
HAL Id: cea-04372483
https://cea.hal.science/cea-04372483

Submitted on 4 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the implementation of a lattice-based revocable
hierarchical Ibe

Mikael Carmona, Doryan Lesaignoux, Antoine Loiseau

To cite this version:
Mikael Carmona, Doryan Lesaignoux, Antoine Loiseau. On the implementation of a lattice-based
revocable hierarchical Ibe. SECRYPT 2023 - 20th International Conference on Security and Cryptog-
raphy, Jul 2023, Rome, Italy. pp.617-623. �cea-04372483�

https://cea.hal.science/cea-04372483
https://hal.archives-ouvertes.fr

On the Implementation of a Lattice-Based Revocable
Hierarchical Ibe

Mikael Carmona, Doryan Lesaignoux and Antoine Loiseau
Univ. Grenoble Alpes, CEA, Leti, MINATEC Campus, F-38054 Grenoble, France

Keywords: Revocable Hierarchical Identity-Based Encryption, Lattice-Based Cryptography, Software Implementation,
Performances.

Abstract: Identity Based Encryption (IBE) is a serious alternative of Public Key Infrastructure when considering
distributed systems such as wireless sensors network, multi-site enterprise, manufacturing sites, and so on. In
particular, Revocable Hierarchical IBE (RHIBE) provides all functionalities required for an operational
cryptography deployment. This paper proposes a parameter analysis, and a software implementation of one
of the most advanced post-quantum RHIBE. The objective is to quantify the performances in software and to
provide a concrete set of parameters for a given level of security. For the best of our knowledge, this was not
done from previous works that only provide order of magnitudes about parameters and instances sizes.
Regarding applications and from today, post-quantum RHIBE lead to very large keys and ciphertext size,
letting it difficult to consider such cryptosystems for constraint devices.

1 INTRODUCTION

Identity Based Encryption (IBE) is an alternate to
Public Key Infrastructures (PKI) for deploying
asymmetric cryptography. Based on centralized
master public and master private keys, it avoids the
use of certificates by using the identity directly (i.e.
an identifier) of the recipient as a public key to
encrypt messages. Public keys, secret keys and
decryption keys are derived from the master keys
through a hierarchal structure. Each node of the
structure is able to enroll and revoke new devices
belonging to its substructure. This appears useful to
deploy cryptography in IoT-Cloud context, for
example. IBE simplifies the deployment by avoiding
need of certificates and by only requiring to the
sender the knowledge of the receiver identifier.

IBE state-of-the-art starts in 1984 with Shamir’s
pioneer article (Shamir, 1984). First practical
cryptosystems emerge in 2001 with Weil’s pairing
(Boneh and Franklin, 2001) and residues (Cocks,
2001). Then, several cryptosystems appear to include
more functionalities such as delegation in
Hierarchical IBE (HIBE) in (Gentry and Silverberg,
2002) and Revocation (RIBE and RHIBE) in
(Boldyreva and al., 2008).

The emergence of the quantum threat, breaking
asymmetric cryptography, hurry the NIST to engage
a transition to quantum-resistant cryptography (NIST,
2017). Cryptosystems standardized first around 2024
will be key encapsulation mechanisms and the digital
signatures. In continuity, other cryptosystems such as
IBE are following this transition. However, the post-
quantum transition comes with its issues. The sizes of
keys and ciphertexts of post-quantum (R)(H)IBE are
significantly higher than classical schemes.

From today, it exists quite light ideal-lattice-
based IBE (Ducas and al., 2014) compliant with IoT
devices. However, such post-quantum IBE does not
provide today the functionality of revocation and
delegation. On the other hand, post-quantum RHIBE
are too heavy for constrained devices but have the
required functionalities. However, they are compliant
with cloud resources and it is interesting to have a
better quantification of their performances,
parameters setting and features (sizes of instances).
From the authors' knowledge, only orders of
magnitude are available regarding such post-quantum
RHIBE.

The purpose of this paper is to study one of the
most advanced post-quantum RHIBE (Wang and al.,
2019) named WZH+ scheme from authors’ names.
The objective is to provide concrete parameter sets
and to deduce the sizes and the performances of the

Carmona, M., Lesaignoux, D. and Loiseau, A.
On the Implementation of a Lattice-Based Revocable Hierarchical Ibe.
DOI: 10.5220/0012047800003555
In Proceedings of the 20th International Conference on Security and Cryptography (SECRYPT 2023), pages 617-623
ISBN: 978-989-758-666-8; ISSN: 2184-7711
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

617

scheme with a real implementation on a target
dedicated to embedded applications. The results
highlight the heavy aspect of the scheme that is today
only applicable in a cloud context and cannot be
deployed on IoT devices.

The paper is organized in two sections. Section 2
recalls some basics about IBE. A brief survey of post-
quantum schemes (R)(H)IBE is presented and
highlights the WZH+ as the most efficient post-
quantum RHIBE. Section 3 introduces a software
implementation of the WZH+ with an analysis of the
parameters generation and performances.

2 (R)(H)IBE: CONCEPT AND
POST-QUANTUM SCHEMES

A (H)IBE can be seen as a centralized system based
on a master public key and a master secret key. PKG
(Public Key Generator), also called KGC (Key
Generator Center), generates a master key pair. From
the master secret key, a secret key is derived level-by-
level for each user in the hierarchy. Furthermore, all
users can encrypt a message with the identity of the
recipient and the master public key. The hierarchical
structure is fully dependent on the application
(wireless sensor networks, multi-site enterprise,
manufacturing site, etc.).

A (H)IBE is composed of four primitives:
• Setup for generating the master public key 𝐏𝐏 and the master private key 𝐌𝐊
• Derive (sometimes call KeyGen for a

simple IBE) for secret key generation 𝐒𝐊
from the parent to the children.

• Encrypt for ciphering a message from a user
to another by using the identity of the
recipient

• Decrypt to decrypt a message using the
secret key 𝐒𝐊.

It is important to notice that a (H)IBE does not include
the primitive managing the transmission of the derive
secret key from the generator (the parent) to the user
(the child). The (H)IBE avoids the use of certificates
by dealing only with identity to encrypt messages.
The constraints are mainly deferring on the PKG,
which has to be strongly secure with respect to all
known attacks.

As for all centralized systems, a (H)IBE is not
flexible when a user/an object has to be revoked. The
first approach is to regenerate the entire master and
users keys, except for revoking ones. This full
regeneration of keys is not applicable in practice. In
2008 (Boldyreva and al., 2008), introduce a

mechanism allowing revocation for an IBE. Such
cryptosystems are called R(H)IBE for Revocable
(H)IBE. In practice, a R(H)IBE is composed of the
four primitives composing a (H)IBE and three new
primitives:

• KeyUp to generate the update of the
decryption key when a revocation occurs.

• GenDK to update the decryption key which
uses the secret key 𝐒𝐊 and the update
KeyUp.

• Revoke to update the revocation list
RHIBE and PKI provide the same hierarchical and
revocation features. However, RHIBE gives the
simplest key management, which is balanced by key
sizes.

The security of a (R)HIBE relies on the following
issues: the master public key must not leak
information on the master private key, the ciphertext
confidentiality, and, the decryption key of a child
node shall not leak information on the parent secret
key. (Seo and Emura, 2013) introduced a new
security notion: the resilience regarding decryption
key exposure (DKER). This indicates that if a
decryption key is corrupted at a given time and the
associated users are revoked, this does not
compromise future exchanges between unrevoked
users.

The ability for a (R)(H)IBE to satisfies all these
conditions depends on assumptions of the underlying
problems defining the scheme. There exists two types
of models: the Standard model based on NP-Hard
problems, and, the Random Oracle Model (ROM)
where the security is based on the indistinguability of
the output of a given function/oracle (a hash function
in many cases) with a random uniform instance.

In (Wang and al., 2019), the coexistence of two
models (standard and ROM) is due to the confidence
of the Standard Model is higher than the Random
Oracle Model but this latter provides more efficient
and compact IBE. In particular, for this work, we
study the parameters setting and performances in
software of the WZH+ in the ROM version.

3 STUDY OF WZH+ SCHEME

3.1 Basics on Lattices for (R)(H)IBE

A lattice Λ of ℝ௡ is a discrete additive subgroup of ℝ௡. Λ is spanned over ℤ by a set of 𝑚 vectors 𝒂଴, … , 𝒂௠ିଵ of ℝ௡, where 0 < 𝑚 ≤ 𝑛, and define a
basis of Λ . Let 𝑨 ∈ ℝ௡×௠ be the matrix whose
columns are vectors 𝒂଴, … , 𝒂௠ିଵ. By definition Λ(𝑨)

SECRYPT 2023 - 20th International Conference on Security and Cryptography

618

is the lattice of ℝ௡ spanned by the columns of 𝑨 .
Many post-quantum (R)(H)IBE schemes use full rank
lattices Λ(𝑨).

Let 𝑞 an integer and 𝛽 > 0 a real, a trapdoor of a
matrix 𝑨 is a non-zero vector 𝒙 ∈ ℤ௠ such that 𝑨𝒙 =𝟎௡ mod 𝑞 and ห|𝒙|ห < 𝛽 whereห| . |ห is the Euclidean
norm. For some tuples (𝑛, 𝑚, 𝑞, 𝛽) , finding a
trapdoor is a NP-complete problem. A strong
trapdoor is a matrix 𝑻 ∈ ℤ௠×௠ such that 𝑨𝑻 =𝟎௡×௠ mod 𝑞 and all vectors of 𝑻 have a norm lower
than 𝛽. We denote by (𝑨, 𝑻) = 𝐓𝐫𝐚𝐩𝐆𝐞𝐧(𝑛, 𝑚, 𝑞, 𝛽)
a primitive generating a random uniform matrix 𝑨 ∈ℤ௤௡×௠ and a strong trapdoor 𝑻 of 𝑨. This primitive is
common in lattice-based cryptography for generating
a couple of public key (𝑨) / private key (𝑻).

For a lattice-based HIBE, the delegation relies on
generating a random and strong trapdoor 𝑻′ for a
children node from the strong trapdoor 𝑻 of the
parent node. In the ROM, 𝑻 and 𝑻′ are related to
matrices 𝑨 and 𝑨. 𝑹 , respectively, where 𝑨 is a
random uniform matrix and 𝑹 is a pseudo-random
uniform matrix depending on the identity of the node.
The generation of 𝑹 uses the ROM. The primitive
generating 𝑻′ knowing 𝑻 , 𝑨 and 𝑹 , is commonly
called BasisDel (Agrawal and al., 2010).

Two other important notions in lattice-based IBE
are the Hermite Normal Form (HNF) (Micciancio and
Goldwasser, 2002) and the Gram-Schmidt
Orthogonalization (GSO).

For two given matrices 𝑩 and 𝑺 it exists an
algorithm 𝑨 = 𝐓𝐨𝐁𝐚𝐬𝐢𝐬(𝑩, 𝑺)that computes a basis 𝑨 of Λ(𝑩) such that ฮ𝑨෩ฮୋୗ ≤ ฮ𝑺෨ฮୋୗ. This algorithm
allows generating basis of a lattice with a controlled
Gram-Schmidt norm. This is fundamental for
Gaussian sampling as introduced in the next
paragraphs.

By definition, the discrete Gaussian distribution 𝐷ఙ,𝒄,ஃ on a lattice Λ, with standard deviation 𝜎 > 0
and center 𝒄 ∈ ℝ௡ is defined as 𝐷ఙ,𝒄,ஃ(𝒙): =𝜌ఙ,𝒄(𝒙)/𝜌ఙ,௖(Λ) for all 𝒙 ∈ Λ with 𝜌ఙ,௖(𝒙): =exp(−𝜋‖𝒙 − 𝒄‖ଶ/𝜎ଶ), and 𝜌ఙ,௖(Λ): = ∑ 𝜌ఙ,௖(𝒙) 𝒙∈ஃ .
We will note 𝒙 ← 𝐷ఙ,𝒄,ஃ a variable of distribution 𝐷ఙ,𝒄,ஃ. Discrete Gaussian distribution is widely used
in lattice-based cryptography to define the LWE.

A strong property of discrete Gaussian vector 𝒙 ∈Λ is the control of the norm: the probability that ‖𝒙 − 𝒄‖ < 𝜎√𝑛 writes 1 − 𝜖(𝑛) where 𝜖(𝑛) is a
negligible function with respect to 𝑛.

A Gaussian sampler is a primitive 𝒙 =𝐒𝐚𝐦𝐩𝐥𝐞𝐆(𝑩, 𝜎, 𝒄) where 𝒙 ← 𝐷ఙ,𝒄,ஃ and where 𝑩 is
a basis of Λ. In this work, we use the GPV sampler
(Gentry, 2008) that requires a condition on 𝜎 and

‖𝑩‖ୋୗ to converge: 𝜎 ≥ ‖𝑩‖ୋୗ 𝜂ఢᇱ (ℤ) with: 𝜀 =2ିఒ/(2𝑛) , 𝑛 the dimension of lattice 𝛬(𝑩), 2ିఒ the
statistical distance between 𝐷ఙ,௖,ஃ and the distribution
obtained from the sampler and 𝜂ఢᇱ (ℤ) proportional to
the smoothing parameter of ℤ.

A pre-image of a vector 𝒖 ∈ ℤ௤௡ by a matrix 𝑨 ∈ℤ௤௡×௠ is a vector 𝒆 ∈ ℤ௤௠ such that 𝑨𝒆 = 𝒖 mod 𝑞 .
We denote by 𝒆 = 𝐒𝐚𝐦𝐩𝐥𝐞𝐏𝐫𝐞(𝑨, 𝑻, 𝒖, 𝜎) the
primitive generating a random pre-image of 𝑨 and 𝒖
with distribution 𝐷ఙ,𝟎,ஃ(𝑻) and using a trapdoor 𝑻 of 𝑨.

Finally, we introduce the LWE (Learning With
Error) problem mainly used in IBE for the encryption
primitive. A LWE instance is based on an uniform
random public matrix 𝑨 ∈ ℤ௤௡×௠ where 𝑚, 𝑛 and 𝑞
are strictly positive public integers, a random uniform
secret vector 𝒔 ∈ ℤ௤௠ , a random discrete Gaussian
(error) vector 𝒆 ∈ ℤ௤௡ of known standard deviation 𝛼
and the public vector 𝒕 = 𝑨 𝒔 + 𝒆 ∈ ℤ௤௡. LWE is NP-
hard if 𝛼𝑞 > 2 √𝑛 (Regev, 2009). It is important to
know that the concrete security (i.e., computational
complexity to solve a LWE instance) of LWE can be
evaluated from dedicated programs such as LWE-
Estimator (Albrecht, 2015, and dedicated website).

3.2 Parametrization of the WZH+

The WZH+ studied in this paper is a lattice-based,
RHIBE in the ROM (Wang and al., 2019).

WZH+ scheme is parameterized by:
• 𝝀: level of security, specific to the

application
• 𝒅 : maximum depth of the hierarchal

structure, specific to the application
• 𝒏 : number of rows of the public key,

strongly related to the level of security 𝜆.
• 𝒒: arithmetic modulus
• 𝜶: standard deviation of discrete Gaussian

variables in LWE instances
• 𝒎 : determines the private key size and

parameter for TrapGen
• (𝝈𝒊)𝒊ୀ𝟎,…𝒅 : standard deviations for the

discrete Gaussian variables
• 𝑵: maximum of child nodes for one parent

node
In a complement, we denote 𝜏ℓ: =𝜎ℓ√𝑚𝜔(ඥlog(𝑚)) , the standard deviation used to

sample Gaussian secret vectors.
The parameters of a cryptosystem are constrained

in four ways: the application, functionality, level of
security and performances. For the WZH+ the
parameters setting needs a specific care to fulfill all

On the Implementation of a Lattice-Based Revocable Hierarchical Ibe

619

requirements. Note that (Wang and al., 2019) only
gives an order of magnitude to set the parameters. In
this section, we provide concrete values for the
parameters of WZH+ for two commonly used levels
of security. The five conditions driving the
parameters constraints are as follows:

1. Achieving a given level of security λ.
2. Be in the conditions where LWE is NP-hard
3. Having a low decryption failure rate
4. Ensuring the convergence of SampleG
5. Ensuring the functionality of TrapGen

About condition 1, the level of security 𝜆 is related to
parameters 𝑛, 𝛼 and 𝑞 . 𝜆 is the computational
complexity to solve LWE instances parametrized by 𝑛, 𝛼 and 𝑞 . This writes 𝜆 = 𝐋𝐖𝐄_𝐄𝐬𝐭(𝑛, 𝛼, 𝛼𝑞)
where 𝐋𝐖𝐄_𝐄𝐬𝐭 is the best known algorithm for
solving LWE. 𝑛, 𝛼 and 𝑞 has to be to choose to
achieve a level of security greater or equal to 𝜆 .
Furthermore, they are constraints by the inequality 𝛼𝑞 ≥ 2√𝑛 ensuring that LWE can be reduced to the
NP-hard problem SVP (condition 2). Condition 3
involves parameters used in a Gaussian sampler and
writes 𝛼[1 + 𝑚(𝜏௅ + 2 ∑ 𝜏௜ିଵ௜ୀଵ…௅)] < 1/5 with 𝜏௜ = 𝜎௜√𝑚log (𝑚) In addition, the convergence of
Gaussian sampler (condition 4) is verified with 𝜎ℓ =𝑚ଵ.ହℓାଵ.ହlog(𝑛)ଶℓାଶ.ହ . Finally, parameters 𝑚, 𝑛 and 𝑞 are strongly linked by the condition ensuring the
functionality of TrapGen from (Micciancio and
Peikert, 2012) 𝑚 = 2𝑘𝑛 ceil[log(𝑞)] where 𝑘 is an
arbitrary strictly positive integer. This corresponds to
condition 5.

From the conditions recalled above, it is easy to
see that setting all parameters is highly constrained.
We develop a configuration setting software
providing parameters set for a given level of security 𝜆 and depth 𝑑. The used degrees of freedom are 𝑛, 𝛼
and 𝛿. This latter, introduced in (Wang and al., 2019)
is such that 𝑚ᇱ = 6𝑛ଵାఋ and 𝑚 the closest integer of 𝑚ᇱ satisfying condition 5 (equation 4) with the same 𝑞 used for 𝑚 . Precisely and firstly, 𝑞 is set at 𝑞 =2𝛼ିଵ√𝑛 ensuring condition 2. Then, a value of 𝑛 and 𝛿 are chosen arbitrarily (in practice, the use of LWE
estimator allows initializing the first values). 𝑚 is
initialized to 6𝑛ଵାఋ and 𝛼 such that inequality of
condition 3 is equality. This is possible because the 𝜎௜
only depend on 𝑚, 𝑛 and 𝑞 which are determined. If
the level of security is not achieved, we increase 𝑛
until achieving it. Then, we decrease 𝛿 and 𝛼 to
ensure that condition 3 is still valid. Then, we find
integer 𝑘 verifying that 2𝑘𝑛log(𝑞) is the closest to 𝑚 = 6𝑛ଵାఋ . Then, we modify 𝑚 = 2𝑘𝑛log(𝑞) and
check those conditions 3 and 4 are still valid. If it is

not the case, variations on 𝛿 and 𝛼 have to be done
until satisfying all conditions.

Below, we first give two practical parameters set
(i.e., respecting conditions listed above) for two
security levels 𝜆. In table 2, we provide instances size.
This table reveals that for security level that is
commonly used in applications, the sizes of instances
are high. They cannot be considered for embedded
applications but they are compliant with resources
used for cloud computing.

Table 1. 𝒏 = 𝟒𝟎𝟗𝟔, 𝑳 = 𝟐, 𝝀 = 𝟏𝟎𝟓, 𝒌 = 𝟒 𝑚 = 2752512 𝜎௜ = [2277964473455.1304, 1497970532864220383412224, 985052990719398563678057032830681088] 𝜏௜ = [80848020546021168, 53164987351470310553961889792, 34960854464866698234190555100447493849088] 𝛼 = 4.0108458310149454𝑒 − 49 log(𝑞) = 168 𝑞 = 31913467979797562669220565259669898554220729 2834747
 𝒏 = 𝟖𝟏𝟗𝟐, 𝑳 = 𝟐, 𝝀 = 𝟐𝟗𝟗, 𝒌 = 𝟔 𝑚 = 8847360 𝜎௜ = [16035367938144.068, 71315869687241918377885696, 317170974115877910165520524985791152128] 𝜏௜ = [1100681478931855232, 4895182774817576965287012466688, 217708890878450861416777359785350168188026 88] 𝛼 = 2.0261448549063876𝑒 − 52 log(𝑞) = 180 𝑞 = 8716268720886410993567486135302925431631690 55281512793

Table 2: Sizes for a given security level.

Size in bytes

𝐿 = 2, 𝑛 = 4096, 𝜆 = 105

𝐿 = 2, 𝑛 = 8192, 𝜆 = 299 𝐏𝐏 (2𝑚 + 1)𝑛log(𝑞) 5.4 𝑒ଵଵ 3.3 𝑒ଵଶ𝐌𝐊 2𝑚ଶ 2.5 𝑒ଵଶ 2.0 𝑒ଵଷ 𝐒𝐊𝐈𝐃 (2𝑚 + log(𝑁))𝑚 2.5 𝑒ଵଶ 2.0 𝑒ଵଷ𝐊𝐔𝐈𝐃,𝐭 (2𝑑 + log(𝑁))𝑚 2.0 𝑒଺ 5.6 𝑒଺ 𝐃𝐊𝐈𝐃,𝐭 (2𝑑 + 1)𝑚 2.0 𝑒଺ 5.6 𝑒଺
CT (2𝑑 + 1)𝑚log(𝑞) 3.3 𝑒଼ 1.0 𝑒ଽ

3.3 Implementation

The objective of this implementation of the WZH+ is
to quantify the performances in software and to
highlight implementation issues.

The implementation is in Python and we are using
different libraries:

• Cypari2 for linear algebra, such as the
HNF (Cypari2, 2022).

SECRYPT 2023 - 20th International Conference on Security and Cryptography

620

• Numpy for random continuous gaussian
sampling (Numpy, 1995).

• Anytree for the revocation module
(Anytree, 2020).

• Hashlib for hash primitives (Hashlib,
2001)

Our implementation has 256 bits of precision by
default for basic operations such that scalar product
or Euclidean norm computation. However, as
explained below, the precision needs to be strongly
increased within GSO due to numerical instabilities.
Table 3 summarizes the main primitives used for the
implementation.

3.3.1 SampleGaussian

For Gaussian sampling we use the GPV Sampler
(Gentry and al., 2008) instead of other samplers for
general lattices (Peikert, 2009) and (Micciancio and
Peikert, 2012). This sampler is easy to implement and
the convergence condition is part of the parameters
setting (Wang and al., 2019). A specific analysis is
required for two primitives called by the sampler:
GSO and SampleZ. This latter is the Gaussian
sampling in one dimension i.e., when the lattice is ℤ.

To deal with SampleZ and high value of the
standard deviations and centers, we used the Peikert
sampler (Peikert, 2009) applied in dimension 1. This
sampler remains on rounding a continuous Gaussian
random variable: if 𝑥 ~ 𝑁(0,1) then 𝑐 + 𝜎 ×round(𝑥)~𝐷ℤ,௖,ఙ where round௥(𝑥) = round(𝑥/𝑟) × 𝑟 with 𝑥, 𝑟 real. The convergence condition of
this sampler writes: 𝜎ଶ > 𝑟ଶ = 1. It is verified thanks
to the high standard deviations 𝜎 used in the scheme.
Using higher 𝑟 > 1 for rounding is possible for an
optimized implementation.

The rounding is realized with primitive floor of
Cypari requiring to maintain at a high level the
accuracy during the computation.

The GSO presents strong numerical instabilities.
During implementation tests, it was detected through
the Gaussian sampling which provides vectors with
norms that do not satisfy the expected bound because
of the instability of the GSO. This is a well-known
problem and is due to the iterative structure of the
computation. It has been shown in (Giraud and al.,
2005) that applying twice the GSO to a matrix
optimized for the stability of the computation.
However, this is not enough to stabilize the GSO
computation because of the high modulus 𝑞 involved
in the scheme (the size of the matrix is not a main
parameter rather than the size of numbers in the
matrix).

A lack of precision in GSO leads to instability in
the Gaussian sampler SampleGaussian, especially
when it is used in a primitive SamplePre with a non-
zero mean. The stability of primitive
SampleGaussian depends on precision within the
GSO of the use basis. When basis coefficients are
bigger, its GSO need to be computed with even more
precision to guarantee stability Gaussian sampler. In
our implementation of the WZH+ with a depth of 2,
we used precision of 2048 bits in the GSO
computation for first-level Derive and KeyUp of
KGC, 3000 bits for second-level Derive and first-
level KeyUp and 4096 bits for second-level DKGen.

3.3.2 BasisDel

For BasisDel, we use the procedure described in
(Agrawal and al., 2010). Implementation of primitive
ToBasis follows original construction in lemma 7.1
of (Micciancio and Goldwasser, 2002). This
algorithm performs matrix calculations in ℤ. It uses
SolveRight primitive that find an integer matrix 𝑿
satisfying the linear system 𝑻𝑿 = 𝑺 where 𝑻 and 𝑺
are known square matrix. Cypari didn’t provide such
a primitive so we implemented SolveRight from
method written in (Hung and Rom, 1990).

Table 3: Summary of all primitives.

Primitive Implementation
Linear Algebra

HNF Cypari
GSO Self-implemented
SolveRight mod
q

Cypari

SolveRight in ℤ Hung and Rom, 1990
MatrixInversion Cypari

Lattice-Cryptography
SampleZ Peikert, 2009
SampleGaussian Gentry, 2008
TrapGen Miccianci and Peikert, 2012
BasisDel Agrawal and al., 2010
ToBasis Micciancio and Goldwasser, 2002
RandBasis Cash and al., 2010
SamplePre Gentry, 2008

General-Cryptography
Seed generation TRNG
Seed extension SHAKE-256
Random Oracle SHAKE-128

Tree
CS.Setup Anytree
CS.Assign Anytree
CS.Path Anytree
CS.Cover Anytree

On the Implementation of a Lattice-Based Revocable Hierarchical Ibe

621

Primitive RandBasis, introduced in (Cash and
al., 2010), is used to randomizes basis output by
ToBasis avoiding deterministic construction of
trapdoors. RandBasis outputs, from a given basis, a
new basis that is random with discrete Gaussian
random vectors. It relies on several (but bounded with 𝜎√(𝑚)) calls to Gaussian sampling until generating
a set of linearly independent vectors.

3.4 Performances Analysis

The main feature analyzed for performance analysis
is the timing of each primitive. Due to the huge size
of instances and the global computational complexity,
the performances are computed for a non-practical
(i.e., very low) security level (< 20 bits) with: 𝑑 = 2,𝑛 = 2 , 𝑘 = 2 , 𝑚 = 288 and 𝑞 =79466497377483581 . Illustrations for security
level > 80 bits leads to unpractical computational time
and memory sizes. The implementation run on an
Intel(R) Xeon(R) Platinum 8168 CPU @ 2.70GHz.
To get execution time, we took the average of the
times recorded on 50 executions for each primitive.
Table 4 below provides the execution time of all
primitives of the scheme. The primitives Derive,
KeyUp and DKGen are highly time consuming.
However, in real deployment, these primitives are
called sparsely during the operating lifetime of the
application. To highlight the bottlenecks leading to
such time performances, a specific look to Derive,
KeyUp, DKGen primitives shall be done.

Table 4: Execution of the main primitive of the scheme for
the security level of (< 20 bits) and 2 hierarchical levels.

Primitives Execution time
Setup 5s

Derive 𝑑 = 1 5min17
Derive 𝑑 = 2 10min19
KeyUp KGC 1min50

KeyUp 𝑑 = 1 6min44
DKGen 𝑑 = 2 5min11

Encrypt 15 ms
Decrypt 0.65 ms

For DKGen at the second level (𝑑 = 2), it
appears that the main bottlenecks are the following
(linear algebra and lattices) primitives: Inverse matrix
(25%), GSO (14.3%), HNF (42%) and Trapdoor
Generation (15.7%). By doing the same analysis on
other primitives such as KeyUp and Derive, GSO and
HNF also appears as the main and common
bottlenecks.

4 CONCLUSIONS

Post-quantum RHIBE are still heavy schemes, hard to
exploit except is some contexts such as cloud
computing. The proposed implementation provides a
complete parametrization strategy of a complex
scheme, the WZH+ in the ROM model, which is the
most efficient and compact post-quantum RHIBE
from today. The bottleneck (HNF) and critical
operations (such as GSO) require a specific attention
for performance issues. It exists acceleration strategy
that does not avoid the main issue regarding lattice-
based IBE: the size of the instances.

REFERENCES

Agrawal, S., Boneh, D., Boyen., X. (2010). Lattice basis
delegation in fixed dimension and shorter ciphertext
hierarchical IBE, In CRYPTO 2010.

Albrecht, R.M., Player, R., Scott, S. (2015). On the
concrete hardness of Learning with Errors, In Journal
of Mathematical Cryptology 2015. Related website:
https://lwe-estimator.readthedocs.io/en/latest/

Boldyreva, A., Goyal, V., Virendra., K. (2008). Identity-
based encryption with efficient revocation, In CCS’08.

Boneh, D., Franklin M. (2001). Identity-based encryption
from the Weil pairing, In CRYPTO 2001.

Cash, D., Hofheinz, D., Kiltz, E., Peikert, C. (2010). Bonsai
trees or how to delegate a lattice basis, In EUROCRYPT
2010.

Cocks, C. (2001). An identity based encryption scheme
based on quadratic residues, In Cryptography and
Coding 2001.

Ducas, L., Lyubachevsky, V., Prest, T.. (2014). Efficient
Identity-Based Encryption over NTRU Lattices, In
ASIACRYPT 2014.

Gentry, C., Silverberg, A. (2002). Hierarchical ID-Based
Cryptography, In ASIACRYPT 2002.

Gentry, C., Peikert, C., Vaikuntanathan, V. (2008).
Trapdoors for hard lattices and new cryptographic
constructions, In STOC’08.

Giraud, L., Langou, J., Rozloznik, M. The Loss of
Orthogonality in the Gram-Schmidt Orthogonalization
Process, In Computers & Mathematics with
Applications.

Hung, S., Rom, W.O. (1990). An application of the Hermite
normal form in integer programming, In Linear
Algebra and Its Applications.

Micciancio, D., Goldwasser, S. (2002). Complexity of
lattice problems: A cryptographic perspectives, In Book
2002.

Micciancio, D., Peikert, C. (2012). Trapdoors for Lattices:
Simpler, Tighter, Faster, Smaller, In EUROCRYPT
2012.

NIST. (2017). Requirements and Evaluation Criteria for the
PQC Standardization Process, In https://csrc.nist.gov/
Projects/post-quantum-cryptography.

SECRYPT 2023 - 20th International Conference on Security and Cryptography

622

O. Regev. (2019). On lattices, learning with errors, random
linear codes, and cryptography, Journal of the ACM
2009.

Cypari2. (2022). Cypari2 official documentation:
https://cypari2.readthedocs.io/_/downloads/en/latest/p
df/

PARI. (2020). PARI/GP official site: https://pari.math.u-
bordeaux.fr/.

Numpy. (1995). Numpy official site: https://numpy.org/
Anytree. (2020), Anytree official site: https://anytree.readt
hedocs.io/en/2.8.0/
Hashlib, (2001), Hashlib official site: https://docs.python.o
rg/3/library/hashlib.html
Peikert, C. (2009). An Efficient and Parallel Gaussian

Sampler for Lattices, In CRYPTO 2010.
Seo, J.H., Emura., K. (2013). Revocable identity-based

encryption revisited: Security model and construction,
In PKC 2013.

Shamir, A. (1984). Identity-based cryptosystems and
signature schemes. In CRYPTO’84.

Wang, S., Zhang, J., He, J., Wang, H., Li, C. (2019).
Simplified Revocable Hierarchical Identity-Based
Encryption from Lattices, In CANS 2019.

On the Implementation of a Lattice-Based Revocable Hierarchical Ibe

623

