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Abstract—High frequency transmissions above 90 GHz, as
planned for the future generation of communication technology
called 6G, have to deal with oscillator-induced phase noise. This
phase noise deteriorates the system performance and then, signal
processing techniques are mandatory to counteract its effects. In
this paper, we describe and analyze a phase noise estimation
algorithm based on an Wiener interpolation filter. The proposed
technique is waveform agnostic and can be applied either to
5G-NR mutlicarrier waveforms such as orthogonal frequency
division multiplexing (OFDM) and discrete Fourier transform
spread OFDM (DFT-s-OFDM), or to single carrier systems.
In this study, we highlight the feasibility of this algorithm in
practical scenarios by providing both a theoretical analysis and
a performance evaluation.

Index Terms—Single-Carrier, OFDM, DFT-s-OFDM, 5G-NR
PTRS, 6G.

I. INTRODUCTION

The availability of large bandwidths in sub-THz bands
[1] allows to consider these bands as a key solution for
future wireless communications [2]. They will permit the
increase of the communication system capacity, notably the
throughput. However, transmitting in sub-THz bands has some
hardware constraints, including phase noise (PN) generated by
the oscillators. Consequently, PN compensation is required to
enhance the system performance. In this paper, we show the
feasibility of implementing the PN compensation algorithm
named interpolation filter (IF) in a real scenario.

Different PN estimation techniques are presented in the
state-of-the-art. Most of them are designed for orthogonal
frequency division multiplexing (OFDM) systems, such as
ICI cancellation [3], [4]. In discrete Fourier transform-spread-
OFDM (DFT-s-OFDM) systems, some PN estimation algo-
rithms are described in [5] such as common phase error
estimation (CPEE), linear interpolation (LI), discrete cosine
transform (DCT), Kalman filter. CPEE and LI algorithms
are considered in this work because of their low complexity
implementation.

Exploiting the correlated nature of the PN is a promising
approach already addressed in a recent literature. The authors
in [6] present a novel technique applied to OFDM systems,
which exploits the propagation channel estimation. Another
algorithm, which exploits an a priori knowledge of stochastic
properties of PN, i.e. its power spectral density (PSD), is intro-
duced in [7]. Performance comparison considering a DFT-s-
OFDM system is given in [7], by considering the IF algorithm
and other estimation algorithms. The use of the IF leads to a
good estimation of PN and therefore, the improvement of the
system performance after PN compensation is highlighted.

In addition, the IF provides better performance when low
pilot density is considered, which is important to increase the
spectral efficiency. In this work, we show the possibility of
implementing the IF algorithm for different communication
systems.

The main technical contributions of this work are as follows:
• Theoretical expression of the PN cross-correlation matrix

assuming the knowledge of its power spectral density
(PSD).

• Theoretical expression of the mean square error (MSE)
between the estimated PN and the generated one for a
single-carrier system. We present a comparison between
the theoretical MSE and the Monte-Carlo one.

• Uncoded bit error rate (BER) performance considering
the IF algorithm and a single-carrier system. We use the
theoretical cross-correlation matrix of the PN and the
Monte-carlo one.

• Coded transport block error rate (TBLER) performance
using 5G new radio (5G-NR) multicarrier waveforms and
extended numerologies as in [8].

Notations
In what follows, underlined lower boldface letters, a, in-

dicate column vectors, with ak denoting the kth element of
the column vector. The term E[·] denotes the expectation
operator. The term A−1 represents the inverse of the matrix
A. The symbols | · |, arg(·), (·)T , (·)∗, (·)H , Re{·} and
Im{·} respectively denote the magnitude value, the phase
value, the transpose, the conjugate, the transpose-conjugate,
the real part and the imaginary part. The matrix A† which
is defined as A† =

(
AHA

)−1
AH denotes the Moore-

Penrose pseudo-inverse of matrix A. Underlined boldface
numbers NX indicate column vectors of size X , and contain
the number N in all rows. Boldface numbers NX indicate
matrices of size X ×X that fully contain the number N. The
operator ⊙ represents the Hadamard product.

II. INTERPOLATION FILTER ALGORITHM

A. System Model
Sparse channels are expected in sub-THz band transmission.

The authors in [9] show that the use of high gain and direc-
tional antennas for RF transmission, ensure the most energy
contribution of the line-of-sight (LoS) path. Consequently,
NLoS paths are neglected and a LoS propagation frequency
flat channel is considered in this work. We assume a coherent
system with the presence of PN and a receiver synchronized
in time and frequency. The PN model considered in this work



is the 3GPP PN model, where the PSD of the PN is given for
both transmitter and receiver [10].

The proposed algorithm is a linear time-invariant filter used
to estimate a PN random process of an observed noisy signal,
assuming known stationary signal and PN spectra, as well as
additive noise.

B. Single-Carrier
The discrete-time received signal through an AWGN chan-

nel in the presence of PN, at the kth sample is expressed as
follows:

rk = ske
jϕk + nk, (1)

where sk and ϕk respectively represent the transmitted signal
and the discrete-time PN generated by the oscillators. The
term nk ∽ CN (0, σ2

n) represents the thermal noise and σ2
n

its power. To apply the IF algorithm in single carrier system,
we need to filter the received signal per block (that can be
overlap). Let consider that we transmit a frame of Np samples.
We will compute the PN estimation per block of size Na so
that Np = Na ·Nb, where Nb represents the number of blocks.
From (1) we have:

r[m] = s[m]⊙ ejϕ[m] + n[m], m = [0, Nb − 1]· (2)

Assuming that the pilot symbols are inserted, let define ap as
the vector that contains all the {ai}i∈χp values such that:

ai =
ris

∗
i

|si|2
, ∀i ∈ χp (3)

where χp represents the set that contains all the indexes where
pilots are inserted. The terms ri and si are respectively the
received and inserted pilot symbols. Considering a single-
carrier system, we obtain:

ai = ejϕi +
nis

∗
i

|si|2
, ∀i ∈ χp (4)

Then, from (2) we have:

ap[m] = e
jϕ

p
[m]

+ np[m]⊙ sp[m], m = [0, Nb − 1] (5)

where ejϕp is the vector that contains all the {ejϕi}i∈χp values
and np the one that contains {ni}i∈χp

. The vector sp contains
all the { s∗i

|si|2 }i∈χp . We can rewrite (5) as follows:

ap[m] = Gpe
jϕ[m] +Gpn[m]⊙ sp[m], m = [0, Nb − 1]

(6)
where Gp represents the pilot sampling matrix. Let us denote
Rejϕ = E

[
ejϕ · ejϕH

]
and Rn = E

[
n · nH

]
as the covari-

ance matrix respectively of ejϕ and n. The interpolation matrix
Z is derived as :

min
Z

E
[
∥Zap − ejϕ∥2

]
, (7)

and is expressed as follows [7]:

Z = RH
ejϕ

Gp
HB†, (8)

where B = C+D such that:
C = GpR

H
ejϕ

Gp
H ,

D =
(
GpR

H
n Gp

H
)
⊙
(
sps

H
p

)
·

(9)

The expression of the estimated PN is obtained as follows:

ϕ̂[m] = arg
(
Z · ap[m]

)
, (10)

and therefore from (2) the expression of the received samples
after PN compensation is:

ŝ[m] = r[m]⊙ e−jϕ̂[m]· (11)

The estimation of the PN samples is obtained through the
estimation of the exponential vector ejϕ by using its cross-
correlation matrix.

A second approach consists in using the cross-
correlation matrix of the PN for the filter derivation, i.e
Rϕ = E

[
ϕ · ϕH

]
. Under the high signal-to-noise ratio

(HSNR) approximation [11], the expression in (4) becomes:

ai = ejϕi

(
1 +

n′
is

∗
i

|si|2
)
, ∀i ∈ χp (12)

where n′
i = nie

−jϕi . Then, from (12) we have:

arg (ai) = ϕi + arctan
(

Im{n′
is

∗
i }

|si|2 +Re{n′
is

∗
i }

)
≃ ϕi +

Im{n′
is

∗
i }

|si|2

≃ ϕi +
Im{n′′

i }
|si|

,

(13)

where n′′
i = n′

ie
−jsiθ with siθ = arg (si). In that case, the

expressions in (5) and (6) become:
aθp[m] = ϕ

p
[m] + n′

p[m]⊙ sp[m],

aθp[m] = Gpϕ[m] +Gpn
′[m]⊙ sp[m],

(14)

where the vectors aθp and ϕ
p
[m] respectively contain all the

{arg (ai)}i∈χp
and {ϕi}i∈χp

. The vectors n′
p[m] and sp[m]

respectively contain {Im{n′′
i }}i∈χp and { 1

|si|}i∈χp .
So, let define Rn′ = E

[
n′ · n′H]

as the cross-correlation
matrix of n′. Assuming that the thermal noise is circularly
symmetric, we have:

E [n′] = 0Na
and Rn′ =

Rn

2
· (15)

Therefore, the expression of the IF assuming the HSNR
approximation is:

W = RH
ϕGp

HB†, (16)

where B = C+D such that:
C = GpR

H
ϕGp

H ,

D =
(
GpR

H
n′Gp

H
)
⊙
(
sps

H
p

)
·

(17)

The estimated PN vector is expressed as follows:

ϕ̂[m] = W · aθp[m], ∀m = [0, Nb − 1] (18)

and we recover the expression of the transmitted signal after
PN compensation by computing the expression in (11). The
HSNR approximation allows to directly estimate the PN by



using the cross-correlation matrix of the PN, rather than
the one of the complex exponential of the PN. The size of
interpolation matrices Z and W is Na ×K, with Na and K
respectively are the number of samples and inserted pilots on
each block.

C. Multicarrier Waveforms: OFDM and DFT-s-OFDM
With multicarrier waveforms, the expression of the received

signal impacted by PN is different than the single-carrier case.
Indeed, the presence of PN causes a common phase error
(CPE) and intercarrier interference (ICI) in the case of OFDM
systems [3]. In DFT-s-OFDM systems, the PN induces the
subcarrier phase error (SPE) and ICI [12]. As a consequence,
we need to adapt the interpolation matrices to include the ICI
terms. The expression of the interpolation matrix Z can be
written as follows [7]:

Z = RHGp
HT†, (19)

where T = M+ I+N such that:

M = GpR
HGp

H ,

I =
(
GpR

H
I Gp

H
)
⊙
(
sps

H
p

)
,

N =
(
GpR

H
n Gp

H
)
⊙
(
sps

H
p

)
·

(20)

The size of the matrix Z is Ns ×K where K is the number
of inserted pilots on each DFT-s-OFDM and OFDM symbols.
The term Ns is the size of the spreading DFT in DFT-s-
OFDM system and the activated subcarriers in OFDM system.
The matrices RI and Rn are respectively the cross-correlation
matrix of the ICI and thermal noise. The term R represents
the cross-correlation matrix of the phase noise after Fourier
transform. It is expressed as follows:

R = E
[
CPE ·CH

PE

]
for OFDM systems,

R = E
[
ejϕ

′ · ejϕ′H
]

for DFT-s-OFDM systems [7]·
(21)

The vector CPE is the vector which contains the CPE in all
rows. The term ejϕ

′
represents the exponential of the new

PN vector ϕ′ obtained after fast Fourier transformations. The
expression of the estimated PN is obtained as follows:

ϕ̂
′
= ϕ̂

CPE
= arg

(
Z · ap

)
, (22)

where ap contains all the {ai}i∈χp
values defined in (4),

with respect to the multicarrier waveform system used. The
expressions of the received OFDM and DFT-s-OFDM symbol
after the PN compensation are:

Ŝ[m] = R[m]⊙ e−jϕ̂
CPE

[m] for OFDM systems,

ŝ[m] = r[m]⊙ e−jϕ̂
′
[m] for DFT-s-OFDM systems,

(23)
where Ŝ[m] and R[m] are respectively the mth transmitted
and received OFDM symbol in the frequency domain. The
terms ŝ[m] and r[m] are respectively the mth transmitted and
received DFT-s-OFDM symbol in the discrete-time domain.

Remark: For OFDM systems, the cross-correlation matrix
in (21) is a fully CPE matrix because

R = E
[
CPE ·CH

PE

]
= CPE ·CH

PE · (24)

So, computing the IF algorithm comes back to perform the
CPEE algorithm for the PN estimation. Therefore, in OFDM
systems, we need to use ICI compensation algorithms for
compensating the PN effects and then, to enhance the system
performance.

III. DERIVATION OF CROSS-CORRELATION MATRICES
AND MSE

The challenge in applying the IF algorithm relies in esti-
mating the cross-correlation matrix of the PN in real scenario.
In the case of single carrier and DFT-s-OFDM systems, we
will show that it is possible to obtain a theoretical expression
based on the knowledge of the PN PSD.

A. Single Carrier system

Let us denote by F and S respectively the Fourier transform
matrix and the diagonal matrix that contains the sum of the
PSD of the PN at the transmitter and receiver on its diagonal.
The theoretical expression of the generated discrete-time PN
can be expressed as follows [13]:

ϕ = Re

{√
FsF

H
√
Sw

}
=

√
FsRe

{
FH

√
Sw

}
=

√
FsRe

{
(FR + jFI)

H
√
S (wR + jwI)

}
=

√
Fs

(
FT

R

√
SwR − FT

I

√
SwI

)
ϕ =

√
Fs

(
FR

√
SwR − FI

√
SwI

)
,

(25)

where Fs is the sampling frequency. The term w represents
an independent and identically distributed complex Gaussian
vector of size Np = Nx · Nb, where Np is the size of the
transmitted sequence. It is defined as follows:

w ∽ CN (mw,Γw) =

 mw = [0, · · · , 0]T

Γw = IN ·
(26)

The vectors wR and wI in (25) are respectively the real
part and the imaginary part of the vector w. Therefore, the
theoretical expression of the cross-correlation matrix of the
PN is obtained as follows:

Rϕ = E
[
ϕ · ϕH

]
=

Fs

2

(
FRSF

T
R + FISF

T
I

)
,

(27)

where S is of size Np × Np and Rϕ is of size Nx × Nx.
The matrices FR and FI are respectively the real part and the
imaginary part of the matrix F of size Nx×Np. The elements
at the ith row and kth column of the matrix F are obtained
as follows:

F(i,k) =
1√
Np

e
−j2π

(i−1)(k−1)
Np , (28)



TABLE I
SIMULATION PARAMETERS

Sampling Frequency Fs 1966.08 MHz
Numerology µ 4 to 8
Signal bandwidth B 983.04 MHz
Carrier frequency Fc 140 GHz
Phase noise model 3GPP [10]
Tx IFFT size N 8192× 2−µ+4

Number of active carriers Ns 4096× 2−µ+4

LDPC coding rate CR 0.3, 0.7 and 0.9
LDPC decoder Layered Min-Sum
Modulation M 4, 16 and 64 QAM

for i = J1, · · · , NxK and k = J1, · · · , NpK. To express the
cross-correlation matrix of the vector ejϕ, we use the small-
angle approximation ejϕ ≃ 1Nx

+ jϕ and we obtain:

Rejϕ ≃ E
[
ejϕ · ejϕH

]
≃ E

[(
1Nx

+ jϕ
) (

1Nx
+ jϕ

)H]
,

≃ 1Nx
+Rϕ,

(29)

with Rϕ defined in (27). Considering a single carrier system,
the term Nx = Na. Furthermore, we derive the theoretical
expression of the mean square error (MSE) between the
estimated and the generated PN. It is expressed as follows:

MSEHSNR = E
[
∥Zaθp − ϕ∥2

]
,

= Tr{E
[(
Zaθp − ϕ

) (
Zaθp − ϕ

)H]
},

(30)

where ϕ is the vector which contains {ϕi}i∈χp values. By
replacing (14) in (30), we have:

MSEHSNR = Tr{ZGpRϕGp
HZH − ZGpRϕ

+ ZGpRn′Gp
HZH ⊙ sps

H
p −RϕGp

HZH

+Rϕ}·
(31)

From (31), we can express the MSE between the exponential
of the estimated PN and the one of the generated PN as
follows:

MSE = Tr{ZGpRejϕGp
HZH − ZGpRejϕ

+ ZGpRnGp
HZH ⊙ sps

H
p −RejϕGp

HZH

+Rejϕ}·
(32)

The MSE expression in (31) is obtained assuming the HSNR
approximation.

B. DFT-s-OFDM system

For DFT-s-OFDM system, the exponential vector ejϕ
′

can
be expressed as follows:

ejϕ
′
= diag

{
FH

Ns
DFNΦCF

H
NMFNs

}
, (33)

where ΦC is the diagonal matrix containing the PN shifts
ejϕ. FX is the discrete Fourier transform matrix of size
X × X . The vector ϕ is the sum of the PN generated by
the oscillator at the transmitter and receiver. The matrices M
and D respectively represent the Ns-to-N mapping matrix and
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the N -to-Ns demapping matrix. By posing FRX = FH
Ns

DFN

and FTX = FH
NMFNs , we obtain the relation below:

ejϕ
′
= Bejϕ with B(i,k) = F

(i,k)
RX F

(k,i)
TX (34)

with i ∈ J1, · · · , NsK and k ∈ J1, · · · , NK. Therefore, the
cross-correlation matrix R is expressed as follows

R = E
[
ejϕ

′ · ejϕ′H
]
= BRejϕB

H · (35)

In the case of a DFT-s-OFDM system, the term Nx = N ,
where N represents the size of FFT/IFFT blocks. From (29),
the matrix Rejϕ is expressed as show in (36):

Rejϕ ≃ 1N +Rϕ (36)

and consequently, the expression in (35) becomes:

R ≃ B
(
1N +Rϕ

)
BH , (37)



with Rϕ defined in (27). Then, we can derive the theoretical
expression of the MSE between the exponential of the esti-
mated PN and the one after Fourier Transformation as follows:

MSE = Tr{ZGpRejϕ
′Gp

HZH − ZGpRejϕ
′

+ ZGpRnGp
HZH ⊙ sps

H
p −Rejϕ

′Gp
HZH

+Rejϕ
′}·

(38)

IV. NUMERICAL RESULTS

In this section, we present system performance based on
the parameters summarized in the TABLE I. The signal-to-
noise ratio (SNR) is evaluated overall the bandwidth. For the
PN estimation, we consider phase tracking reference signal
(PTRS) distribution as depicted in Fig. 1-(a) in [7]. We
consider a realistic channel estimation with noisy received
pilots.

A. Theoretical vs Monte-Carlo Analysis

Fig. 1 presents the system performance of a single-carrier
system in terms of uncoded BER. IF, CPEE and LI algorithms
are considered for PN estimation. Regarding the IF algorithm,
we consider: (i) first, the theoretical cross-correlation matrix
Rejϕ as expressed in (29), and the one obtained by Monte-
Carlo simulations, (ii) second, the theoretical cross-correlation
matrix RΦ expressed in (27) and the one obtained by Monte-
Carlo simulations. We transmit a frame of Np = 65536
samples. Before the symbols detection, we operate the PN
estimation and compensation on blocks of 1024 samples.

Regarding the IF algorithm, we observe that the system
performance obtained by using theoretical cross-correlation
matrices in Sec. III-B match well with those obtained with
the Monte-Carlo one.

Fig. 2 presents the comparison between the theoretical
and the Monte-Carlo MSE. We consider the theoretical MSE
expressions in (31) and (32). We show once again a good
match between theoretical MSE expressed in (32) and the
Monte-Carlo. For the MSE expression in (31), a performance
gap is observed in low SNR: the HSNR approximation is no
longer valid.

B. Coded TBLER Performance

For 5G-NR multicarrier waveforms, we perform coded
TBLER simulations. A 5G-NR low density parity check
(LDPC) code [14] and extended numerologies [8] are consid-
ered. For OFDM systems, we consider a fast Fourier transform
(FFT) block of size N . For DFT-s-OFDM systems, the DFT
spreading block of size Ns is appended to the OFDM FFT.
The OFDM and DFT-s-OFDM systems are compared for same
signal bandwidth, i.e. only Ns subcarriers over N are actives in
OFDM. When it comes to the PN estimation, three algorithms
are investigated: (i) CPEE, (ii) LI and (iii) the proposed IF.
The achieved performance of OFDM are depicted in TABLE
II and those of DFT-s-OFDM in TABLE III, where we also
represent the spectral efficiency (SE). The SE is defined by
the product

SE = log2 (M) · CR, (39)

where M and CR are respectively the modulation order and
the LDPC coding rate. We consider three levels: (i) low SE

considering a QPSK modulation with CR= 0.3. (ii) Medium
SE for a 16-QAM modulation with CR= 0.7 and (iii) high SE
for a 64-QAM modulation with CR= 0.9.

The performance metric considered for the performance
evaluation is the SNR value to ensure a given TBLER target
at 10−2. NA stands for ”not achievable”. Regarding to the IF
algorithm, we consider:

• first, a perfect knowledge of cross-correlation matrices
R, RI and Rn (20) by estimating them from training
sequences. The results are mentioned in the column ”IF
simu.” of TABLES II and III.

• second, we consider the first case but, we replace the
matrix R in (21) by the theoretical cross-correlation
matrix of the exponential of the PN generated by the
oscillators in (37). In addition, we also neglect the cross-
correlation matrix of the ICI, i.e. RI, because it could be
difficult to estimate this matrix correctly in real scenario.
The results are presented in the column ”IF theo.” of
TABLE III.

For OFDM systems, as represented in TABLE II and
mentioned in Sec. II-C, doing the IF algorithm is equivalent
to doing the CPEE algorithm. For µ ≥ 4, the CPEE algorithm
is sufficient for PN estimation in low SE. In medium SE, the
CPEE algorithm can be implemented for µ ≥ 6. Indeed, the
more we increase the numerology, the more we reduce the ICI
by increasing the subcarrier spacing (SCS). For µ < 6, ICI
compensation algorithms as presented in [4] might be needed
to improve the system performance. In high SE, the CPEE
algorithm only reaches the target TBLER for µ = 8. Therefore,
ICI cancellation techniques are needed in high SE.

Regarding DFT-s-OFDM system performance in TA-
BLE III, CPEE provides the same performance as IF in
low SE. LI is the worst performing algorithm to implement
compared to CPEE and IF algorithms. In medium SE, we
observe that for µ > 6, CPEE and IF provide the same
performance, and LI algorithm is less better than CPEE. In
contrast, for µ ≤ 6, the SNR gain by using IF instead of CPEE
increases (SNR> 2 dB). This is because of the increasing of
the SE. Also, considering low numerologies means big size
of DFT and FFT blocks and therefore, a bad estimation using
CPEE. LI algorithm is better than CPEE but less than IF. In
high SE, we observe that CPEE is the least efficient algorithm
to use. We observe a SNR gain of 1.2 dB in average by
using the IF algorithm instead of LI. Finally, according to IF
algorithm, both IF simu. and IF theo. provide similar system
performance.

C. Discussion

First of all, one can observe that the simulation results
match well with the theoretical expressions (Fig. 1) for single-
carrier systems. When it comes to multicarrier waveforms,
one can observe that ICI cancellation techniques are required
in OFDM systems for high SE. For DFT-s-OFDM systems,
one can observe that the simulation performance match the
expected theoretical results. It validates the implementation
of IF algorithm in DFT-s-OFDM system with theoretical
expression of the PN correlation matrix in (29). According
to the numerical results and simulation parameters used, the



TABLE II
EVALUATION OF SNR [DB] VALUES TO MEET TBLER TARGET 10−2 FOR OFDM SYSTEMS ASSUMING A PILOT DENSITY OF 12.5%.

(M - CR) (QPSK - 0.3) (16-QAM - 0.7) (64-QAM - 0.9)

SE 0.6 2.8 5.4

Algorithms CPEE LI IF simu. CPEE LI IF simu. CPEE LI IF simu.

µ

4

SCS

240 kHz -3.83 -0.66 -3.84 NA NA NA NA NA NA
5 480 kHz -4.02 -0.89 -4.02 22.19 NA 22.59 NA NA NA
6 960 kHz -4.05 -1.03 -4.05 9.04 11.42 9.05 NA NA NA
7 1920 kHz -4.05 -1.04 -4.05 7.57 9.18 7.57 NA NA NA
8 3840 kHz -4.02 -1.02 -4.02 7.33 8.89 7.34 21.40 31.79 21.33

TABLE III
EVALUATION OF SNR [DB] VALUES TO MEET TBLER TARGET 10−2 FOR DFT-S-OFDM SYSTEMS ASSUMING A PILOT DENSITY OF 12.5%.

(M - CR) (QPSK - 0.3) (16-QAM - 0.7) (64-QAM - 0.9)

SE 0.6 2.8 5.4

Algorithms CPEE LI IF simu. IF theo. CPEE LI IF simu. IF theo. CPEE LI IF simu. IF theo.

µ

4

SCS

240 kHz -3.83 -1.21 -4.16 -4.16 NA 8.57 7.19 7.19 NA 18.36 16.99 16.98
5 480 kHz -4.02 -1.21 -4.15 -4.12 NA 8.58 7.19 7.19 NA 18.38 16.98 16.98
6 960 kHz -4.05 -1.21 -4.10 -4.09 9.12 8.58 7.19 7.19 NA 18.40 16.98 16.98
7 1920 kHz -4.05 -1.12 -4.06 -4.06 7.57 8.59 7.19 7.19 NA 18.52 16.98 16.98
8 3840 kHz -4.02 -1.04 -4.02 -4.02 7.33 8.73 7.19 7.19 22.00 18.69 17.00 16.99

ICI contribution can be neglected for DFT-s-OFDM systems.
This simplifies the model and thus the implementation of
the IF compensation technique, assuming the pilot density
used in this work. However, performance degradation could
possibly appear if one increases the PN power (by increasing
the carrier frequency) or the modulation order. Additionally, it
seems important not to forget that this simplification depends
on the correlated nature of the PN and may not always be
valid (for example if one consider uncorrelated phase noise as
presented in [15]). As a reminder, all the presented results are
obtained by assuming a perfect knowledge of the PN PSD, and
considering the LoS channel model as defined in Sec. II-A.

V. CONCLUSION

Ensuring proper PN estimation and compensation in sub-
THz transmissions is critical. In this work, we extended
the work done in [7] about a solution called interpolation
filter (IF). The proposed algorithm is based on the use of
correlation information of the PN to track it. We performed
numerical simulations considering single-carrier, OFDM and
DFT-s-OFDM systems. The presented results are validated by
theoretical expressions, by assuming the knowledge of the
PN PSD. For OFDM systems, the IF algorithm provides the
same performance as the CPEE algorithm. As a consequence,
considering the proposed IF technique for OFDM is not
interesting as CPEE is easier to implement. ICI cancellation
algorithms might be needed for increasing the SE. When
it comes to single-carrier and DFT-s-OFDM systems, we
presented the same system performance considering the IF
algorithm, by using the theoretical PN cross-correlation matrix
expressed in Sec. III-B and the one obtained with Monte-Carlo
simulations. These results validated the theoretical expressions
of the PN cross-correlation matrix derived in this work, and the
possibility of implementing the IF algorithm in real scenario.

REFERENCES
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