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ARTICLE OPEN

Contrasting DCIS and invasive breast cancer by subtype
suggests basal-like DCIS as distinct lesions
Helga Bergholtz 1,2, Tonje G. Lien1, David M. Swanson 3, Arnoldo Frigessi3,4, Oslo Breast Cancer Research Consortium (OSBREAC)*,
Maria Grazia Daidone5, Jörg Tost 6, Fredrik Wärnberg7,8 and Therese Sørlie1,2✉

Ductal carcinoma in situ (DCIS) is a non-invasive type of breast cancer with highly variable potential of becoming invasive and
affecting mortality. Currently, many patients with DCIS are overtreated due to the lack of specific biomarkers that distinguish low
risk lesions from those with a higher risk of progression. In this study, we analyzed 57 pure DCIS and 313 invasive breast cancers
(IBC) from different patients. Three levels of genomic data were obtained; gene expression, DNA methylation, and DNA copy
number. We performed subtype stratified analyses and identified key differences between DCIS and IBC that suggest subtype
specific progression. Prominent differences were found in tumors of the basal-like subtype: Basal-like DCIS were less proliferative
and showed a higher degree of differentiation than basal-like IBC. Also, core basal tumors (characterized by high correlation to the
basal-like centroid) were not identified amongst DCIS as opposed to IBC. At the copy number level, basal-like DCIS exhibited fewer
copy number aberrations compared with basal-like IBC. An intriguing finding through analysis of the methylome was
hypermethylation of multiple protocadherin genes in basal-like IBC compared with basal-like DCIS and normal tissue, possibly
caused by long range epigenetic silencing. This points to silencing of cell adhesion-related genes specifically in IBC of the basal-like
subtype. Our work confirms that subtype stratification is essential when studying progression from DCIS to IBC, and we provide
evidence that basal-like DCIS show less aggressive characteristics and question the assumption that basal-like DCIS is a direct
precursor of basal-like invasive breast cancer.

npj Breast Cancer            (2020) 6:26 ; https://doi.org/10.1038/s41523-020-0167-x

INTRODUCTION
Ductal carcinoma in situ (DCIS) is a non-invasive, non-obligate
precursor to invasive breast cancer (IBC) with low risk of
progression1. As breast cancer screening has become widespread,
more DCIS lesions are being detected2–4. Autopsy studies and
studies on DCIS from non-treated patients show that many
lesions, if left alone, will never progress to invasive disease5–9.
However, there is currently no robust method to distinguish DCIS
with invasive potential from those that may be left untreated.
Furthermore, DCIS is a heterogeneous disease and may at time of
diagnosis vary from indolent lesions to tumors on the verge of
becoming invasive. Clinical, histopathological and molecular
characteristics may also vary considerabely10,11. As a consequence
of this uncertainty, treatment for DCIS is often extensive, resulting
in substantial overtreatment12–15.
Knowledge on the underlying mechanisms of progression from

DCIS to IBC is still limited. In order to select the optimal treatment
strategy for a patient diagnosed with DCIS, it would be beneficial
to determine the tumor’s invasive potential. Several studies have
observed few genomic and epigenomic differences between DCIS
and IBC16–19. However, most breast cancer progression studies
have not taken into account the significance of molecular subtype
in DCIS. For IBC, molecular subtypes have distinct characteristics
and also provide valuable prognostic and predictive information20.
In a previous study, we found evidence of subtype specific
progression from DCIS to IBC suggesting that each molecular
subtype undergoes a distinct evolutionary disease course21. In

DCIS, grade and growth pattern provide some information on risk
of recurrence, yet, there is still a need for more precise risk
prediction22–24. For this purpose, the Oncotype DX Breast DCIS
score has been developed to predict individual risk of recurrence
after breast conserving surgery (BCS)25. This assay, however, does
not take into account the vast heterogeneity of DCIS and the low
risk group still experienced a relatively high risk of recurrence of
10% after 10 years26. Nevertheless, this score illustrates the
potential of molecular-based assays for risk prediction in DCIS.
In this study, we explore the differences between DCIS and IBC

in a subtype-specific manner using data from three genomic
levels: Gene expression, DNA copy number and DNA methylation.
We observed that DCIS and IBC of the luminal A subtype were
overall highly similar, while for the basal-like subtype, DCIS might
represent a different molecular entity than its invasive counter-
part. We hypothesize that tumors of different molecular subtypes
may have different modes of progression, and by comparing DCIS
and IBC for each subtype separately, we gain insight into the
mechanisms of breast cancer invasion and progression.

RESULTS
Tumor characteristics and PAM50 subtyping
The study cohort includes data from 57 pure DCIS and 313 IBC
cases. All samples were obtained from individual patients, i.e.,
none of the samples represents paired (synchronous) lesions from
the same patient. DCIS lesions were from patients with no
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concurrent invasive disease (“pure” DCIS). All sample information
including clinical and molecular parameters is presented in Table 1
and Supplementary Data 1. Based on expression of the PAM50
genes, we determined the intrinsic subtypes using the widely
used centroid based classifier27 (see “Methods”), which provided
correlation coefficients to each of the four centroids; basal-like,
HER2-enriched, luminal A and luminal B. We found a significantly
different distribution of the subtypes between DCIS and IBC (P=
0.0016, Fisher’s exact test, Fig. 1a). Most notably, there was a
higher frequency of the HER2-enriched subtype and a lower
frequency of Luminal B tumors in DCIS compared with IBC. This
was reflected by a significantly different distribution of ESR1 gene
expression between DCIS and IBC (P= 0.0012 Fisher’s exact test,
Fig. 1b). In general, we observed that DCIS tumors showed lower

correlation coefficients to the subtype centroids compared with
IBC; this was particularly evident for the basal-like subtype (Table 2).
To investigate whether differences in tumor cell content could
explain the lower subtype correlation coefficients in DCIS
compared with IBC, we used ASCAT (Allele-Specific Copy number
Analysis of Tumors)28 to calculate tumor purity based on copy
number data (see Methods). We found no significant difference in
tumor cell content between DCIS and IBC (Basal-like: P= 0.86,
HER2: P= 0.13, LumA: P= 0.88, LumB: P= 0.19, Mann–Whitney U
tests, Supplementary Fig. 1a).

Diverging subtype characteristics between DCIS and IBC
The overall lower correlation to the PAM50 centroids in DCIS
compared with IBC prompted us to explore the expression of the
PAM50 genes in each subtype and tumor type to identify the
contribution of each gene to the subtyping output (Supplemen-
tary Fig. 1b). Only one gene (Matrix metalloproteinase 11, MMP11,
also named stromelysin 3) clearly delineated DCIS and IBC. MMP11
is expressed in stromal cells and favors cancer cell survival and
tumor progression through cleavage of collagen VI29. MMP11 was
markedly lower expressed in DCIS of all subtypes compared with
IBC, in accordance with its non-invasive state. All other PAM50
genes showed expression patterns characteristic of the subtypes,
independent of tumor type. Luminal genes (e.g., ESR1, PGR, NAT1,
BCL2, SLC39A6) were higher expressed in luminal tumors in both
DCIS and IBC compared with tumors of basal-like and HER2-
enriched subtypes. Basal-like IBC showed markedly higher
expression of genes associated with proliferation compared with
all other subtypes (including basal-like DCIS). Both DCIS and IBC of
the HER2-enriched subtype showed elevated expression of genes
typically highly expressed in this subtype (ERBB2, GRB7, and
TMEM45B). Of note, keratins associated with basal epithelium
(KRT5, KRT14, and KRT17) were markedly higher expressed in DCIS
of non-basal-like subtypes compared with their invasive counter-
part while for the basal-like subtype, these keratins were highly
expressed in both DCIS and IBC. This observation may be
explained by gene expression contribution from a retained
myoepithelial cell layer in DCIS.
Interestingly, we identified a distinct group of basal-like IBCs

with high correlation to the basal-like centroid and correspond-
ingly low correlation to the luminal A centroid (Fig. 2a), which was
not found among basal-like DCIS (Fig. 2b). These invasive tumors
may correspond to so-called core basal tumors, characterized by
deletions on chromosome 5q and high expression of specific
genes associated “in trans” with such deletions30,31. In accordance
with this, we found 5q deletions at high frequency in basal-like
IBC, while in only a minority of basal-like DCIS (Fig. 2c). Clustering
gene expression values of the core basal-defining genes revealed
two distinct clusters: one consisting of mostly IBC tumors with
high correlation to the basal-like subtype (i.e. the core basal
tumors), and a second cluster including most of the DCIS tumors
and IBC tumors with low correlation to the basal-like subtype
(Fig. 2d). By visual inspection of the distribution of the correlation

Table 1. Summary of available data for analysis.

DCIS IBC

Number of tumors 57 313

Number of expression arrays 57 313

Number of SNP arrays 48 290

Number of Methylation arrays 41 273

Age in years, median (range) 54 (26–82) 54 (26–83)

Size in mm, median (range) 28 (7–90) 18 (2–130)

ELSTON grade (1/2/3/NA) – 44/115/122/32

EORTC grade (1/2/3/NA) 0/8/21/28 −

ELSTON grading applies to invasive breast cancer (IBC). EORTC grading
applies to DCIS (ductal carcinoma in situ).

DCIS IBC

LumB
8.8% (5)

LumB
26.5% (83)

LumA
43.9% (25)

Basal-like
22.8% (13)

Basal-like
14.7% (46)

LumA
47.3% (148)

HER2
24.6% (14)

HER2
11.5% (36)

DCIS IBC

ESR1 neg
38.6% (22)

ESR1 pos
61.4% (35)

ESR1 neg
17.9% (56)

ESR1 pos
82.1% (257)

a

b

Fig. 1 Distribution of PAM50 subtypes and ESR1 gene expression
in DCIS and invasive breast cancer (IBC). a Distribution of
PAM50 subtypes. b Distribution of ESR1 gene expression. Percen-
tage of each subtype/ESR1-status is indicated, number of samples in
parenthesis. There is significantly different distribution between
DCIS and IBC for PAM50 subtypes (P= 0.0016 Fisher’s exact test) and
ESR1 gene expression (P= 0.0012, Fisher’s exact test).

Table 2. Median and range of subtype correlation coefficients to each
PAM50 subtype for DCIS and invasive breast cancer (IBC).

DCIS IBC

Subtype Median Range Median Range

Basal 0.26 (0.12–0.46) 0.76 (0.03–0.88)

HER2 0.35 (0.14–0.64) 0.55 (0.15–0.72)

LumA 0.50 (0.20–0.71) 0.56 (0.13–0.82)

LumB 0.33 (0.15–0.39) 0.45 (0.13–0.69)
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coefficient to the basal-like centroid, we classified core basal
tumors as those with correlation >0.6 (Fig. 2a, b). When
investigating the PAM50 genes separately for the core and the
non-core basal invasive tumors compared with basal-like DCIS, we
found that the non-core basal invasive tumors showed lower
expression of proliferation genes and higher expression of luminal
genes compared with core basal invasive tumors (Supplementary
Fig. 1c) Also, EGFR and basal keratins (which are known to be
highly expressed in core basal tumors) showed lower expression
in non-core basal tumors compared with core basal invasive
tumors, while intermediate expressed in basal-like DCIS. The core
basal invasive tumors were all estrogen receptor (ER) negative by
immunohistochemistry (IHC) and by ESR1 expression. Among the
non-core basal invasive tumors, 8 out of 12 were ESR1 expression
positive. Five out of 13 basal-like DCIS were ESR1 expression
positive, however, there was no observable difference in

correlation to the basal-like centroid between ESR1 expression
positive (n= 5) and ESR1 expression negative (n= 8) basal-like
DCIS (P= 0.62, Mann–Whitney U test).

Extensive genomic differences between basal-like DCIS and basal-
like IBC
We found few gene expression differences between DCIS and IBC
when performing principal component analysis (PCA) of genome-
wide gene expression data across all subtypes (Supplementary Fig.
2a). This is in accordance with previous studies16,17. However, after
subtype stratification, PCA clearly separated IBC from DCIS in the
basal-like and HER2-enriched subtypes, while not in the luminal
subtypes (Supplementary Fig. 2b). Also, with respect to copy
number aberrations, differences between DCIS and IBC varied
between subtypes. DCIS exhibited overall fewer copy number
changes compared with IBC as demonstrated by a lower genomic
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Fig. 2 Core basal characteristics. Association between correlation coefficient to basal-like centroid on the x-axis and correlation coefficient to
luminal A centroid on the y-axis for IBC (a) and DCIS (b). Core basal invasive tumors indicated by the dashed circle. c Frequency-plot of copy
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in DCIS and IBC, separately. d Heatmap showing expression of core basal genes in DCIS and IBC tumors of the basal-like subtype. The genes
included have previously been shown to be correlated “in trans” with deletion of chr5q in core basal invasive breast cancer31.
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instability index (GII) in all subtypes, and the difference was
significant for all subtypes except luminal B (Supplementary Fig.
3a and Supplementary Data 1). Nevertheless, the specific copy
number changes in DCIS are reminiscent of invasive tumors,
including 17q12 amplification in the HER2-enriched subtype and
deletions of 16q in luminal A (Supplementary Fig. 4). Again, the
largest difference between DCIS and IBC was found for basal-like
tumors with DCIS showing substantially fewer copy number
aberrations compared with basal-like IBC.
To further explore subtype specific differences between DCIS

and IBC, we included information on the strength of the
correlation to all other subtype centroids (Fig. 3, Supplementary
Data 1). We found that basal-like IBC correlated highly to the
basal-like centroid, and next, to the HER2-enriched centroid, while
basal-like DCIS showed overall lower correlation to the basal-like
centroid and more often had luminal subtypes as their second
subtype (Fig. 3). On the contrary, luminal A tumors, both DCIS and
IBC, showed relatively high correlation to the luminal A centroid
and a similar distribution of the second best subtype (mostly
basal-like and luminal B). Next, we calculated gene expression-
based proliferation-, differentiation-, immune-, stromal-, and
epithelial-to-mesenchymal transition (EMT)-scores, as well as
HER2-copy number status (Fig. 3, Supplementary Fig. 3 and
Supplementary Data 1). Both DCIS and IBC tumors showed
subtype specific characteristics such as higher proliferation and
lower differentiation in basal-like and HER2-enriched subtypes
when compared with luminal A. In general, DCIS received lower
stromal and EMT scores compared with IBC. The differences
between DCIS and IBC were most pronounced in basal-like
tumors: Basal-like DCIS displayed significantly lower median
proliferation score compared with basal-like IBC (Supplementary
Fig. 3b), while the median differentiation score was significantly
higher in basal-like DCIS compared with IBC (Supplementary Fig.
3c), although still lower than in DCIS of any other subtype.
Interestingly, there was no statistically significant difference in
median immune score, median stromal score or median EMT score
between basal-like DCIS and IBC (Supplementary Fig. 3d, e, f). The
distinct difference seen between core and non-core basal invasive
tumors prompted us to investigate these scores for core and non-
core basal invasive tumors separately (Supplementary Fig. 5). For
GII and proliferation, the scores for non-core basal invasive tumors
were in between basal-like DCIS and core basal invasive tumors,
while the differentiation scores were at the level of basal-like DCIS.
There was no difference between core and non-core basal
invasive tumors with regards to immune-, stromal- and EMT-
scores. Overall, these findings show that subtype profiles of DCIS

are comparable to those found in IBC, except for the basal-like
subtype where DCIS appears to be associated with less aggressive
gene expression characteristics.

Long range epigenetic silencing of cPCDH genes occurs in basal-
like IBC
We identified numerous genes with significantly different
methylation profiles between DCIS and IBC (Supplementary Data 2).
For the basal-like subtype, 1053 genes showed statistically
significant different methylation profile between DCIS and IBC,
while for the HER2-enriched and luminal A subtypes, only 144 and
172 genes, respectively, showed significantly different methylation
profiles (Fig. 4a). Due to low sample size, no genes with statistically
significant different methylation profiles were identified for the
luminal B subtype. None of the differentially methylated genes
were common between the other three subtypes. Among the
genes with significantly different methylation profiles between
basal-like DCIS and IBC were multiple clustered protocadherins
(cPCDH). These genes are involved in cell-cell adhesion and are
organized in three clusters on chromosome 5q31 and notably; the
genes are highly overlapping32,33. Long range epigenetic silencing
(LRES) has previously been shown to occur in cancer in an 800 kb
genomic window spanning the cPCDH gene clusters34–36. To
corroborate the methylation profile analyses and explore whether
LRES is characteristic of basal-like IBC, we clustered all basal-like
tumors based on the β-values of the 698 CpGs present in this
genomic window (Fig. 4b). For comparison, we also included
normal breast tissue samples. This analysis revealed that basal-like
invasive tumors with high correlation to the basal-like centroid
were, in general, characterized by hypermethylation across the
cPCDH genes, while normal samples displayed low levels of
methylation. Basal-like DCIS showed significantly lower mean
cPCDH methylation compared with basal-like IBC (P= 0.001,
Mann–Whitney U test, Fig. 4c). Importantly, there was no
association between mean cPCDH methylation and tumor
percentage, indicating that the lower methylation levels of the
cPCDHs in basal-like DCIS is not simply an artifact of normal tissue
in these samples. The basal-like invasive tumors showed the
highest cPCDH methylation levels of all tumors. Notably, the
distinct difference between DCIS and IBC seen in the basal-like
subtype was not found for any of the other subtypes (Fig. 4c). Of
note, the highly overlapping organization of the cPCDH genes
complicates interpretation of these results, since one CpG may be
located in multiple genes simultaneously, e.g., in the transcription
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Fig. 3 Genomic characteristics of DCIS and IBC. Each column represents one tumor. Columns are sorted according to PAM50 subtype and
next, according to correlation to the tumor’s subtype. Relevant characteristics that commonly differ between molecular subtypes are shown
and revealed pronounced differences between DCIS and IBC for the basal-like subtype. PAM50: The sample’s subtype. PAM50 2nd: The
subtype with second highest correlation. Tumor type: DCIS (green). IBC (yellow). ESR1: Estrogen receptor 1 gene expression. PGR:
Progesterone receptor gene expression. Cor.Basal/Cor.Her2/Cor.LumA/Cor.LumB: Correlation coefficients to the four PAM50 subtypes.
Proliferation: Gene expression-based proliferation score. Differentiation: Gene expression-based differentiation score. GII: Genomic Instability
Index based on copy number data. HER2 CN: HER2 copy number.

H. Bergholtz et al.

4

npj Breast Cancer (2020)    26 Published in partnership with the Breast Cancer Research Foundation



start site of one gene while in the gene body of other genes. This
may in theory yield different effects on gene expression.
When compiling methylation, copy number and gene expres-

sion data of the cPCDHs for the basal-like tumors, it appeared that
invasive tumors with hypermethylation of the cPCDH genes often
exhibited deletions of the same genes, and that these changes
corresponded well with correlation to the basal-like centroid
(Supplementary Fig. 6). Importantly, the cluster of tumors with
concurrent hypermethylation and deletion of the cPCDH genes
consisted mainly of aneuploid tumors, while the sub-cluster
containing most DCIS consisted only of diploid tumors. We could
not detect any effect of hypermethylation or 5q deletions on
cPCDH gene expression. This could possibly be explained by
expression of retained alleles in polyploid tumors or by post-
transcriptional regulation. In summary, the notable differences in
cPCDH methylation between basal-like DCIS and IBC support our
previous results that basal-like DCIS may be a different entity than
basal-like IBC.

DISCUSSION
In this study, we have explored differences between DCIS and IBC
in a subtype specific manner using gene expression, copy number
and DNA-methylation data derived from fresh frozen tumor
material. The study was instigated by findings from our previous
study where we hypothesized that progression of DCIS to invasive
cancer differ between molecular subtypes21. The indolent nature

of many in situ tumors and the fact that many of these tumors
never progress to invasive or metastatic disease correlate poorly
with the results from several studies showing remarkably few
genomic differences between DCIS and IBC16–18. This lack of
genomic dissimilarity may be explained by inherent differences
between the molecular subtypes: In most breast cancer cohorts,
the majority of tumors are of luminal subtypes; hence, character-
istics that differentiate between DCIS and IBC in unstratified
analyses are confounded by subtypes. The different distribution of
molecular subtypes observed between IBC and DCIS may in part
be explained by underrepresentation of small DCIS lesions and,
consequently, overrepresentation of high-grade DCIS lesions
included in the cohort. However, the frequency of tumors of the
least aggressive subtype (luminal A) is similar in DCIS and IBC,
indicating that the observed difference in subtype distribution
between the two tumor types represents a true distinction.
Interestingly, the most pronounced differences between DCIS

and IBC were found for the basal-like subtype. Basal-like DCIS
showed lower correlation to the basal-like centroid (i.e., low
“basalness”) compared with basal-like IBC, and there were no core
basal DCIS in our data. This is in accordance with a previous
integrative clustering analysis that showed genomic isolation of
basal-like IBC, and not basal-like DCIS37. In the present study we
showed that the basal-like DCIS tumors exhibited higher
correlation to Luminal A subtype, higher degree of differentiation,
lower proliferation and lower genomic instability than basal-like
IBC. Also with respect to alterations of DNA methylation, basal-like
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(DCIS n= 3, IBC n= 72). Boxplots illustrate the median (middle line) and the third and first quartiles (box); the whiskers indicate 1.5 × IQR
above and below the box.
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tumors did prominently show more differences between DCIS and
IBC compared with all other subtypes. Most notable was the
marked hypermethylation of CpGs mapping to the (cPCDHs)
genes in basal-like IBC compared with DCIS and a positive
association between hypermethylation of cPCDHs and degree of
“basalness”. Hypermethylation of DNA in the genomic location
spanning the cPCDH genes through long range epigenetic
silencing (LRES)38 has been shown to increase with progression
of cervical cancer36 and has also been observed in breast cancer34,
colorectal cancer35 and Wilm’s tumor39. Interestingly, the chro-
mosomal region of the cPCDH genes (5q31) is frequently deleted
in basal-like IBCs and is a defining feature of core basal IBC
tumors40,41. cPCDHs are molecules involved in cell-cell adhesion
and have also been shown to inhibit cell growth and suppress
oncogenic pathways, features consistent with a role as tumor
suppressors42. Loss of intraepithelial cell-cell adhesion is a key
feature during tumor cell invasion43,44 and it is tempting to
speculate that loss of cPCDH tumor suppressor function through
LRES may contribute to driving the invasion process specifically in
basal-like cancer.
During tumor evolution, transition from DCIS to an invasive

stage may represent an evolutionary bottleneck which may also
impact tumor subtype1,45. To study subtype evolution and
plasticity during tumor progression and invasion, we would need
consecutive biopsies from the same patients. Nonetheless, our
study includes sufficient number of samples to be able to
compare subtype characteristics between DCIS and IBC as groups
for each subtype, separately. We show that the difference
between DCIS and IBC is greater for the basal-like subtype
compared with all other subtypes. Despite that the intrinsic
subtypes were defined in IBC, we believe that basal-like DCIS are
truly basal-like since firstly, the PAM50 subtyping showed that
they correlate the most to the basal-like centroid, albeit to a lower
degree than IBC. Secondly, several genomic features of basal-like
tumors are also present in basal-like DCIS, including low degree of
differentiation, high expression of basal keratins, low expression of
luminal genes and expression of genes indicative of immune cell
infiltration. Despite these similarities, basal-like DCIS may not be
precursors to basal-like IBC. Basal-like breast cancer is an
aggressive disease that develops rapidly. Especially the core basal
tumors have an aggressive phenotype with poorer prognosis than
non-core basal tumors30,46. Although all core basal invasive
tumors at some point must have progressed from an intraductal
stage, the transition from DCIS to IBC may occur so rapidly that the
probability of “capturing” such tumors as DCIS is very small, as also
proposed by Kurbel47. This hypothesis is supported by the fact
that basal-like invasive breast tumors have fewer concurrent DCIS
lesions compared with other subtypes48,49. Our results indicate
that DCIS in general possesses characteristics that resemble those
of invasive tumors of the same subtype. It is therefore
uncontroversial to hypothesize that a DCIS with basal-like
characteristics will progress to a basal-like cancer with its well-
known characteristics. However, our results indicate that many
basal-like DCIS resemble the less aggressive non-core basal
invasive tumors and hence, we therefore speculate that patients
diagnosed with basal-like DCIS do not carry high-risk tumors.
Potentially may they be slow-growing tumors that never progress
to an invasive tumor in the life-time of the patient50. This may
have profound impact on how we perceive DCIS and not least,
how they should be treated.
A limitation of this study is the lack of follow-up information on

recurrence or survival. Hence, our results need to be validated in a
DCIS cohort with more extensive clinical follow-up information.
Also, the subtype stratified approach that we have employed,
reduces the number of samples in each group which may
preclude statistically significant results. The limited availability of
small and low-grade DCIS for molecular analysis may artificially
skew the cohort towards large or high-grade DCIS that may not be

representative of the DCIS present in the population. Nevertheless,
our study has reaffirmed the necessity of taking a subtype specific
approach when studying progression of DCIS and we have
demonstrated that there are substantial differences between
basal-like DCIS and IBC that may question basal-like DCIS as
precursor lesions to invasive breast carcinoma.

METHODS
Tissue samples
This study includes gene expression, DNA copy number and DNA
methylation data from 57 DCIS and 313 IBC cases. All samples were
obtained from individual patients, i.e. none of the samples represents
paired (synchronous) lesions from the same patient. DCIS lesions are from
patients with no concurrent invasive disease (“pure” DCIS). Samples were
fresh frozen tissue collected from three different patient cohorts, of which
two (“Uppsala” and “Oslo2”) are previously published51–56. The third
cohort, (“Milan”) has not been previously published and includes fresh
frozen tissue from a total of 34 breast tumors. Histopathological evaluation
of H&E stained tissue sections was performed by a trained pathologist.
Normal breast tissue samples were obtained as core biopsies from women
without breast cancer57. All women provided a signed informed consent
for future biomarker research studies. This study complies with the
Declaration of Helsinki, and was approved by the each institution’s internal
review and ethics board (approval numbers: 2016/433 (Oslo, Norway), PG/
U-25/01/2012-00001497 (Milan, Italy), 2005/118 (Uppsala, Sweden).

DNA and RNA isolation
Total RNA and DNA was isolated using the QIAcube system with the
AllPrep DNA/RNA Universal Kit (cat.no. 80224, Qiagen, Hilden, Germany)
with 30mg tissue as input. The tissue was manually minced with a scalpel
on ice followed by homogenization using TissueLyzer LT and Qiashredder
(Qiagen). RNA and DNA extraction was performed according to the
protocol provided by the supplier. Nucleic acid concentrations were
measured on a NanoDrop ND-1000 spectrophotometer (Thermo Scientific,
Wilmington, DE, USA) and RNA integrity was analyzed using Agilent 2100
Bioanalyzer (Agilent Technologies, Santa Clara, USA).

Gene expression analysis
To obtain whole genome expression data58, Agilent Sureprint G3 Human
Gene Expression 8 × 60 K microarrays (G4851A) (Agilent, Technologies,
Santa Clare, USA) with the Low Input Quick Amp Labeling protocol were
used. RNA input was 40 ng and Cy3 was used as fluorophore. Quality
Control (QC) was performed in Agilent’s Feature Extraction software. From
the Milan cohort, five invasive breast carcinomas and 28 DCIS were
successfully analyzed and passed all quality control criteria while one DCIS
failed QC. As a control, one sample of commercially available normal breast
RNA (Ambion Human Breast Total RNA, Thermo Fisher Scientific,
Wilmington, DE, USA) was included throughout the whole experimental
pipeline. The same microarray platform had been used for the two other
patient cohorts. Data from all three cohorts were normalized together
using quantile normalization. For genes represented with more than one
probe, mean expression was calculated to obtain one gene expression
value per gene.

Genome-wide methylation
DNA methylation data59 was obtained using the Illumina Infinium
HumanMethylation450K microarray (Illumina, Inc. CA, USA) following the
manufacturer’s instructions. Data was preprocessed using subset quantile
normalization60. The resulting β value represents the fraction of
methylated DNA molecules at a specific CpG. Quality control of β values
was performed as presented by Wilhelm-Benartzi et al.61: β-values with
detection p-values higher than 0.05 (0.225% of the β-values) were replaced
by NA. CpG sites where more than 25% of the β values failed quality
control, were removed from the analysis resulting in 436 162 reliable CpGs
in the final dataset. NA values were imputed using the R-function impute.
knn with default parameters.
For the initial part of the analysis we obtained methylation profiles by

performing PCA separately for each gene. All CpGs within the gene or
50 kB upstream or downstream of the gene were included. The value of
the first principal component represents the gene’s methylation profile.
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This method allows for obtaining one value per gene per sample, while
preserving as much information as possible from the CpGs representing
each gene.

Copy number aberrations analysis
Copy number data62 was obtained using Affymetrix SNP 6.0 arrays
(Affymetrix, Santa Clara, CA, USA) at Aros Applied Biotechnology (Aarhus,
Denmark) following the manufacturer’s instructions. CEL-files were
processed using the PennCNV-Affy library63 with the HapMap samples as
reference set64 and corrected for GC content65. The data was segmented
using the PCF algorithm with arguments kmin= 5, gamma= 100 in the R
copynumber package66. The copy number of the segment overlapping the
gene the most was set as a gene’s copy number. Ploidy and tumor
percentage were calculated using ASCAT28. In short, ASCAT can accurately
dissect the allele-specific copy number of solid tumors, and simultaneously
estimate both tumor ploidy and non-aberrant cell admixture. Genome
instability index (GII) was derived by calculating the fraction of the genome
affected by copy number change.

PAM50 centroid-based subtype method for breast cancer
PAM50 subtyping, as described in Parker et al.27, uses gene centered
expression data from 50 genes. Using Spearman correlation, we correlated
gene expression data for each tumor sample to the published centroids
and assigned the subtype with the highest correlation coefficient. Note
that this PAM50 classifier requires the cohort to have a similar proportion
of ER-positive tumors as the original training cohort67. In the training
cohort, about 60% of tumors are ER-positive and gene centering for each
gene can be described as follows:

Meanall patients ¼ 0:6�MeanERþpatients þ 0:4�MeanER�patients

Since the composition of ER-positive patients is higher than 60% in cohorts
included in this study, we adjusted our cohort to the training cohort, by
calculating the mean for the ER-positive and ER-negative tumors
separately, before calculating the overall mean according to the formula
above. ER-status was determined by using the ESR1 gene expression value
which showed a distinct bimodal distribution enabling a reliable cut-off to
be set. Consistency in ER status derived by IHC and ESR1 expression was
high, with 98% of the tumors (320/327) concurring. Progesterone receptor
(PR) status was derived by PGR-expression the same way as for ER
(Supplementary Data 1).

Gene expression-based tumor scores
Proliferation scores were calculated using an 11-gene proliferation
signature68 and EMT scores were calculated using an EMT signature based
on four adhesion genes (weighted negatively) and seven EMT-genes
(weighted positively) (Supplementary Data 1): For each gene and sample, a
standard (Z) score was calculated, then the proliferation/EMT-scores were
obtained for every tumor by calculating the mean of all Z-scores across all
genes in the signature. Differentiation scores were derived using the
differentiation predictor described in Prat et al.69 and immune and stromal
infiltration scores were calculated using ESTIMATE70.

Differential methylation
Genes differentially methylated between DCIS and IBC where identified
using Mann–Whitney U tests separately for each subtype. False discovery
rate was used to correct for multiple testing. Cut-offs for identifying
differentially methylated genes were set at both FDR and effect size
(defined as the absolute difference in median between DCIS and IBC) to
increase the likelihood of finding the biological relevant differences
between the two groups. We included genes with FDR < 0.05 and effect
size within the top 20% (corresponds to a cut-off > 0.127). Mean cPCDH
methylation was calculated for each tissue sample (tumor and normal
tissue) as the mean of standard (Z) scores for all relevant CpGs.

Statistical and bioinformatic analyses
All statistical analyses were conducted in R71 unless otherwise specified.
Heatmaps were created using the R package Complex Heatmaps72 and
other plots were created using the package ggplot273. Fisher exact tests
were used to compare distribution of subtype and ER-status between the
two tumor types. Mann–Whitney U-tests (two-sided) were used to
compare tumor content, GII, proliferation scores, differentiation scores,

immune scores, stromal scores, EMT scores and mean cPCDH methylation
between DCIS and IBC separately for each subtype. Correlation between
cPCDH methylation and tumor percentage was calculated using spearman
correlation.

Reporting summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this paper.
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