [2, pp. 87-88]. Using the relation uv→m = (1− c)ur,
diffusion due to the velocity difference is exhibited:

∂ρmc

∂t
+∇ · (ρmcum) = −∇ · (ρmcuv→m) + Γv (19)

The origin of the apparent diffusion of vapour is related to the convection
being based on the mixture centre of mass velocity. Alternately, if the velocity
uvv of the vapour centre of mass is rebuilt from equation (12d), a simple
convection equation is recovered:

∂ρmc

∂t
+∇ · (ρmcuvv) = Γv (20)

Lastly, using the total mass conservation (18a), vapour mass conservation
can also be expressed as:

∂c

∂t
+ um∇c = − 1

ρm
∇ ·
(
ρmc(1− c)ur

)
+ Γv (21)
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This equation reveals that phase separation is created by the relative velocity.522

It plays a key role in the cross-flow distribution of void fraction. Depending523

on the variations of this component of the relative velocity, the divergence524

in equation (21) can have very different and complex implications, some of525

which are discussed in the following section.526

4.4. Discussions on the relative velocity and phase separation527

The relative velocity is a central issue to the modelling of complex two-528

phase flows. It characterises the intensity of the mechanical coupling between529

the phases. It affects the void fraction level; it can also be responsible for530

phase separation or mixing depending on the intensity of the interfacial trans-531

fers involved. The governing equation for the relative velocity (equation (16))532

is very complex, and it involves several kinds of mechanisms.533

In the direction of gravity, relative velocity is classically considered; it534

results from the drag force in opposition to buoyancy. However, relative535

velocity also exists in the plane orthogonal to gravity for establishing two-536

phase flows; it is then due to lift and dispersion forces (among others). In537

the following, we briefly discuss the impact of the relative velocity and inter-538

facial forces in different directions before reaching the final simplified set of539

equations describing the local time-averaged two-phase mixture.540

4.4.1. Drag and buoyancy541

In the direction of the flow and of gravity, two-phase equilibrium is mostly
governed by the competition between drag and buoyancy forces. In estab-
lished flows and at steady-state, streamwise gradients disappear from equa-
tion (16) except for the pressure contribution which can be split into dynamic

(p?l
l
) and hydrostatic contributions

pll = pSPl
l
+ pbl

l
= p?l

l
+ ρmg · x (22)

where x is the local position vector considered and ρm is the local mixture
density. For simplicity, let us consider an established pipe flow in cylindrical
coordinates (r, z) for the radial and streamwise directions respectively. For
an established flow, the liquid pressure gradient λ = ∂pll/∂z is independent
of the radial position r, so that we have

∂pll
∂z

= λ =
∂p?l

l

∂z
(r) + ρm(r)gz (23)
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where gz is the axial component of gravity. Then, the dynamic part p?l
l

evolves as

p?l
l
(r, z) = λz − gzzρm(r) = λz − gzz(ρl + ∆ρα(r)) (24)

if we also assume constant phase densities such that the mixture density ρm542

is simply expressed as ρm = ρl + α(r)∆ρ, with ∆ρ = ρl − ρv. This relation543

demonstrates the necessary consistency between p?l
l

and α(r) for established544

flows. Consequently, a lateral pressure gradient ∂p?l
l
/∂r arises from void545

fraction inhomogeneities. It is perfectly balanced by the void fraction profile546

so that the radial pressure gradient ∂pSPl
l
/∂r = 0. Note that this relation547

strongly couples the main stream direction with cross-flow directions.548

The pressure gradient is the only gradient contribution that remains in
the streamwise direction. From the definition of the mixture pressure, it is
expressed as:

∇pm = ∇pSPl
l
+∇

(
(1− α)pbl

l
)

+ α∇pr + pr∇α (25)

For established flows, the gradients vanish except for the hydrostatic contri-

bution which is mostly carried by pSPl
l
. The streamwise contribution then

reduces to ∂pSPl
l
/∂z alone. As a consequence, equation (16) simply becomes

for the streamwise component of established flows:

0 =

(
1

ρl
− 1

ρv

)
∂pSPl

l

∂z
+

(
1

αvρv
+

1

αlρl

)
MRANS

vz − 1

αlρl
Mmz (26)

Neglecting surface tension effects (Mmz = 0) and the liquid pressure induced

by the bubbles (pbl
l
= 0), and using equation (23), this relation simplifies fur-

ther to show the classical equilibrium between interfacial forces (then reduced
only to the drag force in this direction, MRANS

vz = MD
z ) and buoyancy:

(
1

αvρv
+

1

αlρl

)
MRANS

vz = −
(

1

ρl
− 1

ρv

)(
ρmgz +

∂p?l
l

∂z

)
(27)

Classically, the drag force is related to the square of the relative velocity
by

MD = − 3

4db
αvCDρl|ur|ur (28)
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where CD is the drag coefficient and db the bubble mean diameter. Under
those assumptions, the balance (27) can be exploited to derive the effective
drag coefficient in turbulent flows from the knowledge of the relative velocity:

3

4db
CDρl|ur|urz = αl (ρl − ρv)

(
gz +

1

ρm

∂p?l
l

∂z

)
= αl (ρl − ρv)

λ

ρm
(29)

Alternately, it provides a closure relation for the relative velocity from the549

knowledge of the drag coefficient. This path is a classical option to derive550

the relative velocity in the drift flux closure. Usually, the dynamic pressure551

contribution (p?l
l
) is neglected in front of the hydrostatic gradient due to552

gravity.553

4.4.2. Lateral distribution of void fraction554

In order to provide an appropriate description of the system, we assume
in this part of the analysis that ur is closed by a relation of the form

ur = KDeg +KLeω +KDispe∇α (30)

where KD, KL and KDisp are modelled by closure relations whose expressions555

depend on the formulation of the drag, lift and dispersion forces respectively,556

and eg, eω, e∇α are respectively directions provided by the gravity, the curl557

of the liquid velocity ωl = ∇∧ull and the void-fraction gradient. The curl of558

the liquid velocity ull still needs to be related to the variables of the system559

considered (in particular when using the mixture velocity as a main variable),560

but for moderate void fractions and relative velocities, it could be assimilated561

to the curl ∇∧ um by a rather strong simplification of relation (12e).562

Using a closure for the relative velocity ur as equation (30), the vapour
mass conservation equation (21) becomes:

∂c

∂t
+ um∇c = − 1

ρm
∇ ·
[
ρmc(1− c)

(
KDeg +KLeω +KDispe∇α

)]
(31)

The drag contribution KDeg is responsible for stratification in horizontal563

or inclined flows. The lift contribution will be particularly important in564

high-shear regions. Depending on the sign of the lift force, which in turns565

depends on the bubbles’ deformability and Weber number, it can act in op-566

posite directions, either creating dispersion of void fraction or contributing567

to the accumulation of bubbles. Lastly, the term KDispe∇α arises from both568
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laminar and turbulent dispersion forces; it contributes to the homogenisa-569

tion of the void fraction. With all these complicated mechanisms at play,570

equation (31) governs the vapour distribution in the flow. These competing571

effects are in particular determinant in the detection of a transition from572

wall- to core-peaked flows, which is a key ingredient to the proper modelling573

of CHF prediction. The accurate modelling of equation (31) is a central ele-574

ment that determines the capabilities of a mixture model, in particular when575

concerns arise with respect to fine predictions of the void fraction spread-576

ing into the cross-flow plane. It is really challenging, yet essential to these577

kinds of approaches, to be able to provide a closure to equation (30) valid578

in most configurations; indeed, this limit is a key-point that determines the579

applicability range of the global model.580

4.5. Summary of the (complete) two-fluid model581

In order to complete the local statistical description of the system, it is582

necessary to provide conservation equations for the energy in each phase.583

These equations are easily derived by application of the statistical average to584

the local instantaneous phase-equations contained in the equation system (1).585

As it is not the main concern of the present article and it can be easily found586

in the literature [2, 3], we directly give the complete system encompassing587

the momentum equations (7a) and (7b).588

Two alternatives are possible either considering conservation in each phase,
or regarding total and vapour balances. The systems obtained are sum-
marised as follows. If each phase is considered, statistically-averaged equa-
tions for mass, momentum and energy writes for k ∈ [l, v]

∂αkρk
∂t

+∇ ·
(
αkρku

k
k

)
= Γk, (32a)

∂αkρku
k
k

∂t
+∇ ·

(
αkρku

k
ku

k
k

)
= −αk∇pSPl

l
+∇ ·

(
T vk − T tk

)
+ αkρkg + MRANS

k ,

(32b)

∂αkρkh
k

k

∂t
+∇ ·

(
αkρku

k
kh

k

k

)
=
∂αkpk

k

∂t
+∇ ·

(
αkλk∇T kk + Qc

k −Qt
k

)
+ Qi

k,

(32c)

where Qt
k = αkρku′kh

′
k

k
is the turbulent heat flux and Qi

k is the interfacial en-
ergy transfer (satisfying the interfacial jump condition Qi

l + Qi
v = 0) defined

by Qi
k = [ṁkhknk − λk∇Tk] · ∇χk. The correlation heat flux Qc

k arises from
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the cross-correlation between the interfacial temperature and the interface
orientation nk:

Qc
k = λk

(
T
k

k∇αk − Tk∇χk
)

(33)

Similarly to the viscous diffusion in equation (6), this term is not spelled out589

in classical derivations of two-fluid models; it is therefore neglected without590

further justification. We can observe from this expression that even when591

the interfacial temperature is assumed constant and equal to the saturation592

temperature, the cross-correlation remains different from zero, but it is then593

fully expressed in terms of main variables: Qc
k = λk

(
T
k

k − T i
)
∇αk. A mag-594

nitude assessment on practical cases would be interesting to determine the595

influence of this contribution.596

Provided that the equation system (32) is supplemented with closure597

relations for Γv, T tk , T vk , MRANS
k , and for the fluxes Qc

k, Qt
k, Qi

k, and598

also with the necessary relations between the different pressures consid-599

ered, it can be solved to describe the evolution of the two-phase system600

(αv,u
l
l,u

v
v, p

SP
l

l
, h

l

l, h
v

v).601

The alternative system considering the mixture density ρm, the vapour
mass concentration c, the mixture velocity um and the relative velocity ur is
obtained from equations (18a), (19), (13) and (16):

∂ρm
∂t

+∇ · (ρmum) = 0, (34a)

∂ρmc

∂t
+∇ · (ρmcum) = −∇ · (ρmcuv→m) + Γv, (34b)

∂ρmum
∂t

+∇ · (ρmumum) = −∇pm + ρmg −∇ ·
(
T t − T v + T dr

)
+ Mm

(34c)

∂ur
∂t

+ ur ·
(
∇um + (1− 2c)∇ur

)
+ um · ∇ur − (ur · ∇c) ur +

um + (1− 2c)ur
c(1− c)ρm

Γv =

(
1

ρl
− 1

ρv

)
∇pm +

1

(1− c)ρm
∇ ·
(
T tl − T vl

)
− 1

cρm
∇ ·
(
T tv − T vv

)

+
1

c(1− c)ρm
MRANS

v − 1

(1− c)ρm
Mm +

1

(1− c)ρm
∇
(
αvpr + pbl

l
)
. (34d)

For the energy, this system can be completed by any suitable combination602

of two equations that can be phase enthalpy conservations, or the governing603

equation for the mixture enthalpy, or one for the enthalpy difference, or604
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a simplifying assumption such as the equality of a phase enthalpy to the605

saturation value. These aspects are not discussed in more detail here as they606

are not the main focus of the present contribution.607

In the following, we first proceed to a model reduction with the elimina-608

tion of the transport equation for the relative velocity; then, a macroscopic609

model is derived by volume averaging.610

5. Model reduction for the local time-averaged description611

This section explains the simplifications applied to the two-fluid model in612

order to obtain the mixture model. This reduction of the model comes with613

the need for an additional closure relation for the relative velocity.614

5.1. Several choices for systems of time-averaged equations at the local scale615

In this section, we focus on the system dynamics, thermal simplifications616

being out of the scope of this article. Using a set of equations to govern the617

mixture momentum and the relative velocity as in the equation system (34)618

is formally equivalent to the usage of equations governing phase-variables as619

in the equation system (32). When mixture momentum and relative velocity620

equations are completed by an equation for the total mass conservation (as621

equation (34a)) and one for the vapour mass conservation (equation (34b))622

for instance, the resulting system of equations can be solved provided that623

closure relations for the Reynolds stresses (u′lu
′
l

l
and u′vu′v

v
), the viscous con-624

tributions (T vl and T vv ), the interfacial transfers (MRANS
v ) and the surface625

tension effects (Mm, pr and pbl
l
) are given. In this article, surface tension626

effects are defined in the broad sense as they also include pressure variations627

induced by surface tension or by the presence of inclusions. This approach628

leads to a set of 6 PDEs (accounting for an energy equation for each phase)629

that are classically used to solve the two-fluid model. It is theoretically equiv-630

alent to the resolution of two equations of mass and two for the momentum of631

each phase (plus two additional equations for the phase energies in the com-632

plete case). The two approaches simply lead to different numerical strategies633

that can be more or less efficient depending on the intrinsic coupling between634

the equations into the system.635

Instead of this complete and demanding approach, one can decide to re-636

duce the size of the system by considering only the PDE for the mixture637

momentum (13). It is then necessary to provide an appropriate closure for638
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the relative velocity in replacement of equation (16). One of the main ad-639

vantages of this choice is that it eliminates the need for closure relations640

for the interfacial transfers MRANS
v but the direct consequence is that this641

closure should be capable of including complex phenomena in the lateral di-642

rection that result in particular from these interfacial transfers. Usually, one643

important weakness of this approach is that it considers only the relative644

velocity created by the competing drag and buoyancy forces and it totally645

neglects other forces (such as lift, dispersion and wall effects) responsible646

for the lateral redistribution of void fraction. Then, the physical effects of647

lateral forces have to be empirically introduced into the system of equations648

to recover more physical results. In this article, we clarify their meaning by649

establishing the theoretical expression of these empirical models based on the650

local description of the flow. We will see how they are related to interfacial651

forces and to the relative velocity.652

5.2. The local drift-flux model: a simplified 4 equations model653

Depending on the strength of the coupling between the two phases, one
may reduce the number of PDE considered. The counterpart of this simpli-
fication of the system is the modelling of additional closure relations. Here,
we consider a flow of dispersed bubbles where the two phases are strongly
coupled dynamically. Then, instead of solving for a momentum budget for
each phase, we will only consider the mixture, and we will introduce a closure
relation for the relative velocity between the phases defined as ur = uvv −ull.
This leads to a description of the mixture known as diffusion model or mix-
ture model [2, p. 103]. It is based on differential equations of the local
statistically-averaged two-fluid system

∂ρm
∂t

+∇ · (ρmum) = 0, (35a)

∂ρmc

∂t
+∇ · (ρmcum) = −∇ · (ρmcuv→m) + Γv, (35b)

∂ρmum
∂t

+∇ · (ρmumum) = −∇pm + ρmg −∇ ·
(
T t − T v + T dr

)
+ Mm,

(35c)

completed by a necessary relation to close the relative velocity ur in re-654

placement of the exact governing equation (34d). This closure leads to the655

diffusion velocity uv→m and as a result, it provides a closure to consistently656

32



express the diffusion stress due to relative velocity T dr, as defined in equa-657

tion (13). It is also necessary to supplement the system with expressions for658

the interfacial mass transfer Γv, the turbulent Reynolds stresses T t, the vis-659

cous stresses T v (that are not naturally defined in terms of the mean velocity)660

and the surface tension effect Mm.661

From the energy point-of-view, the vapour phase can be assumed at ther-
mal equilibrium with the saturation temperature of the system in flows of
small dispersed bubbles. Otherwise, an equation for the mixture enthalpy
can be obtained from the sum of equation (32c) on each phase. In flows with
heat transfer and phase-change, mechanical effects are mostly insignificant [2,
pp. 107-108]. Due to the difference in phase velocities, diffusion transport of
thermal energy becomes an important effect to consider as it is proportional
to the relative velocity and to the difference between the phase enthalpies
(close to the latent heat). It is interesting to note that even if each phase en-
ergy is considered separately instead of considering the mixture enthalpy, the
diffusion transport is still an important mechanism; indeed, it arises from the
necessary use of the mixture velocity in the convective term of the mixture
model. Therefore, following the same methodology as before, the balance for
phase enthalpies given by equation (32c) leads to the governing equation for
the mixture enthalpy hm:

∂ρmhm
∂t

+∇ · (ρmumhm) =
∂pm
∂t

+∇ ·
(
Qf + Qc −Qt −Qd

)
, (35d)

Here, we used the interfacial equilibrium Qi
l + Qi

v = 0. Mixture enthalpy is

defined without a velocity-weighting hm = αlρlh
l

l +αvρvh
v

v. Diffusion of each
phase with respect to the mixture centre of mass then causes the appearance
of a diffusive flux defined as

Qd =
∑

k=l,v

αkρkh
k

kuk→m = ρmc(1− c)ur
(
h
v

v − h
l

l

)
(36)

where uk→m = ukk − um is the difference of the phase velocity to the mix-
ture velocity. Modelling this diffusion transport Qd is essential because of
the large difference of phase enthalpies; assuming this enthalpy difference
close to the latent heat, the closure of the relative velocity provides a defi-
nition for this flux. In addition, closure relations are required for the mix-
ture turbulent heat flux Qt = Qt

l + Qt
v, for the mixture correlation heat flux
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Qc = Qc
l + Qc

v and for the conduction heat flux Qf representing an equiva-
lent of the Fourier’s conduction law for the mixture:

Qf =
∑

k=l,v

αkλk∇T kk (37)

The convective terms Qf and Qc can be rearranged together. They require

models to approach the phase temperatures T
k

k and the microscopic correla-
tion Ti∇χv:

Qf + Qc =
∑

k=l,v

λk∇
(
αkT

k

k

)
+ [[λ]]Ti∇χv (38)

If the interfacial temperature is considered uniform (for instance taken as a662

constant saturation temperature at interfaces at thermo-dynamical equilib-663

rium), the microscopic correlation is then naturally expressed in terms of the664

variables of the system and it is proportional to the gradient of void frac-665

tion. For the other part, phase temperatures require the knowledge of phase666

enthalpies combined with relations between h
k

k and T
k

k. Lastly, if the phases667

are considered compressible, the equation of state of the mixture providing a668

link of the form ρm = f(pm, hm) can be difficult to establish; in particular, if669

a pressure imbalance is considered and the equations of state for each phase670

are of the form ρk = f(pkk, h
k

k). The modelling choice selected for the pressure671

imbalance will also affect the solution in that indirect way.672

6. Homogenisation: volume averaging673

Homogenisation is used to describe the two-phase flow at a larger scale.
It relies on space-averaging the local system of equations to describe it at
the macroscopic scale [49]. We consider the space filter 〈 〉 of any variable ξ
given by

〈ξ〉 (x, t) =
1

V

∫

V

ξ(x′, t)dV, (39)

where the averaging volume V is independent of the position. We also intro-
duce the indicator function of the fluid phase χf equal to unity in the fluid
domain and zero otherwise. Besides, walls are associated to a Dirac delta-
distribution δw and their unit normal nw (oriented outward from the fluid
into the wall) is defined by ∇χf = −δwnw. The porosity φ = 〈χf〉 = Vf/V
gives the ratio of the fluid volume Vf to the averaging volume V . Similarly
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to Whitaker [6], the intrinsic filtering is defined from the following weighted-
average:

〈ξ〉f (x, t) =
〈ξχf〉
〈χf〉

=
1

Vf

∫

Vf

ξ(x′, t)dV. (40)

Finally, any quantity ξ is decomposed into its filtered quantity 〈ξ〉f and
a spatial deviation δsξ: ξ = 〈ξ〉f + δsξ. Contrary to the statistical average,
the filter does not commute with space derivatives and it is not idempotent
[6]. For motionless walls, the following rules apply [50]:

φ 〈∇ξ〉f = φ∇〈ξ〉f + φ 〈δsξ δwn〉f , (41a)

〈χf∇ξ〉 = φ 〈∇ξ〉f = ∇(φ 〈ξ〉f ) + φ 〈ξ δwn〉f , (41b)

φ

〈
∂ξ

∂t

〉

f

= φ
∂ 〈ξ〉f
∂t

=
∂φ 〈ξ〉f
∂t

. (41c)

6.1. Particular filters674

6.1.1. Dimensionality reduction: plane channel application675

As a particular example of space-averaging operator 〈〉, one can consider
a flow in a narrow rectangular channel, with parallel walls at y = −e/2 and
y = e/2. The fluid indicator function is then χf = 1 in the fluid domain,
i. e.,−e/2 ≤ y ≤ e/2, and χf = 0 in the solid structures. In that case, one
can consider the application of the space-averaging operator defined as the
average over the small channel gap e:

〈ξ〉 (x, z, t) =
1

e

∫ e/2

−e/2
ξ(x′, t)dy (42)

676

After the application of this space-averaging operator, the problem de-
scription reduces to two dimensions. Profiles along the channel width are
unresolved and sub-grid correlations appear due to non-linearities, products
of variables or gradient operators. Due to the dimensionality reduction of
this particular filter, the filter is naturally idempotent as one can easily show
that

〈〈ξ〉〉 = 〈ξ〉
as a result of the independence of 〈ξ〉 to y, which also means that the devia-
tion δsξ(x, y, z) is centred with respect to that averaging:

〈δsξ〉 = 0
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In addition, this filtering on y-direction naturally commutes with x− and z-677

derivatives.678

6.1.2. Scale separation679

For a more general filter, it is idempotent and the deviation is centred
with respect to it if there is a scale separation such that

lξ . r0 . L〈ξ〉

where the characteristic sizes r0, lξ and L〈ξ〉 corresponds respectively to the680

filter kernel, the microscopic scale of variation of the variable ξ and the681

macroscopic scale of variation of its filtered counterpart 〈ξ〉. In the case682

of the particular one-dimensional filter defined above, the splitting between683

directions replaces scale separation.684

6.2. Favre averaging: density- and fluid-weighted average685

As the mixture density strongly varies as a result of variations in vapour
concentration, it is more convenient to define a Favre averaging operator
weighted by both the mixture density ρm and the fluid phase indicator func-
tion χf , along with the definition of the corresponding deviation:

ξ̃ =
〈χfρmξ〉
〈χfρm〉

=
φ 〈ρmξ〉f
φ 〈ρm〉f

=
〈ρmξ〉f
ρM

(43a)

δξ = ξ − ξ̃ (43b)

ρM = 〈ρm〉f is the macroscopic mixture density (identified by the capital
subscript M). From these definitions, we can demonstrate that for two fields ξ
and ζ, we have under the assumption of scale separation or for an idempotent
filter:

〈χfρmξζ〉 = φρM ξ̃ ζ̃ + φ 〈ρmδξ δζ〉f = φρM

(
ξ̃ ζ̃ + δ̃ξ δζ

)
(44)

6.3. Macroscopic mixture model686

Motionless walls are considered. Multiplying the mixture model given in
the equation system (35) by the fluid indicator function χf and applying this
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filter leads to

φ
∂ 〈ρm〉f
∂t

+∇ ·
(
φ 〈ρmum〉f

)
= 0, (45a)

φ
∂ 〈ρmc〉f

∂t
+∇ ·

(
φ 〈ρmcum〉f

)
= −∇ ·

(
φ 〈ρmcuv→m〉f

)
+ φ 〈Γv〉f , (45b)

φ
∂ 〈ρmum〉f

∂t
+∇ ·

(
φ 〈ρmumum〉f

)
= −φ 〈∇pm〉f + φ 〈ρm〉f g

−∇ ·
(
φ
〈
T t
〉
f

+ φ 〈T v〉f + φ
〈
T dr
〉
f

)
− φ 〈T v δwn〉f + φ 〈Mm〉f . (45c)

The combination of equation (41b) and of the condition of no-slip velocity687

at the walls was used to obtain equation (45a). We assume that the no-slip688

condition at the wall applies to both um and ur (and transitively to uv→m).689

Besides, the turbulent stress goes to zero at the walls leading to the deletion690

of the wall/turbulent contribution T t δw. The contribution of the diffusion691

term
〈
T dr
〉
f

at the wall also vanishes because the velocity of each phase goes692

to zero at the wall when no-slip is considered; then, we have ur δw = 0, thus693

leading to wall friction effects represented solely by the term φ 〈T v δwn〉f694

(and a pressure contribution spilled out below, in equation (48)).695

Then, one needs to define the main variables of the system. Similarly to
the local mixture (or diffusion) model summarised in section 5.2, we define
filtered quantities weighted by the centre of mass. Therefore, we will describe
the evolution of the filtered mixture density ρM , vapour concentration cM ,
centre of mass velocity uM and filtered pressure pM defined as:

ρM = 〈ρm〉f (46a)

ρM cM = 〈ρmc〉f (46b)

ρMuM = 〈ρmum〉f (46c)

pM = 〈pm〉f (46d)

696

Using equation (44) and the definitions above, the correlation between
mean velocity deviations δum arises from the convective term

〈ρmumum〉f = ρMuMuM −DM (47)

where DM = −ρM ˜δumδum is the macroscopic dispersion due to local mean
velocity profiles. Besides, the pressure term gives rise to a wall contribution:

φ 〈∇pm〉f = φ∇〈pm〉f + φ 〈δspm δwn〉f where δspm = pm − 〈pm〉f (48)
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Therefore, the system describing the selected variables can be obtained
from the previous equation system (45)

∂ρM
∂t

+∇φ · (ρMuM) = 0, (49a)

∂ρMcM
∂t

+∇φ · (ρMcMuM + ρMuD) = ΓM , (49b)

∂ρMuM
∂t

+∇φ · (ρMuMuM) = −∇pM + ρMg (49c)

−∇φ ·
(
DM + 〈T v〉f +

〈
T t
〉
f

+
〈
T dr
〉
f

)
+ MM − 〈δspm δwn〉f − 〈T v δwn〉f .

where ΓM = 〈Γv〉f is the mean vaporisation term and MM = 〈Mm〉f the697

mean mixture momentum source. The notation ∇φ · ζ = 1
φ
∇· (φζ) is used to698

represent the divergence operator in case of variable porosity.699

In this system, one can see one of the main advantages of the Favre-
averaged variables that we have selected. The centre-of-mass definitions
cause the exact mass conservation equation of the macroscopic system (equa-
tion (49a)) to be totally described in terms of main variables (thanks to the
definitions (46a) and (46c)), hence ensuring an accurate mass preservation
independently of the quality of the closures selected. This is an important
property of the derivation and of the selected choice of macroscopic variables.
Unfortunately, the conservation equation for the mass of vapour (49b) can-
not be described without closure. It is necessary to introduce a model for a
drift velocity which is exactly defined in terms of local variables by:

uD = δ̃c δum︸ ︷︷ ︸
uD1

+ ˜c(1− c)ur︸ ︷︷ ︸
uD2

= δ̃c δum + c̃uv→m (50)

Therefore, this velocity arises from the correlation between deviations of700

vapour concentration and mean velocity on one hand, and from the correla-701

tion of vapour concentration to the relative velocity on the other.702

In the momentum equation, macroscopic dispersion DM arises from the

cross correlation ˜δumδum, that is caused by the local deviations of the
mean velocity um from its mean value uM . V = 〈T v〉f , T = 〈T t〉f and

Dr =
〈
T dr
〉
f

correspond respectively to the macroscopic viscous, turbulent

and diffusion tensors. The diffusion due to the relative velocity Dr is com-
pleted by the similar process of dispersion DM due this time to the averaging
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process at the basis of the macroscopic description. They all require mod-
elling to close the system, as they involve products of microscopic (local)
mean or instantaneous variables. The viscous term V can be developed us-
ing the definition (6) of the (local) mean viscous stresses T v in relation to
the tensor τ̆k

V = −µv∇†φ
(
〈αvuv

v〉f
)
− µl∇†φ

(〈
αlul

l
〉
f

)
(51)

using the adherence of both phase velocities at the walls and assuming that
each phase viscosity vary weakly with respect to the filter size (i. e., we neglect
sub-filter variations of physical properties). An issue similar to the closure of
the macroscopic equation for the vapour mass (49b) is encountered, namely
the fact that macroscopic velocities are related to the mixture centre of mass.
In order to close the viscous term V, it is necessary to express 〈αvuv

v〉f and〈
αlul

l
〉
f

as a function of mixture variables. Cross-correlations identical to

those in equation (50) appear. Thus, using the same definition, and assuming
weak variations of densities with respect to the filter size, we have:

〈αvuv
v〉f =

1

ρv

(
〈ρmcum〉f + 〈ρmcuv→m〉f

)
=
ρM
ρv

(cMuM + uD) (52a)

〈
αlul

l
〉
f

=
1

ρl

(
〈ρm(1− c)um〉f + 〈ρmcuv→m〉f

)
=
ρM
ρl

((1− cM)uM − uD1 + uD2)

(52b)

As a consequence, the viscous term V can be closed solely resorting to the703

closures of uD1 and uD2 under the current assumptions.704

Moreover, the turbulent term traduces the macroscopic effect of the Reynolds
stresses. Averaging local CFD simulations could be a useful tool to provide
information on its behaviour. The simplest way to model it could be an
algebraic relation to the mean shear stress

T =
〈
cρmu′vu′v

v
+ (1− c)ρmu′lu

′
l

l
〉
f
≈ KMSM (53)

where KM is a tensor set of coefficients and SM is the deviatoric part of the
macroscopic stress tensor:

SM =
1

2
∇†uM (54)

705
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Lastly, the diffusion tensors Dr corresponds to dispersion effects due to
relative velocity

Dr = 〈−c(1− c)ρmurur〉f = −〈ρmcuv→mur〉f (55)

Again, fine scale simulations would be beneficial to improve the understand-706

ing of this term. It traduces the complex correlation between vapour mass707

concentration, the relative velocity of the vapour phase to the centre of mass708

of the mixture uv→m and the relative velocity ur. This tensor is diagonal.709

Besides, pressure loss from wall friction results from the combination of a710

pressure deviation δspm and a viscous contribution. It stresses the importance711

of sub-filter variations.712

In conjunction to the effects of velocity variations and fluctuations and713

in addition to the influence of relative velocities, one last important element714

has to be discussed. The macroscopic mixture pressure pM defined by equa-715

tion (46d) is selected as a main variable of the system. If a single pressure is716

considered at the local scale (pll = pvv = pm), then equations of state (EOS) of717

each phase can be used to assess phase densities provided that the effect of718

sub-filter variations of pressure on physical properties is assumed negligible719

or at least linear. In the case of plane channel filtering, it means neglecting720

non-linear impact of wall-normal pressure variations on densities. Now, if a721

more complete description of the local scale is considered with a local pres-722

sure imbalance, relating the EOS of each phase to the EOS of the mixture723

becomes more complex because non-linear relations need to be inverted. It724

is difficult to determine theoretically the influence of the closures selected725

for the pressure imbalance on the global system resolution including EOS.726

As a consequence, we plan on using local CFD simulations based on RANS727

two-fluid models to determine the predominant closures and to hint towards728

appropriate modelling possibilities. However, it is important to insist that729

this methodology relies on the assumptions of the two-fluid model itself; it is730

then also very relevant to pursue research on the quality of models in this fam-731

ily to provide an accurate description of the problem, including for instance,732

relevant predictions of radial void fraction profiles and the effect of pressure733

imbalance. Advanced closures including pressure imbalance, surface-tension-734

induced pressure pbl
l

and mixture momentum Mm will modify the system735

solution; it will in turn affect the construction of the macroscopic model and736

its closure relations. However, the extent of the changes and the conditions737

in which they are significant are unknown. It is important to keep in mind738
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that a more realistic pressure gradient (for instance by means of algebraic739

closures for local pressure differences as initiated in du Cluzeau et al. [36] and740

du Cluzeau et al. [48]) along with the consideration of the mixture momen-741

tum Mm have the potential to create additional diffusion in the macroscopic742

mixture model.743

7. Insights into future applications744

This section highlights the potentialities offered by the derivation pre-745

sented in this article. It presents some guidelines to extract information746

from the rigorous open equation system for the local drift-flux or the macro-747

scopic models (equation systems (35) or (49) respectively) from the content748

of finer solutions taken as references.749

7.1. Applications to local modelling (two-fluid or drift-flux models)750

As mentioned in section 4.5, the local resolution of the equation system for751

the couple (um,ur) is theoretically equivalent to that of the equation system752

for the couple (ull,u
v
v). However, in practice, choosing the couple (um,ur)753

can provide different numerical strategies to improve the stability of the754

numerical system and facilitate its resolution, with an improved robustness.755

Equation (16) governing the local relative velocity ur can be used directly756

in the implementation of the two-fluid model (coupled with equation (35c)757

that control the evolution of the mixture velocity um). This formulation758

is sometimes advantageous over the classical (ull,u
v
v) resolution because the759

coupling between phases through the interfacial transfers can be implicited760

more efficiently as it appears in a single equation.761

But alternately, one could also consider partial simplifications of equa-762

tion (16) to include only the dominant processes in the transport equation so763

as to achieve simpler models which could benefit from a simpler resolution764

and yet be capable of incorporating selected effects as transient convection or765

lift-induced migration for instance. This option would provide an alternate766

path between the local two-fluid model and a local drift flux model.767

Lastly, if the relative velocity ur is fully reduced to a local instantaneous768

algebraic equation, a local equivalent to the homogenised drift-flux model can769

be obtained for fully three-dimensional cases. This local constitutive relation770

should incorporate the effect of interfacial forces. Provided that relevant771

closure relations can be found for specific configurations, the application772

of this strategy could be an interesting prospect for industrial studies in773

41



which the knowledge of the local distribution is important, yet the direct774

use of the two-fluid model is too complicated. For instance, the prediction775

of the CHF occurrence could be improved by this kind of local model by776

detaching the modelling of the triggering mechanism from the consideration777

of a specific geometry. All these intermediate local models can be assessed on778

experimental data, but also on fully numerical procedures when considering779

the two-fluid model as a (richer, hence more accurate) reference.780

Local relative velocity. From the local relative velocity obtained numerically781

(either by the complete two-fluid model or by any simplification of it) in var-782

ious configurations, new constitutive relations can be inferred. From CMFD783

simulations resolving the two-fluid model, for various geometries and varying784

the fluid properties and/or the flow conditions, one can assess the contri-785

butions to equation (16) to determine the dominant effects and evaluate the786

appropriateness of the proposed closure relations for these mechanisms. Gen-787

erally, interfacial transfers are considered as the predominant phenomena, but788

equation (16) reveals that other contributions are poorly known and may not789

be neglected based on a priori principles: e. g., surface tension effects (Mm)790

and their consequences on pressure gradients (especially in the cross-flow di-791

rection, ∇pm and ∇
(
αvpr + pbl

l
)

), or liquid and vapour turbulent stresses792

(T tl and T tv ). This kind of evaluation will provide valuable information to793

connect the drift-flux model to the two-fluid model and assess its limits; it794

may potentially offer alternative strategies to alleviate some of them.795

7.2. Applications to macroscopic modelling (space-averaged)796

By construction, macroscopic models depend on the geometry considered;797

they are applicable only for a given geometry; corrections or extrapolations798

are required to apply them to new geometries. For the sake of the discussion,799

we will consider the geometry of a thin rectangular channel homogenised over800

the direction of the small gap e, but the discussion could be similarly trans-801

posed to a sub-channel in a rod-bundle or any representative configuration802

of a porous media (usually called Representative Elementary Volume, REV803

or averaging control volume). For this example, the geometry is illustrated804

on figure 3. Space-averaging is performed on the y-direction such that the805

macroscopic problem is bidimensional in the (x, z) plane.806

The general procedure goes as follows:807

• Define a geometry and the associated control volume or REV.808
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Figure 3: Schematic illustration of a thin rectangular channel considered for a homogenised
description along y-axis. Vapour is uniformly injected at the centre of the channel and it
can transition either to a wall-peaked flow (red, left curve) or to a core-peaked flow (blue,
right curve).
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• Select the mechanism M to model. Make it dimensionless based on809

macroscopic or global variables.810

• Determine dimensionless parameters Ni and the macroscopic variables811

that are relevant to describe the evolution of the mechanism. They812

should depend only on the global conditions or on the macroscopic813

solution; they are considered as known in a priori tests. They cannot814

be related to local (microscopic) fields as they will intervene in the final815

model closure.816

• Define several set of conditions to cover the dimensionless space.817

• Force or ensure flow conditions that trigger the model.818

• Perform reference simulations with the fine scale model (two-fluid or819

local drift-flux) for each condition.820

• Average and post-process the solution field in each condition to deter-821

mine reference values for the model Mref (N0, . . . ,Ni) and the macro-822

scopic solution fields.823

• Depending on the a priori knowledge of the mechanisms, two options824

are possible:825

If the actual form of the correlation is determined by theoretical826

considerations, a simple fitting of coefficients can be performed to min-827

imise the difference ε = |Mref − Mmod| over the sets of conditions828

simulated.829

If the form of the closure relation is unknown, variable selection830

and regression should be performed, either by classical approaches or831

by machine learning techniques (Support Vector Machine, . . . ).832

In the following, two mechanisms are described to illustrate concretely the833

up-scaling methodology proposed.834

Void fraction distribution. As an illustrative example, we consider the distri-835

bution of void fraction in the channel. Figure 3 sketches two characteristic be-836

haviours that the diffusion of void fraction may generate (wall or core-peak).837

From a modelling point-of-view, it is then important to model diffusion of838

void fraction in equation (49b) due to the mechanismMdisp = ∇φ · (ρMuD),839

in the cross-flow direction x. In many configurations, due to global variations840
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of the macroscopic solution (flow asymmetry, flow reduction due to corner841

effect) some effects of the local void fraction distribution or of the velocity842

gradients remain important at the macroscopic scale. For instance, powered843

by the local lift force, these gradients will be responsible for global migration844

of the vapour and macroscopic transverse velocity.845

Concerning the distribution of void in the channel, a methodology similar
to Zuber and Findlay [22] can be applied; however, our proposal is to pro-
duce numerically informed data by an appropriate selection of local two-fluid
simulations in order to provide numerical values of the form

Mref
disp =Mref

disp (ReM , cM , db/e, . . . ) (56)

where ReM = ρM ‖uM‖Dh/µ
? is the macroscopic Reynolds number, Dh the846

hydraulic diameter and µ? some selected combination of liquid and vapour847

viscosities.848

To derive a modelMmod
disp for this specific mechanism, one can for instance,849

compute from the local solution of CMFD simulations the distribution co-850

efficient C0 and the drift-velocity VGj as defined by Zuber and Findlay [22].851

Finally, from this approach, it should be possible to extend the original work852

of Zuber and Findlay [22] to 3D applications, and from there, calibrate for853

instance the tensorial coefficients C0 proposed by Grégoire and Martin [21],854

in order to recover in the end an approximate expressionMmod
disp to model the855

void fraction dispersion based on macroscopic variables only.856

Equation (50) reveals that all the components of the macroscopic drift857

velocity uD can be determined from the knowledge of microscopic (local)858

fields. Our intent in the future is to use this expression and to evaluate859

it on representative two-fluid simulations in order to provide the informa-860

tion necessary to accurately close the drift contribution in the divergence in861

equation (49b). This macroscopic mechanism is essential to appropriately862

describe the macroscopic migration of void fraction in the cross-flow direc-863

tion. This lateral migration is then essentially due to sub-filter variations of864

the variables’ profiles (velocity and void fraction mostly), and it depicts a865

mechanism fundamentally different from the original concept by Zuber and866

Findlay [22] that was dedicated to gravitational effects.867

Macroscopic pressure drop. Another example where the effect of the under-
lying flow profile must be modelled is the prediction of the pressure drop
along the flow. Equation (49c) shows that the local profiles of both veloc-
ity and pressure contribute to the pressure loss. Then, post-processing local
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simulations provides a way to assess the two contributions to the reference
macroscopic source Mref

pd responsible for the pressure drop, defined as:

Mref
pd = 〈δspm δwn〉f + 〈T v δwn〉f (57)

From these numerical measurements, an additional closure relation to impose
a wall friction coefficient Cpd could be derived under the form

Mmod
pd = Cpd (ReM , cM , db/e, . . . ) ρM ‖uM‖uM (58)

where the functional dependency of Cpd to dimensionless parameters has to868

be determined.2869

From the knowledge of both Mref
pd, ρM and uM by the averaging of local870

solutions, one can propose and assess a formulation for the coefficient Cpd871

that minimises the error εpd =
∣∣Mref

pd −Mmod
pd

∣∣.872

The contributions toMref
pd defined from local quantities will be very sensi-873

tive to the flow regime because of the strong coupling between the microscopic874

phase distribution and the profiles of velocities. In particular, when the con-875

ditions are varied, the flow can experience a transition of the void fraction876

profile. In the case of bubbly flows, it has been observed experimentally877

[51, 52] that the interfacial forces acting on the bubbles drive them towards878

or away from the wall, resulting in wall-peaked or core-peaked void fraction879

profiles depending on the flow conditions. This transition in void fraction880

profiles has a dramatic effect on averaged flow quantities such as the wall881

shear stress, velocity profiles and turbulence levels.882

For industrial applications, it is important to be able to quantify the883

impact of this wall- to core-peak transition (and the conditions in which it884

occurs) and to incorporate this information into macroscopic models. The885

variations of wall shear stress induced by this transition can be responsi-886

ble for large scale flow redistribution that should be accurately captured by887

component-scale simulations. The proposed up-scaling approach should help888

to determine mechanistic models (because more information is available from889

simulations than from experimental measurements) that could replace the use890

of flow-regime maps and henceforth, extend the prediction capabilities with891

better confidence.892

2For completeness, we mention that Cpd might be represented by a matrix to account
for the strong anisotropy of the flow.
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In conjunction with this numerical approach, our team is designing an893

experiment to produce CFD-grade reference data to support our numeri-894

cal simulations and enable the global validation of the procedure. In this895

experiment, the adiabatic air-water flow in a thin rectangular channel will896

be analysed for various flow rates of each phase in vertical or inclined flow897

direction. We target local measurements of void fraction, bubble-sizes dis-898

tributions, mean liquid and gas velocities, velocity fluctuations in the liquid.899

The measurements’ resolution should be sufficient to capture the predomi-900

nant variations and validate the numerical procedure.901

8. Conclusion and prospects902

This article presents a theoretical derivation of a homogenised model for903

turbulent two-phase flows. Turbulent fluctuations and phase intermittency904

are crucial mechanisms incorporated into the model considered. Application905

of the space-averaging technique is not limited to porous media. In fact, one906

industrial use of this work consists in applying this methodology to propose907

a one- or two-dimensional description of pipe flows or of turbulent two-phase908

flows in rectangular channels or tube bundles. There, the model acts to909

represent the effect of high-shear regions developing at the walls.910

This macroscopic model describes the evolution of mixture variables, but911

includes the effects of both sub-filter spatial variations, turbulence, and local912

non-equilibrium in velocity, pressure and enthalpy. It is derived theoretically913

based on the local instantaneous Navier-Stokes equations. Several steps are914

involved in order to obtain the final macroscopic mixture model. The ap-915

proach is based on a two-step up-scaling strategy. First, we recall the basic916

principles that constitutes the basis of the widely-used Euler-Euler two-fluid917

model. A discussion on the importance of models for the interfacial transfers918

and of the closure of the pressure has been included to demonstrate that919

assumptions on the local pressure imbalance and on surface tension effects920

will have consequences on the macroscopic model. Then, we proceed to a921

reduction of the local two-fluid model which relies on the algebraic closure of922

the relative velocity to enable the resolution of a system composed of mixture923

variables (density, velocity and enthalpy). A simpler local drift-flux model is924

then obtained. Finally, the second part of the up-scaling is applied to derive925

a macroscopic mixture model similar to the sub-channel models in use in the926

nuclear or oil and gas industries. This step resorts to a spatial average that927
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is commonly used in porous media applications. Here, it is used to eliminate928

the costly need to resolve boundary layers in internal flows.929

At the end of this two-step up-scaling strategy, the model remains open,930

but we have fully described the theoretical content of the macroscopic models.931

This formulation governing the macroscopic evolution of the mixture can be932

compared to models used in practical applications (i) to better identify the933

origins of the models involved and (ii) to provide an alternative to progress934

in the models’ development or in the calibration of closure laws.935

Many prospects in terms of validation and models’ development based936

on this up-scaling methodology are now open. They include the use of these937

expressions involving fine-scale flow description to propose and assess new938

formulations of models based on a priori analyses of local two-fluid simu-939

lations. In section 7, we illustrated that if the equation for the local rel-940

ative velocity ur is simplified to keep only the dominant mechanisms, new941

opportunities may be taken to solve intermediate models (in between the942

local two-fluid model and a local drift-flux model) that are still local and943

account for unsteadiness and convective effects. Further reduction given by944

an algebraic closure for the local relative velocity demonstrates the various945

degrees of simplifications that can be applied to connect the two-fluid and946

the drift-flux models at the local scale. Series of such “numerical experi-947

ments“ can be performed to efficiently cover the parametric space (including948

experimentally-challenging industrial conditions such as for instance high-949

pressure flows), and to test different kinds of local closures. Reference values950

for the models can be post-processed from these simulations in order to as-951

sess the dependency to dimensionless parameters and to calibrate parameters952

a priori. These closures based on two-fluid CMFD simulations, include the953

models’ formulation and the calibration of closure relations.954

Further prospects include the assessment of models’ simplifications at dif-955

ferent steps of the process. For instance, various kinds of two-fluid models956

can be compared to investigate hypotheses concerning interfacial transfer957

closures, or the effect of pressure imbalance, or the potential effect of surface958

tension. Also, the assessment of the simplifications necessary to the deriva-959

tion of an algebraic closure for the relative velocity is an important feature960

that can be analysed. Predictions of the relative velocity should include com-961

ponents orthogonal to gravity (where buoyancy and drag are predominant);962

indeed, complex (and partially understood) phenomenon such as lift, laminar963

and turbulent dispersions or wall effects, are important mechanisms respon-964

sible for an effective diffusion of void fraction. They are intrinsically related965
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to the structure of local velocity fluctuations, to pressure disturbance by the966

walls and the inclusions, and to the phase intermittency.967

Most discussions in this article were focused on the momentum equations968

and the relative motion between phases. As stated by Ishii and Hibiki [2,969

pp. 365-366], modelling the mixture thermal energy in the context of the970

drift-flux model is a considerable challenge. Future prospects could expand971

the discussion at the end of section 5 to analyse the benefits of different972

choices (mixture enthalpy and a closure relation for the thermal state between973

the two-phase or separate conservation equations). The additional effect of974

spatial average on the energy transfers is also in a very preliminary state in975

the literature.976

Application of this new methodology to derive industrial models for mul-977

tiphase flows of increasing complexity is expected to provide a new way to978

access information that would be difficult to obtain experimentally. There-979

fore, we plan to use this approach to assess and eventually revise closures used980

in industrial codes based on the recently acquired capabilities of CMFD. In981

section 7, we illustrated the principles of the up-scaling methodology pro-982

posed on two mechanisms: the void fraction dispersion and the macroscopic983

pressure drop.984
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50



[13] J.-M. Delhaye, M. Giot, M. Riethmuller, Thermohydraulics of two-phase1031

systems for industrial design and nuclear engineering, Hemisphere Pub-1032

lishing Corporation, 1980.1033

[14] J.-M. Delhaye, M. Giot, M. L. Riethmuller, Thermohydraulics of two-1034

phase systems for industrial design and nuclear engineering, Hemisphere1035

Publishing Corporation, 1981.1036

[15] J.-M. Delhaye, J.-G. Collier, G. Hewitt, A. E. Bergles, Two-phase flow1037

and heat transfer in the process and power industries, Hemisphere Pub-1038

lishing Corporation, 1981. McGraw-Hill, New York.1039

[16] G. Yeoh, J. Tu, Basic Theory and Conceptual Framework of Multiphase1040

Flows, 2016, pp. 1–47. doi:10.1007/978-981-4585-86-6_1-1.1041

[17] M. Ishii, T. Hibiki, Thermo-fluid dynamics of two-phase flow, springer,1042

new york ed., Springer, 2006.1043

[18] N. Zuber, On the dispersed two-phase flow in the laminar flow1044

regime, Chem. Eng. Sci. 19 (1964) 897–917. URL: http://www.1045

sciencedirect.com/science/article/pii/0009250964850673.1046

doi:10.1016/0009-2509(64)85067-3.1047

[19] S. Rassame, T. Hibiki, Drift-flux correlation for gas-liquid two-phase1048

flow in a horizontal pipe, International Journal of Heat and Fluid Flow1049

69 (2018) 33–42. URL: https://www.sciencedirect.com/science/1050

article/pii/S0142727X17307865. doi:https://doi.org/10.1016/j.1051

ijheatfluidflow.2017.11.002.1052

[20] T. Hibiki, M. Ishii, One-dimensional drift-flux model and con-1053

stitutive equations for relative motion between phases in var-1054

ious two-phase flow regimes, International Journal of Heat1055

and Mass Transfer 46 (2003) 4935–4948. URL: https://www.1056

sciencedirect.com/science/article/pii/S0017931003003223.1057

doi:https://doi.org/10.1016/S0017-9310(03)00322-3.1058
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