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Abstract—In this paper, we propose a novel hybrid grant-based
and grant-free radio access scheme for Ultra Reliable and Low
Latency Communications (URLLC). We provide two multi-agent
reinforcement learning algorithms to optimize a global network
objective in terms of latency, reliability and network throughput:
Multi-Agent Deep Q-Learning (MADQL) and Multi-Agent Deep
Deterministic Policy Gradient (MADDPG). In MADQL, each
user (agent) learns its optimal action-value function, which is
based only on its local observation, and performs an optimal op-
portunistic action using the shared spectrum. MADDPG involves
the attached gNB function as a global observer (critic), which crit-
icizes the action of each associated agent (actor) in the network.
By leveraging centralised training and decentralised execution,
we achieve a shared goal better than the first algorithm. Then,
through a system level simulation where the full protocol stack
is considered, we show the gain of our approach to efficiently
manage radio resources and guarantee URLLC.

I. INTRODUCTION

Ultra-Reliable Low Latency Communication (URLLC) is
one of the use cases of 5G and beyond networks. One
limiting factor of URLLC is the deterministic spectrum access
scheme and its centralized allocation procedures. Current
methods involve the reservation of dedicated radio resources
when opportunistic use of the spectrum is possible. Several
solutions are proposed to integrate opportunistic approaches:
transmission without grant, preemption of radio resources for
immediate use (e.g., mini-slot preemption), semi-distributed
allocation (e.g., shared resource pool of Device to Device
communications), or overlapping transmissions (e.g., Non-
orthogonal multiple access). In this paper, we propose to
enhance URLLC deterministic protocols by opportunism. This
approach will allow to overbook the share resource and will
naturally provide heterogeneity management.

An hybrid Grant-Free (GF)/Grant-Based (GB) resource al-
location regime was discussed by Zhou et al. [1]. Based on
each UE’s channel condition and their recorded activities,
an optimal resource allocation was proposed to determine
the amount of resources for each allocation mode (grant-
based and grant-free). However, dynamic resource allocation
framework is missing and authors assumed the instantaneous
global knowledge of UEs at gNB’s side. Nomeir et al.
[2] considered an hybrid resource allocation scheme dealing
with heterogeneous services (URLLC/eMBB) and proposed
combinatorial allocation framework in which eMBB traffic is
managed by GB scheduling and GF is adopted for URLLC
traffic. Their schemes are less complex compared to state of
the art solutions while achieving near-optimal performance.
However, the exact delay calculation in a full stack system
is omitted and they assumed the perfect knowledge of users
at gNB. Huang et al. [3] proposed a Reinforcement Learn-
ing (RL) framework to jointly optimize the communication
delay and energy consumption under a high URLLC load.
They considered both hybrid spectrum access of licensed

and unlicensed mmWave band and used the policy gradient
method to update the approximate policy to achieve optimal
results. RL is employed at the gNB to understand the overall
knowledge and behaviours of attaching UEs. Thus the larger
the number of UEs, the more complex the centralized decision
at gNB and the greater the computational resources required.
Liang et al. [4] investigated resource sharing as a Multi-Agent
Reinforcement Learning (MARL) problem. In V2X commu-
nications, each vehicle (agent) must reuse shared resources in
a way that minimizes interference while improving payload
delivery rate and network capacity performance. The training
procedure relies on deep Q-learning with experience replay
to help each agent learn action-value functions and obtain
its optimal function. They showed that cooperation between
agents is beneficial for efficient decision making on the shared
resource pool. Naparstek et al. [5] addressed dynamic, multi-
user spectrum access based on the Aloha protocol. The training
process is offline and a long short term memory is used to
aggregate the observations that are partially observable in
each user. This helps each user to have a better estimation
of the state over time. Azari et al. [6] proposed an interesting
distributed risk-aware ML for the coexistence of scheduled
and non-scheduled URLLC traffic. Their ML solution for
RRM increased the data throughput for scheduled traffic and
reliability is guaranteed for (non-)scheduled URLLC users.
They conclude that multiple QoS requirements in URLLC
require a novel, scalable and distributed learning approach,
and that distributed learning could be a good candidate for
dealing with massive cooperation/competitive UL access.

However, there are not many studies that use MARL frame-
work on the hybrid grant-based/grant-free scheduling with
the aim of guaranteeing the QoS of massive UL URLLCs
such as latency, reliability and throughput. The advantage of
GB scheduling is the guaranteed network throughput under
a particular scheduling policy at the cost of handshaking
latency, but the network throughput and latency under GF
is not ensured due to the unexpected collision. Our global
optimization is based on distributed decision making. Each
agent does not know the behaviour of global network and
makes the decision based only on its local observation. Our
contributions are (i) the MARL framework on hybrid GB/GF
decision, (ii) maximizing the objective function of system (i.e.
latency, reliability and throughput), (iii) cooperative distributed
training, which means that the training process will take place
both at users and gNB and (iv) online decision making. Per-
formance is evaluated through the combination of the MARL
framework and full protocols in NS-3 with different traffic
profiles (i.e. predictable and unpredictable traffic pattern) that
can lead to inefficient learning and thus sub-optimal results.

The remainder of the paper is organized as follows. Section
II presents our system model and formulates our problem.



Section III describes the proposed solution, whereas Section
IV provides numerical results, demonstrating our proposed
algorithm performance. Finally, Section V concludes the paper.

II. SYSTEM MODEL

A. System Models
The system consists of a single gNB and N UEs. Let N

be the set of UEs. Each UEi is di away from the gNB and
generates traffic which follow Poisson process. Ai(t), D1,i(t)
are the total packet size [Byte] arriving or departing from Q1,i
of agent i at time slot t, respectively. The total bandwidth is
composed of RBt resource blocks, divided into RBGB for
dedicated resources (i.e. formed by TGB OFDM symbols)
and RBGF for shared resources (i.e. formed by TGF OFDM
symbols). Each UEi considers 3 queues: Q1,i represents the
data packets in the RLC buffer, Q2,i, Q3,i show the data
packets scheduled for the dedicated allocation and shared
allocation, respectively. The dynamic queues in each agent i
can be expressed as follows:

Q1,i(t+ 1) = max{Q1,i(t)−D1,i(t), 0}+Ai(t) (1)
Q2,i(t+ 1) = max{Q2,i(t)− 1i.D2,i(t), 0}+A2,i(t) (2)
Q3,i(t+ 1) = max{Q3,i(t)− 1i.D3,i(t), 0}+A3,i(t) (3)

where: A2,i(t) = pi×D1,i(t), A3,i(t) = qi×D1,i(t) are the size
of packets in Bytes that start from Q1,i and are sent to Q2,i

and Q3,i of agent i, respectively. pi and qi (or pπi
i and qπi

i ) are
the probability that the transport blocks are sent to Q2,i and
Q3,i according to policy πi. If the transport blocks are placed
in Q2,i, the gNB schedules them according to a centralized
scheduling policy π0. Indeed, a quantity equivalent to D2,i (or
Dπ0

2,i) Bytes will leave Q2,i if agent i is scheduled by gNB.
On the other hand, if the transport blocks are queued at Q3,i,
each agent i will opportunistically perform resource selection
from the shared and competitive resource pool and D3,i(t) (or
Dπi

3,i(t)) Bytes will be removed from Q3,i(t). In both cases, an
indicator function 1 shows that the packet transmission was
successful and that the receiver was able to transfer it to the
upper layer. Thanks to the ACK message, D2,i and D3,i will
be deducted from Q2,i(t) and Q3,i(t), respectively.

Fig. 1: Hybrid allocation scheme

B. Protocol and Scheduling Policy
In this work, total resources is divided into 2 parts: sched-

uled resources (grant-based) and shared resources (grant-free).
In our hybrid allocation regime, centralized policy π0 manages
scheduled resources in grant-based manner. The partition
between scheduled resources and shared resources is also
defined by π0 and is fixed at the beginning. Meanwhile,
shared resources are opened for every user such that collisions

between users are minimized under decentralized policy πi.
Each agent, who wants to access the scheduled resources, has
to perform a 5-step (grant-based) procedure as follows:

• Step 1: Each agent i sends the status of its RLC queue
Q1,i in the Scheduling Request (SR)

• Step 2: Upon SR reception, gNB sends Signaling Grant
(SG) accompanied with few resources for requested UEs.

• Step 3: After receiving the SG, each agent sends its Buffer
Status Report (BSR) to the attached gNB.

• Step 4: At this step, the gNB has a global view of the
amount of pending data for each user. According to the
predetermined total scheduled resources, resources are
allocated to corresponding users following the scheduling
policy π0 (e.g, Round-Robin, Proportional-Fair).

• Step 5: User sends both data and BSR based on allocated
resources. The next scheduling phase begins in step 4
until there is no more data queued in the user.

Hence, GB scheduling is centralized and managed by gNB
which has global view of user activity. The advantage is the
guarantee of allocated resources and collision-free commu-
nication. However, the long handshaking procedure (5-step)
cause high delay and may not be suitable for URLLC.

In GF, each agent i selects resources from the shared
resource pool using slotted ALOHA method and decentralized
policy πi. Each user minimizes the number of collisions (i.e.
more than two users choosing the same resource). By doing so,
we can overcome the high delay caused by 5-step handshaking.
On the other hand, resource allocation will no longer be
managed between users and each communication will face a
non-negligible collision probability.

C. Objective Function
The average delay is proportional to the average queue

length, so we can formulate the minimization of global latency
as the maximization of the function d(t).

d(t) = lim
T→∞

1

T

T∑
t

N∑
i=1

−Eπ [Q1,i(t)+Q2,i(t)+Q3,i(t)]

= lim
T→∞

1

T

T∑
t

N∑
i=1

3∑
j=1

−Eπ [Qj,i(t)]

(4)

In this case, π = [π1, .., πN ] is global policy and it contains
the local policy of each agent i, i.e πi.

The throughput of each agent i is measured by the total
time average of transport blocks in bytes that are sent in
grant-free and grant-based channels. Next, we defined ri =
limT→∞

1
T

∑T
t Eπi [D2,i(t) + D3,i(t)]. Maximizing the UL

throughput of the network is equivalent to maximizing the total
sum-rate e(t) =

∑N
i=1 Ui(ri) where Ui(.) is a non-decreasing

and concave utility function.
To trade-off the maximization of the average delay with

the network throughput, we introduce the control parameter
ν ≥ 0 to build a weighted-sum optimization function. Our
global objective function that jointly optimizes latency and
throughput is then derived as follows:

fπ(t) = d(t) + νe(t) (5)

Instead of maximizing the objective function fπ(t), we
will maximize its lower bound function (i.e gπ(t) ≤ fπ(t)).
It is achieved based on the fact that the departure rate of
the packets from the Q2 and Q3 (i.e. ri) should higher
than their arrival rate zi to stabilize the queue dynamics.
(zi = limT→∞

1
T

∑T
t Eπi [A2,i(t) +A3,i(t)])



gπ(t)=d(t)+ν

N∑
i=1

Ui{zi}

= lim
T→∞

1

T

T∑
t

N∑
i=1

3∑
j=1

νEπ[Ui(zi(t))]−Eπ[Qj,i(t)]

(6)

Without loss of generality, a negative Lyapunov drift-term
Eπ[−ν1(Q

2
1,i(t+1)−Q2

1,i(t))−ν2(
∑3

j=2 Q
2
j,i(t+1)−Q2

j,i(t))]
is added with no impact on the overall problem because
the solved optimal solution pushes the queues to a minimal
congested state. Thus, if all the queues are stable, this add-on
will converge to 0 as t goes to infinity. Then, without changing
the optimal solution, the objective function becomes hπ(t).

hπ(t) = lim
T→∞

1

T

T∑
t

N∑
i=1

( 3∑
j=1

Eπ[−Qj,i(t)]

+ Eπ

[
νUi (zi(t))− ν1

(
Q2

1,i(t+ 1)−Q2
1,i(t)

)
− ν2

3∑
j=2

(
Q2

j,i(t+ 1)−Q2
j,i(t)

) ])
(7)

Where ν, ν1, ν2 > 0.
Finally, we transform Equation 7 into a discounted dynamic

programming problem with discount factor 0 ≤ α ≤ 1.
We show that the optimal policy of this problem can be
approximated by the policy of original average problem when
α is close to 1 [7]. The reward function in the MARL
framework is similar to the function to be optimized.

hα
π(t) = lim

T→∞

1

T

T∑
t

αt
N∑
i=1

( 3∑
j=1

Eπ[−Qj,i(t)]

+ Eπ

[
νUi (zi(t))− ν1

(
Q2

1,i(t+ 1)−Q2
1,i(t)

)
− ν2

3∑
j=2

(
Q2

j,i(t+ 1)−Q2
j,i(t)

) ])
(8)

D. Problem Formulation
Our problem can be formulated as follows:

maximize
π

hα
π(t) (P)

s.t. ν, ν1, ν2 ≥ 0, (C0)

RBt = RB
ρπ0

GB +RB
1−ρπ0

GF (C1)
0 ≤ ρπ0

≤ 1 (C2)

RBi = π0,i(RB
ρπ0

GB ) + πi(RB
1−ρπ0

GF ),∀i (C3)

Pπ0
[γgb

i ≤ γt] ≤ ϵt,∀i (C4)

1− (1− Pcol
πi

)(1− Pπi
[γgf

i ≤ γt]) ≤ ϵt,∀i (C5)

Aj,i ≤ Dj,i,∀j ∈ {2, 3} (C6)
A1,i ≤ A2,i +A3,i

The constraints (C1), (C2) and (C3) limit the number of
resource blocks (RB) allocated to each agent i under the policy
πi or π0. In particular, (C1) states that the total number of
resource blocks RBt is partitioned into GB, i.e. RB

ρπ0

GB and
GF, i.e. RB

1−ρπ0

GF . (C2) defines this separation, managed by
the gNB under policy π0 with the ratio ρπ0 . The constraint

(C3) reveals that the resources RBi of each agent i can be
either scheduled by policy π0 (i.e. π0,i(RB

ρπ0

GB )) or competed
under policy πi (i.e. πi(RB

1−ρπ0

GF )). Then, the constraints (C4)
and (C5) relate to the reliability requirements. The transport
blocks will be successfully decoded at the receiver when
their SINR γ is above a predefined target γt. Regardless of
the GF channel (γgf

i ) or the GB channel (γgb
i ), the outage

probability must be less than a target ϵt. In the GB channel,
only fast/slow fading channel is the source of impairment,
so (C4) guarantees a transmission error below a threshold
ϵt under the scheduling policy π0. In the GF channel, the
collision due to uncoordinated resource selections between
agents, which is characterized by Pcol

πi
is also considered in

addition to fast/slow fading. Thus, (C5) takes into account both
impairments simultaneously. The constraint (C6) guarantees
the stability of the queues in each agent i under any policy
πi. The operator X is limT→∞

1
T

∑T
t Eπi [X(t)]. According

to queue theory, the time average of arriving process should
be smaller than or equal to the one departing from the queue.
The average amount of departure process at Q2,i(t) depends
on the centralized scheduling policy of gNB π0, while others
depend on its decentralized policy πi.

III. ALGORITHM DESIGN

In this paper, we design two different algorithms which are
based on MARL framework to solve the problem P . Firstly,
Multi-agent Deep Q-Learning (MADQL) is proposed for each
agent i can learn action-value function (i.e., Qi function) based
only on its local observation and there is no communication
between agents for mutual information exchange [8]. Then,
we propose another algorithm based on Multi-agent Deep
Deterministic Policy Gradient (MADDPG) method. In this
approach, a centralised gNB criticizes the actions of all the
agents in a particular state based on its accessibility to the
global observation. These action values are essential for each
agent to update its local policy to the optimal policy. It
provides each agent with the advantage of evaluating the state-
value function without the need for the nonviable assumption
of a global access to the state.

The State/Observation space si for each agent i, at time slot
t has to consider some information about its queues, Qi(t) =
[Q1,i(t), Q2,i(t), Q3,i(t)], the mean traffic rate λi, which will
be used to estimate Ai(t) and the scheduling policy π0 in GB
access and occupancy level information occi(t) in GF access.
Thus, at each time slot t, si(t) = [Qi(t), λi, π0(t),occi(t)].
Afterwards, we define a subset K ∈ N of agents in which each
agent k ∈ K can observe other agent’s states, K = {1, ...,K}.
If only local observation is permitted (i.e. K = 1), each agent
observes itself to make decision. If K = N , each agent can
access to global state. The global state is formed as follows:

S(t) =
K⋃

k=1

sk(t) (9)

Similarly, we can define the global action of each agent in
the network as follows:

A(t) =

K⋃
k=1

ak(t) (10)

where on each agent i, at time slot t, the one-hot encoding
action vector ai(t) with (1+Bs) elements implies flow control
and resource selection. If ai[0](t) = 1 at time slot t, agent
i promotes access to GB radio resources with the 5-step



procedure according to the centralised policy π0. Otherwise,
ai[j](t) = 1 ∀j ̸= 0, agent i executes the GF procedure to
opportunistically choose resource j from the shared radio
resources Bs for its resource block communication. The data
flow control is performed as follows: First, from Q1,i(t), agent
i transmits a quantity of D1,i(t) bytes to Q2,i(t) if ai[0](t) = 1
and to Q3,i(t), otherwise. Then, the data in Q2,i(t) and Q3,i(t)
is framed as transport block for transmission. The transport
block size is decided based on the scheduling policy π0 in
GB and the amount of shared resources in GF, respectively.
In case of a transport block error, due to fading in GB and
collision/fading in GF, a non-acknowledgement is returned to
the agent and the resource selection procedures are repeated.

The reward function quantifies how good an action is taken
under a particular state. For each agent i, we define the reward
under state si(t) and action ai(t), Ri(si(t),ai(t)) ∈ R
according to the objective function in Equation 7 as follows:

Ri(si(t),ai(t)) =
∑
j∈3

−Qj,i(t+ 1) + ν log(zi(t))

− ν1
(
Q2

1,i(t+ 1)−Q2
1,i(t)

)
− ν2

3∑
j=2

(
Q2

j,i(t+ 1)−Q2
j,i(t)

) (11)

Accordingly, the global reward observed by gNB for the set
N , i.e R(S(t),A(t)) ∈ RN of agents is derived as follows:

R(S,A) =

N⋃
i=1

Ri (si(t), ai(t)) (12)

A. Algorithm based Multi-Agent Deep Q-Learning (MADQL)
The objective of Q-learning is to learn the action-value func-

tion Q(S(t), A(t)), showing the current network state at time
t. To avoid confusion with designed queues Q1,i, Q2,i, Q3,i
of each agent i, we will hereafter refer to Q-learning as W-
learning. Figure 2 depicts the algorithm framework.

Fig. 2: Multi Agent Deep W(Q)-Learning architecture

In this algorithm, each agent has its own memory play,
which is stored locally. Also, we assumed that Partially
Observable Markov Decision Process (POMDP) is considered
where each agent does not have full observation dynamic [8].

Under local policy πi, the action value function of agent i,
i.e., Wπi

-function is defined as: Wπi
(si, ai) = Ri(si, ai) +

αWπi
(s′i, πi(s

′
i)). Where si and ai are respectively current

state and action of agent i which returns a corresponding
rewards Ri(si, ai) and turns agent i into new state si

By estimating this function, we will guide an agent in select-
ing the optimal action in a particular state. However, due to the
complex dynamic state of the multi-agent system, it is viable to
approximate their value function with the parameter ω using a
neural network, i.e, Wπi(si, ai, ω). The approximation of W -
function will be expressed by the algorithm 1 and the value
function will be updated each period T .

Algorithm 1: W(Q)-learning based on W(Q)-value
Initialization Replay memory Mem
Random initialization Wπi(si, ai, ω), Wπi(si, ai, ϕ) ∀si, ai ∈ S,A
Define M -batch size
for time slot t do

for each agent i do
if inactive then

continue
end
Given state si(t) ∈ S(t)
Select ai(t) as the output of decay ε− greedy
Observe next state si(t+ 1)
Store (si(t), ai(t),Ri(t), si(t+ 1)) to Mem.
if More than M samples are collected then

Randomly sampling mini-batch M from Mem
Given (si(t), ai(t), s

′
i(t+ 1)) ∈M

Calculate yi = maxai [Ri(s
′
i, ai) + αWπi(s

′
i, ai, ϕ)]

Perform gradient descent on∑
(s,a,s′,y)∈M (yi −Wπi(si, ai, ω))

2

if mod(t, T ) == 0 then
ϕ = ω

end
end

end
end

In this algorithm, we use a technique called Experience
Replay [9] to efficiently utilize the collected samples and elim-
inate their correlation. Also, two separate networks are used
to independently select the action and learn the value function
to avoid overestimation [10]. As we used ω-parameterized
network to evaluate the action-value function, the network
which is responsible for action selection will be parameterized
by ϕ. When local action of each agent i is executed at time
slot t, each agent will observe the next state at time slot
t + 1 and store sample (si(t), ai(t), Ri(t), si(t + 1)) to the
buffer. The reward will be calculated accordingly because it is
a function of state. After M samples collected (batch-size), we
use fixed target technique which holds the target W -function
parameterized with ϕ and updates the target every steps [11].

B. Algorithm based Multi-Agent Deep Policy Gradient (MAD-
DPG) Learning

In this section, we propose another algorithm to solve prob-
lem P which is based on optimal policy learning rather than
action-value function learning. It avoids the sensitivity of value
function based learning to the high variance of the multi-state
environment. Specifically, the use of W(Q)-learning in a multi-
agent environment faces a challenge when policy of each agent
changes over time and the environment is non stationary. Thus,
the convergence of multi-agent algorithms based on W(Q)-
learning in dynamic environment is often time consuming.
On the other hand, the policy gradient method often requires
the coordination of several agents and leads to high training



variance. In this section, we propose an algorithm based on
Actor-Critic approach (policy-learning) that directly learns the
policy leading to the optimal solution. Both the actor and
the critic are approximated by neural networks. The training
process is centralized at the gNB, where a centralized critic
part learns the global states, actions and policies of all agents.
Then, each agent i attached to the gNB can obtain the training
knowledge to derive its own policy in the decentralized actor
part. Since we need to learn/approximate the individual policy
and value function of each agent, we parameterize its policy
and value function W as θi and wi, respectively. And let’s
assume θ = {θ1, ..., θN}, π = {π1, ..., πN}. The objective of
our algorithm is to maximize the reward function

∑N
i Ri. The

framework can then be displayed on Figure 3.

Fig. 3: Multi-Agent Deep Deterministic Policy Gradient De-
cision architecture

The motivation of this architecture is the separation of
centralized critic part (embedded in gNB) which has global
observation of all users, and decentralized actor part (embed-
ded in each agent i) which has only local observations. Then,
centralized critic will help us to approximate the value function
Wµi

i (si(t), ai(t)) of agent i following its parameterized policy
πµi taking action ai(t) at state si(t) at time slot t. This
information will be sent into agent i and it will use such
information to estimate or optimize policy πµi . centralized
critic improves the estimation of state-action value learning
of which decentralized actor use to improves the policy
evaluation. To the end, this approach will converge to optimal
policy without requiring global observation of agent i in the
network. The algorithm can be expressed in Algorithm 2. In
this algorithm, µ′ = {µθ′

i
} is the set of target policies with

delayed parameters θ′i. The approximate policy of each agent
i is learned by maximizing the log probability of agent i′s
actions. τ is a parameter for updating the target network, α is
learning parameter (discounted factor).

IV. RESULTS AND DISCUSSIONS

A. Simulation Model
Our network contains a single gNB and N = 30 UEs, all

placed at the same distance from the gNB (d = 80m). Each
user’s traffic is generated using a Poisson process with a fixed
packet size of 20 Bytes. After being encapsulated with a header
in internet protocol and packet data convergence protocol

Algorithm 2: Semi-distributed Learning Algorithm
Replay memory Mem
Random action initialization (Exploration)
for each time slot t do

gNb observes global action A(t), reward R(t) and state S(t),
S(t+1)
Store (S(t),A(t),S(t+ 1),R(t)) in Mem
Set S(t)← S(t+ 1)
for each agent i ∈ N do

if inactive then
continue

end
Perform ai = µθi(si) according current policy πi

Sample M samples (Sm, Am, Rm, S′m) in Mem

Set target ym
i = Rm

i + αWµ′

i (S′m, A′m)
gNB updates Critic part (Gradient descent)
L(θi) = 1

|M|
∑

m(ym
i −Wµ

i (S
m, Am))2

Agent i updates Actor part (Policy gradient)
∆θiJ ≈ 1

|M|
∑

m ∆θiµi(s
m
i )∆aiW

µ
i (S

m, Am)
Update target network parameters
θ′i ← τθi + (1− τ)θ′i

end
end

layers, they arrive at the RLC Layer (Q1) for transmission to
the GB channel (Q2) or the GF channel (Q3). In this work, we
consider a total Bandwidth of 50MHz in the Sub-6GHz band
and half of it is dedicated to the GB channel (ρπ0

= 0.5). The
remaining BW is divided equally into 15 groups (RBGs) for
opportunistic access to resources. In order to model dynamic
channel and antenna model, the 3GPP Indoor-Factory scenario
[12] is considered and gNB and each of agent are equipped
with 4 × 4, 2 × 2 planar linear antennas, respectively. The
details of simulation parameters are given in Table I.

TABLE I: Simulation parameters

Nb of users 30
Channel dynamics 3GPP indoor-factory

Distance 80 m
Tx power 8 dBm

Central frequency 3.61 GHz
Bandwidth 50 MHz

ρπ0 0.5
Scheduling policy π0 Round-robin

Shared resources in GF (Bs) 15 RBGs
Reliability target ϵt 0.01

Max nb of retransmissions 5

Concerning the hyper-parameters of learning algorithms,
Table II shows their numerical values in our simulation.

TABLE II: Hyper-parameters

Hyper-parameters MADQL MADDPG
Actor learning rate αa N/A 10−2

Critic learning rate αc N/A 10−2

Delay network update rate τ N/A 0.1
Discount factor 0.99 0.9
Learning rate α 2.10−2 N/A

Exploration rate ε 0.99 N/A
Decay rate εd 5e-4 N/A

Minimum exploration rate εm 0.01 N/A
Batch size 64

Hidden layers 2
Dimension of hidden layer 64

Time period T 0.1 s N/A
ν, ν1, ν2 (10000,1000,500)



(a) Average reward for a 0.1 Mbps traffic load (b) Delay and Reliability performance (c) Throughput performance

Fig. 4: Performance comparison between MADDPG algorithm, MADQL algorithm and GB/GF access.

B. Simulation Results
Figure 4a compares the obtained rewards between MADQL-

based and MADDPG-based algorithms when each user has 0.1
Mbps traffic load. It shows the convergence of both algorithms
and the best rewards of MADDPG. Figures 4b and 4c display
the performance in terms of latency, reliability and network
throughput between (i) 100 % GB (ρπ0

= 1), (ii) 100 %
GF (ρπ0

= 0), (iii) MADQL-based hybrid access scheme
(ρπ0

= 0.5) and (iv) MADDPG-based hybrid access scheme
(ρπ0

= 0.5) as a function of the traffic load of each user. As
expected, the latency due to the handshaking procedure of 100
% GB is the most important to ensure resource access to all
users (i.e. maximum reliability). 100 % GB guarantees radio
resources for each user according to the round-robin policy π0.
Thus, the network throughput increases linearly when higher
traffic loads are generated for each user, until saturation. On
the other hand, the latency of successful communications of
100 % GF is the best, but the shared resources are mismanaged
(i.e. worst reliability). When the number of opportunistic
accesses becomes high, it leads to a higher probability of colli-
sion and accidentally reduces the network throughput at some
traffic load generation (0.15Mbps). In a more efficient way,
MADQL and MADDPG significantly improve the network
throughput as the optimal action-value/policy guides user to
select a safer action for opportunistic use of shared resources.
MADQL better exploits shared resource to maintain low
latency and significantly reduces users collisions (i.e. higher
reliability than 100 % GF). Through the coordination of the
centralised gNB in estimating each agent’s action, MADDPG
improves the management of the shared resources (i.e fewer
collisions) while maintaining low latency. In particular, with
the gNb coordination, MADDPG achieves better performance
when traffic load is high.

V. CONCLUSIONS

In this paper, we propose two different multi-agent based
algorithms for hybrid Grant-Based/Grant-Free access schemes
that are capable of empowering shared resources in the
GF channel to improve communication latency and network
throughput with low impact on reliability. By means of a
system-level simulation, where a full protocol stack is consid-
ered, it has been demonstrated that the use of semi-distributed
approach (MADDPG), with the support of centralized gNb
(critic) having the full evaluation of each associated agent (ac-
tor), provides better opportunistic access with fast uplink delay
and less collision between users. However, the application of
the MADQL approach where only local observation is possible
should not be discarded when the algorithm favors agents that
exploit shared spectrum access to minimise their uplink latency

at the cost of collisions and thus reduce transmission reliability
and throughput. The performance gains of our proposal are
confirmed when compared with the typical centralized, round-
robin scheduling policy (100% GB) and the decentralized,
slotted ALOHA protocol (100 % GF). Based on the promising
findings presented in this paper, in our future work, we
will evaluate more complex scenarios with the participation
of a larger number of users with heterogeneous traffic and
distributed access using collaborative MARLs will be studied.
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