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Abstract—Wireless traffic is exploding, due to the myriad of
new connections and the exchange of capillary data at the edge of
the networks to operate real-time processing and decision mak-
ing. The latter especially affects the uplink traffic, which will grow
in 6G and beyond networks, calling for new optimization metrics
that include energy, service delay, and electromagnetic field
(EMF) exposure (EMFE). To this end, reconfigurable intelligent
surfaces (RISs) represent a promising solution to mitigate the
EMFE, thanks to their ability of shaping and manipulating the
impinging electromagnetic waves. In line with this vision, this
paper proposes an online adaptive method to mitigate the EMFE
under end-to-end delay constraints of a computation offloading
service, in the context of RIS and multi-access edge computing
(MEC)-aided wireless networks. The goal is to minimize the
long-term average of the EMF human exposure under such
constraints, investigating the advantages of RISs towards blue (i.e.
low EMFE) communications. A multiple-input multiple-output
(MIMO) system is investigated as part of the visions towards
6G. Focusing on a typical scenario of computation offloading, the
method jointly and adaptively optimizes user precoding, transmit
power, RIS reflectivity parameters, and receiver combiner, with
theoretical guarantees on the desired long-term performance.
Besides the theoretical results, numerical simulations assess the
performance of the proposed algorithm, when exploiting accurate
antenna patterns, thus showing the advantage of the RIS and that
of our method, compared to benchmark solutions.

Index Terms—Multi-access Edge Computing, Reconfigurable
Intelligent Surfaces, Electromagnetic Field Exposure, 6G

I. INTRODUCTION

The research on 6G has revolutionary long term ambi-
tions, among which, building upon 5G, the millimeter wave
(mmWave) and even sub-teraHertz (THz) bands represent key
drivers, to cope with the explosion of data volumes com-
municated through smart and fully reconfigurable networks.
Indeed, this is undeniably marked due to an unprecedented
revolution of applications, such as immersive virtual real-
ity, connected autonomous systems, the industrial internet of
things, and many other vertical sectors [1], [2]. More precisely,
as predicted by the international telecommunication union
(ITU), this exponential growth in data is expected to reach 5
zettabytes (ZB) per month by 2030 [3]. This explosion pertains
to also uplink communications [4], due to the continuous
transfer of capillary data from extreme edge devices such as
sensors and cars, to enable computational demanding services
in real-time, at the edge of wireless communication networks.
A key enabler of this vision is undoubtly the push of storage
and computing at the wireless edge, thanks to the arising
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paradigm of multi-access edge computing (MEC) [5]. To
be effective, these services require to be enabled with new
levels of dependability, reliability and sustainability. From a
radio access perspective, the mmWave bands (30 GHz to
300 GHz) represent a good fit to face the aforementioned
challenges with higher offered data rates (Gbps). However,
these communications generally suffer from high path loss and
unexpected blockages [6]. To this end, beamforming (BF) is
used to enable highly directional communications. However,
this triggers the fears of the population for electromagnetic
field (EMF) exposure (EMFE) [7]. While the latter has been
extensively shown to be a myth [8], it is fundamental to
design mitigation techniques for a sustainable development
and a smooth public acceptance of such new technologies [9].
To this end, reconfigurable intelligent surfaces (RISs), have
recently emerged as a promising candidate to counteract the
above mentioned issues and others, thanks to their ability to
shape and manipulate the impinging electromagnetic waves.
More specifically, in the reflective case, RISs are composed
of radiating elements that can be adaptively configured to
shape the reflection of the incident wave. Therefore, owing to
their abilities to customize time-varying wireless propagation
environments, RISs are definitely a key ingredient of future
networks, due to the fact that short and long-term requirements
can be dynamically controlled in specific locations in space
and time [10], [11].
Related works. In the recent literature, a few RIS-based
solutions have been investigated to address resource allocation
schemes, under EMF exposure constraints [7], [12], [13]. Such
contributions tackle typical communication problems such
as spectral efficiency maximization or energy consumption
minimization. In [7], both RIS and massive MIMO BF have
been considered and jointly configured to build a spectrally
and energy efficient radio link under an EMFE constraint.
In [12], the authors configure RIS phases to minimize the
population EMFE subject to quality of service constraints.
Then, in [13], the energy efficiency maximization has been
investigated under both power and EMF constraints. However,
to the best of our knowledge, none of these works has focused
on boosting trade-offs related to EMF human exposure and
computation offloading service requirements, in MIMO and
RIS-aided wireless systems. A first attempt of EMF-aware
computation offloading has been presented in [9], however in
a SISO scenario without RISs.
Our contribution. The goal of this work is to explore the sin-
ergy between RISs and MEC to enable computation offloading



services, via blue communications (with that referring to the
human body Specific Absorption Rate- SAR) [23], exploiting
both the benefits of RISs and MEC in future wireless networks.
To this end, we formulate the blue communication edge
computing problem as a long-term optimization aiming to
minimize the average EMFE, as per ICNIRP recommenda-
tions, under MEC service delay constraints. We design an
online algorithm able to dynamically configure RIS param-
eters, transmitter precoding, receiver combiner, and transmit
power, with theoretical guarantees on system stability and
asymptotic EMFE optimality. While precoding, combining,
and RIS parameters are selected from generic codebooks,
numerical results assess the performance with the use of
accurate antenna patterns that take into account geometry,
directivity, and array element patterns [15].
Notation: bold lower case and upper case letters denote vectors
and matrices, respecively; the superscript (·)T denotes the
transposition operator; the operators tr(·) and diag(·) denote
the trace, and the vectorization of the diagonal elements of a
matrix; the operator |·| denotes the absolute value of a complex
number, and card(·) is the cardinality of a set; whereas, the
long-term average of a random variable X is denoted by X
and defined as:

X = lim
t→∞

1

T

∑T

t=1
E{X(t)} (1)

II. SYSTEM MODEL

Fig. 1: Network scenario

We consider the scenario of Fig. 1, with a single user
offloading computation tasks to a mobile edge host (MEH),
through an RIS-aided wireless link with an access point
(AP). From the EMFE perspective, several metrics have been
proposed. However, ICNIRP recommendations consider the
incident power density, averaged over 30 minutes [14]. To
this end, in this paper, we propose a long-term average
optimization that perfectly matches this definition, rather than
considering real-time measures that are not in line with exist-
ing recommendations. Thus, we consider time as organized in
slots t = 1, 2, . . . of equal duration τ . At the beginning of each

slot, new offloading data are generated, new radio channels are
observed and, based on these and other observations described
later on, a new resource allocation decision is taken. In this
way, while instantaneous instances of the EMFE may reach
high values, the long-term average is finally minimized to
achieve low exposure (as per the ICNIRP definitions and
recommendations), under service delay guarantees. In the
following, we describe the communication model, comprising
the MIMO (direct and RIS-aided) communication channels,
the precoding, combining and RIS response, the EMFE metric,
and finally the computation model of the offloading service.

A. Communication model

Let us consider a MIMO communication system, compris-
ing a UE with an Nu antenna array, an AP with an Na antenna
array, and an RIS with M elements. Then, the end-to-end com-
munication channel at time t can be described by a complex
matrix H(t) ∈ CNa×Nu . The latter entails two components, as
depicted in Fig. 1: i) a direct link Hd(t) ∈ CNa×Nu between
the user and the AP; ii) an indirect link, comprising the channel
Hu,r(t) ∈ CM×Nu between the user and the RIS, and the
channel Hr,a(t) ∈ CNa×M between the RIS and the AP.
Finally, the E2E channel matrix can be written as follows [16]:

H(t) = Hd(t) +Hr,a(t)Θ(t)Hu,r(t), (2)

where Θ(t) ∈ CM×M is a diagonal matrix whose (i, i)-th
entry is Θi,i(t) = ejθi , with θi the phase shift of the i-
th RIS’s element. Also, we denote by wu(t) ∈ CNu×1 the
user precoding vector and, similarly, by wa(t) ∈ CNa×1

the AP combining vector, both with normalized power, i.e.
tr(wu(t)w

H
u (t)) = 1 and tr(wa(t)w

H
a (t)) = 1. The experi-

enced data rate can then be written as follows:

Ru(t) = W log2

(
1 +

∣∣wT
a (t)H(t)wu(t)

∣∣2 Ptx(t)

N0W

)
(3)

where W represents the total communication bandwidth, N0 is
the noise power spectral density, and Ptx(t) is the user transmit
power at time t. Obviously, the data rate depends on the E2E
channel states, as well as on the user precoding vector, the AP
combining vector, the transmit power, and the RIS reflectivity
matrix, which we will jointly optimize in the sequel. In this
paper, we assume that the precoder, the combiner, and the
RIS excitations can be selected from predefined codebooks
that give rise to a set of candidate antenna patterns. The goal
is to show that a naive choice of the antenna patterns (e.g.
always transmitting towards the AP) is not necessarily the
best choice in terms of EMFE-delay trade-offs, especially in
dynamic time-varying environments. To this end, let us now
formally characterized the EMFE and the E2E delay.

B. Electromagnetic Field Exposure

To evaluate EMF exposure, we consider space as divided in
pixels p ∈ P of equal size, as in [9], [17], and as qualitative
represented in Fig. 1. Then, assuming that humans possibly
sojourn in one or more of these pixels (as for instance shown
in the figure), our objective is to minimize a weighted sum



of the EMFE in each pixel. In this way, if humans are not
generally present in one pixel, the EMFE problem can be
neglected in that particular location in space, assigning weight
0. This allows us to write a general optimization problem, to
be customized on a case by case need. As an example, in the
case of one human placed in pixel p, the objective becomes
the p-th pixel EMFE, to achieve a blue communication area
as depicted in Fig. 1. This also represents the example in-
vestigated in the numerical results, while the overall method
is more general and applies to multiple humans sojourning in
multiple pixels. To this end, let us denote by hd,p(t) ∈ C1×Nu

the direct channel vector between the UE and pixel p, and by
hr,p ∈ C1×M the channel vector between the RIS and pixel p.
Then, defining the overall channel between the user and pixel
p as hp(t) = hd,p(t) + hr,p(t)Θ(t)Hu,r(t) we can write the
overall instantaneous power density as [17]

Pd,p(t) =
4π

λ2
Ptx(t) |hp(t)wu(t)|2 , (4)

where obviously both the direct and the reflected paths are
taken into account. As already mentioned, our goal is to
minimize a weighted sum of the average long-term EMFE
in each pixel, which reads as follows (cf. (1)):

Pd =
∑
p∈P

ωpPd,p, p = 1, . . . , card(P) (5)

where ωp are non negative weighting parameters. Obviously,
minimizing the EMFE without any service constraints cor-
responds to not transmitting. Therefore, we now present the
communication and computation queueing models and delays,
to be kept bounded as part of a service quality requirement.

C. Queuing Model and delay

In our scenario, communication and computation phases
take place in a subsequent way, as data are first buffered
at the device before transmission and, once transmitted, they
are buffered at the MEH before computation. We denote
by Bl(t) the communication buffer at the device, and by
Br(t) the computation buffer at the MEH. Both buffers are
measured in bits for the sake of simplicity, however different
models considering data units (e.g. patterns to be classified
at the MEH) can be envisioned under the same optimization
framework [18]. Their time evolution is described as follows.
Communication buffer: The local buffer welcomes all newly
generated bits A(t) at time slot t, while it is drained by
transmitting them over the wireless interface at data rate Ru(t)
(cf. (3)). Thus, its time evolution can be written as follows:

Bl(t+ 1) = max (0, Bl(t)− τRu(t)) +A(t) (6)

Computation buffer: Once data are uploaded, they are
buffered in a remote queue before computation. Therefore,
the remote queue is fed by the data transmitted in uplink, and
drained by the MEH processing the tasks. The time evolution
of this queue can be written as follows:

Br,u(t+ 1) =max (0, Br(t)− τf(t)/J)

+ min(Bl(t), τRu(t)), (7)

where f(t) represents the amount of resources (in CPU
cycles/s) allocated to each user during time slot t, and where
we assumed a linear relation between the offloaded bits and
the number of CPU cycles, i.e. J is the number of CPU cycles
per bit. Of course, more general relations between number of
offloaded bits and CPU cycles may be envisioned, but are
beyond the scope of this paper. In this work, we also assume
that the CPU cycle frequency f(t) is optimized, but it is rather
selected at the edge server side on a per-slot basis, depending
on its current availability. From the point of view of our
orchestrator, f(t) is a random variables of unknown statistics.
Therefore, our method copes with the computation buffer
through the uplink transmission, i.e. avoiding transmission
when computation is congested at the MEH sever, as it will
be clarified later on. Finally, due to the involvement of both
buffers for the overall service, due to Little’s law [19], the end-
to-end average service delay experienced the device is directly
linked to the average of the sum of both queues, and reads as
Du = τ Bl+Br

A
(cf. (1)).

III. PROBLEM FORMULATION

As already mentioned, our aim is to minimize the long-
term average EMFE in selected areas across space (cf. (4), (5))
under service delay constraints, by dynamically and adaptively
controlling the user precoding vector, the transmit power, the
RIS reflectivity parameters, and the combining vector. We
formulate the problem as follows:

min
{Ptx(t),wu(t),wa(t),Θ(t)}t

Pd (8)

subject to (a) Bl < ∞, (b) Br < ∞,

(c) 0 ≤ Ptx(t) ≤ Pmax
tx , ∀t (d) wu(t) ∈ Wu, ∀t

(e) wa(t) ∈ Wa, ∀t (f) diag {Θ(t)} ∈ T , ∀t.

where Wu, Wa, and T denote the precoder, the combiner,
and the RIS codebooks. The constraints of (8) have the
following meaning: (a)-(b) the local and remote long-term
average buffer lengths are limited, and so is the E2E service
delay as a consequence; (c) the transmit power is non negative
and limited by a maximum value Pmax

tx ; (d)-(f) the precoder,
the combiner, and the RIS parameters are chosen from their
respective predefined sets, as anticipated in section II-A.
We will keep these codebooks generic, to then define them
in the numerical results section, based on accurate antenna
patterns that take into account the array element pattern, the
geometry, and the directivity. Of course, the formulation in
(8) and our proposed solution (described in the following) are
not dependent on the codebooks, which can be defined and
implemented according to the specific hardware constraints
of different case studies. It should be noted that, despite
the simplicity of the proposed single-user scenario, problem
(8) is a priori very complex to solve, as it involves time
averages over time-varying variables of unknown statistics,
namely radio channels, arrivals, and computing availability.
The proposed solution, described in the next section, allows us
to decompose the problem and solve it in a per-slot basis, thus



performing an exhaustive search over the codebooks in (d)-
(f), with corresponding closed form solutions for the transmit
power. This is possible thanks to the definition of a suitable
function to be minimized in each time slot, based only on
instantaneous observations. Thanks to the theoretical foun-
dations of Lyapunov stochastic optimization, this guarantees
the queue stability constraints (a)-(b), while asymptotically
approaching the global optimal solution of (8) through one
tuning parameter that trades off average EMFE optimality and
service delay. Let us now formalize and elaborate on the above
statements.

A. Lyapunov stochastic optimization

The goal of this section is to rigorously transform the orig-
inal long-term problem into a per-slot problem, thus defining
an instantaneous surrogate objective that, in the long-term,
guarantees the desired performance. As it will be clarified later
on, this new objective is a weighted sum of instantaneous
EMFE and data rate, with the weights built on the buffer
lengths and the aforementioned tuning parameter to be defined.
In particular, defining the vector b(t) = [Bl(t), Br(t)], let us
first introduce the Lyapunov function [20]

L(b(t)) =
1

2

[
B2

l (t) +B2
r (t)

]
, (9)

which is a measure of the overall buffer congestion state of the
system. Our aim is to push the network towards low congestion
states, while minimizing the weighted sum of EMFE. To this
end, let us define the drift-plus-penalty (DPP) function

∆p(t) = E{L(b(t+ 1))− L(b(t)) + V
∑
p∈P

ωpPd,p(t)|b(t)},

where Pd,p(t) is the instantaneous weighted sum of the in-
cident power defined in (4) over all the pixels covering the
area of interest. The DPP is the conditional expected change
of the Lyapunov function over one slot, with a penalty factor,
weighted by a parameter V , used to trade-off the instantaneous
weighted sum power density and buffer backlogs. Theoreti-
cally speaking, buffers’ stability (constraints (a) and (b) of
(8)) is guaranteed if the DPP is bounded by a finite constant
in each slot [20]. We now proceed by minimizing a suitable
upper bound of the DPP, as in [20]. The upper bound, whose
trivial derivations are reported in the following, reads as

∆p(t) ≤ C + E{(Br(t)−Bl(t)) τRu(t) +A(t)Bl(t)

− τBr(t)f(t)/J + V
∑

p∈P
ωpPd,p(t)|b(t)}. (10)

where C is a positive finite constant that reads as

C =
1

2

(
A2

max + 2(τRmax
u )2 + (τfmax)

2
)
, (11)

with Amax, Rmax
u , and fmax denoting the maximum number of

arrivals, the maximum data rate, and the maximum CPU clock
frequency, respectively, which are all finite by hypothesis. (10)
and (11) are obtained as follows. First, given a generic queue

evolving as Q(t + 1) = max(0, Q(t) − b(t)) + A(t), we can
write the following upper bound [20]:

Q2(t+ 1)−Q2(t)

2
≤ A2(t) + b2(t)

2
−A(t)min(b(t), Q(t))

+Q(t)(A(t)− b(t)) ≤ A2
max + b2max

2
+Q(t)(A(t)− b(t)),

where Amax and bmax are finite upper bounds of A(t), b(t),
which exist by hypothesis, as already stated. Then, recalling
(6) and (7), and applying the above upper bound to (10), we
easily obtain (10) and (11). Now, by greedily minimizing (10)
in each time slot (i.e. removing the expectation), we obtain
the following per-slot problem, which exploits the desired
deterministic instantaneous objective function to be used for
the dynamic and adaptive selection of precoding, decoding,
RIS parameters, and transmit power (we omit the temporal
index to lean the notation):

min
Ptx,wu,wa,Θ

V
∑

p∈P
ωpPd,p + (Br −Bl)Ru (12)

subject to (c)-(f) of (8),

where we recall that Pd,p (cf. (4)) and Ru (cf. (3)) are func-
tions of precoding, combining, RIS parameters, and transmit
power. As a direct consequence of [20, th. 4.8], by solving
(12) in each slot, buffers’ stability is guaranteed, with an
upper bound on their average length (i.e. E2E delay) that
grows as O(V ), with V defined in (10). Moreover, the distance
from the global optimal solution of the original problem (8)
and the one obtained through (12), decreases as O(1/V ).
More practically, for V finite, a corresponding E2E delay and
EMFE are obtained, i.e. a performance trade-off is explored by
varying this single tuning parameter, as anticipated in previous
section. The last effort is to solve (12). To this end, let us
notice that, in practical implementations, it is not likely to
have high cardinality sets for Wu, Wa, and T , so that an
exhaustive search over the feasible set of (8) is possible, of
course with the exception of the transmit power, which is a
continuous variable. Nevertheless, given Wu, Wa, and T , the
transmit power can be found in closed form. In particular,
it is straightforward to observe that, whenever Br ≥ Bl, the
optimal solution is to not transmit (i.e. Ptx = 0), as both terms
in (12) are monotonic non decreasing functions of Ptx. On
the other hand, whenever Br < Bl, the problem is convex,
and the optimal Ptx can be found in closed form through the
Karush-Kuhn-Tucker conditions as follows (simple derivations
are omitted due to the lack of space) [21]:

Ptx=

 W (Bl −Br)λ
2

4πV ln(2)
∑
p∈P

ωp |hpwu|2
−
∣∣wT

aHwu

∣∣2
N0W


Pmax

tx

0

(13)

Then, the global optimal solution of (12) is simply obtained
by computing Ptx for all possible precoders, combiners, and
RIS configurations, and selecting the solution that achieves
the lowest value of the objective function in (12). Overall,
in each slot, one needs to observe queue states, wireless



channels, and data arrivals, solve (12) through the above men-
tioned procedure, and finally update the buffers accordingly.
Surprisingly, starting from a long-term complex optimization
problem, we end up to a deterministic one that can be solved
through exhaustive searches over limited sets and closed form
solutions, thanks to the definition of an instantaneous objective
that weights service queue states and EMFE.

IV. NUMERICAL RESULTS

In this section, numerical results are provided to assess the
impact of our proposed optimization algorithm on the EMFE-
delay trade-off. We consider a scenario with a UE aiming to
offload his tasks to a MEH collocated at his serving AP. The
user is assigned a bandwidth of B = 800 MHz, while the noise
power spectral density is set to N0 = −174 dBm/Hz. The slot
duration is set to τ = 10 ms while for the user, the arrival
rate is set to 10 Gbps with Poisson distribution. At each time
slot, all channels (cf. (2)) are generated using a Rician model,
for a typical mmWave operating frequency, f = 28 GHz, with
Nu = 8, Na = 8, and M = 20, with element spacing λ/2.
The antenna patterns used to build Wu, Wa, and T are taken
from [22], with each element modeled as in [15, Eqn. 2]. A
range of −60◦ to 60◦, with a step of 10◦ is considered for the
UE and the AP, while a range of −30◦ to 30◦ with a step of 5◦

is considered for the RIS, with 0◦ the direction perpendicular
to the array. The maximum transmit power for the user is set to
Pmax
tx = 100 mW. At the MEC side, we assume the MEH to be

able to accomodate all requests on average, however with an
instantaneous random f(t) uniformly distributed. In particular,
denoting by (x, y, z) the 3D coordinates of an element, we
model the scenario deployment depicted in Fig. 1 using the
following positions: the AP at (50,50,1), the UE at (0,50,1),
the RIS at (4,48,1), and the man at (1,50,1). Note that, for all
elements, we use the uniform linear array (ULA) case.
As a first result, in Fig. 2, we show the trade-off between the
EMFE and the average E2E delay, obtained with our method
by tuning the trade-off parameter V. For this simulation, we
consider four different benchmark comparisons: i) the no RIS-
aided case, with the UE always transmitting towards the AP,
and with transmit power optimized as in (13); ii) the RIS-aided
case, with the UE always transmitting towards the AP, and with
transmit power optimized as in (13); iii) the RIS-aided case,
with the UE always transmitting towards the RIS, and with
transmit power optimized as in (13); iv) the case without the
RIS, but applying our optimization method. Finally, we term
our full optimization algorithm as BOA (blue optimization
algorithm). In Fig. 2, results are obtained by increasing the
Lyapunov trade-off parameter V from right to left. For all
curves we can notice how, by increasing V, the system average
EMFE decreases while the average service delay increases.
Results show how the use of the RIS offers the opportunity
to reduce the level of EMFE for a given service delay, also in
the case the UE always transmits towards the RIS. This is due
to the fact that the pixels of interest are between the UE and
the AP in this simulation. However, this gain is considerably
enhanced when BOA is applied, due to the increased degrees

Fig. 2: EMFE-Delay trade-off

Fig. 3: EMFE-Coverage trade-off

of freedom introduced by the adaptive selection of precoding,
combining, and RIS parameters. In other words, thanks to the
fact that the EMFE is defined as an average metric, the user
can opportunistically exploit the high data rate direct link from
time to time to upload a considerable amount of data, thus
increasing the instantaneous EMFE, provided that the indirect
link is exploited as backup to lower the long-term average. The
gain of the RIS-aided communication channel is indeed linked
to this. Hereafter, to point out more the impact of the RIS and
the BOA, we illustrate, through Fig. 3, the average EMFE as a
function of the transmission’s range (i.e. the distance between
the UE and the AP), for a fixed E2E delay bound of 100 ms,
obtained by tuning the trade-off parameter V. It can be clearly
noticed how for both cases, the EMFE level increases with the
range toward the AP, as expected, as a higher transmit power
is needed at the UE side to reach the AP with enough signal
quality. However, we can notice how the use of the RIS helps
extending the communication range, with less impact on the
exposure, with arounf 15 dB of gain at 100 m.



Fig. 4: EMFE-Rate trade-off

As a final result, we illustrate how the proposed algorithm
behaves with respect to the MEC traffic arrival rate, i.e the
necessary data rate over the wireless interface to guarantee
stability. As shown from Fig. 4, the case of the BOA with
RIS yields considerable gains for different arrival rates. More
specifically, for rates ranging from 100 Mbps to 1 Gbps, the
gap is stable around 3 dB, while it increases to more than
10 dB for an arrival rate of 20 Gbps. This trivially suggests
that the RIS is more beneficial especially for high data rate
services, as for low data rate services the UE can keep low
power communications while still guaranteeing stability and,
as a consequence, low average EMFE.

V. CONCLUSION

We proposed an online method able to adaptively and
jointly optimize precoding, combining, RIS parameters, and
transmit power in a RIS-aided MEC offloading scenario. As
objective, we considered the average EMFE in selected areas
within the service coverage, with constraints on the E2E
service delay. We reduced a long-term problem to a per-
slot optimization, which allowed us to solve it through a low
complexity procedure involving an exhaustive search over low
cardinality sets, coupled with a closed form solution for the
transmit power. Numerical results show the effectiveness of
our method and the benefits of the RIS in enabling blue
communications for computation offloading services, due to
which the uplink direction of communication will be exploding
in future 6G systems. Future directions include multi-user
scenarios, but also practical phase shifts and antenna losses
at UEs, APs and RISs, to investigate the impact of hardware
constraints on the results shown in the paper. However, such
practical constraints will rather impact absolute performance,
while we expect them to provide similar relative gains.
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