Vincent Werner

Laurent Maingault

Fast Calibration of Fault Injection Equipment with Hyperparameter Optimization Techniques

Keywords: Fault Injection, Voltage Glitch, Parameter Optimization

Fast calibration of fault injection equipment with hyperparameter optimization techniques

Introduction

Fault injection is a powerful technique to bypass security features of embedded systems, such as code protection mechanisms [START_REF] Bozzato | Shaping the glitch: optimizing voltage fault injection attacks[END_REF][START_REF] Gerlinsky | Breaking code read protection on the nxp lpc-family microcontrollers[END_REF][START_REF] Obermaier | Shedding too much light on a microcontroller's firmware protection[END_REF]. Using electrical glitches [START_REF] Aumüller | Fault attacks on rsa with crt: Concrete results and practical countermeasures[END_REF], focused light [START_REF] Sergei | Optical fault induction attacks[END_REF], electromagnetic pulses [START_REF] Dehbaoui | Electromagnetic transient faults injection on a hardware and a software implementations of aes[END_REF] or even nanofocused X-rays [START_REF] Anceau | Nanofocused x-ray beam to reprogram secure circuits[END_REF], one can locally perturb the chip environment to alter its behavior and gain access to critical information. Although fault injection can lead to impressive results, this is not without limitation. One of the biggest challenges is the calibration of fault injection equipment. Each fault injection equipment has multiple specific parameters that must be adjusted precisely, such as the positions 𝑥, 𝑦, 𝑧 of an electromagnetic probe tip. This preliminary calibration step is required in order to find exploitable and repeatable faults.

The parameter space is often too large to be entirely covered manually during time-constrained security evaluation. The most commonly-used methods to explore the parameter space are Grid Search (GS) and Random Search (RS). GS is a semi-exhaustive search on a predetermined and progressively refined range of values. Although GS is effective with small parameter space, this technique is inefficient to explore a high dimensional parameter space, as the number of evaluated configurations increases exponentially with the number of parameters considered. Even though RS is slightly better than GS for exploring large parameter space [START_REF] Bergstra | Random search for hyper-parameter optimization[END_REF], both GS and RS select next configurations to evaluate independently of the previous results, thus, many evaluations are wasted on poorly-performing configurations.

Several approaches have been proposed to reduce the time spent on the equipment calibration, using more complex optimization techniques, such as metaheuristic algorithms. However, genetic and memetic algorithms are inherently chaotic and can suffer from premature convergence [START_REF] Katoch | A review on genetic algorithm: past, present, and future[END_REF]. Accordingly, Bayesian and Bandit Optimization techniques are typically preferred over metaheuristic algorithms to optimize hard combinatorial problem solvers [START_REF] Hutter | Sequential model-based optimization for general algorithm configuration[END_REF] or machine learning models [START_REF] Li | Hyperband: A novel bandit-based approach to hyperparameter optimization[END_REF]. To the best of our knowledge, such techniques have not been considered for fault injection yet. Therefore, in this article, we propose to apply two efficient hyperparameter optimization techniques, so as to simplify and speed up the calibration of a fault injection equipment for a given target microcontroller. In addition, we also propose an optimization strategy to reduce the dimensionality of the parameter space in order to speed up even more the equipment calibration. To sum up, our contribution is threefold:

-We apply for the first time two hyperparameter optimization techniques, Successive

Halving and SMAC, to find the best settings and induce repeatable and exploitable faults with our voltage fault injection (VFI) setup, on three different 32-bit microcontrollers. -We propose to break down the optimization problem into two stages, so as to simplify but also to speed up the equipment calibration; first, 1) during the Calibration stage, we focus on fault injection parameters only, using an external program designed to maximize fault propagation, and then, once the best configurations are identified, 2) during the Exploitation stage, we find the fault injection timing to exploit vulnerabilities on the target application. -Using this strategy and SMAC, we successfully bypass the code protection mechanism of a built-in bootloader. Moreover, SMAC reduces the equipment calibration time by half compared to genetic algorithms.

The outline of the rest of the article is as follows. After an overview of the related work to overcome the limitations of GS and RS in section 2, we comprehensively explain our fault injection optimization strategy in section 3. In section 4, we detail Successive Halving and SMAC optimization techniques, which are used for equipment calibration. In section 5, to evaluate the performance of these optimization techniques, we calibrate our VFI setup for three different microcontrollers using Successive Halving, SMAC, Genetic algorithm and RS. Finally, in section 6, we apply our fault injection strategy using SMAC to bypass a read protection mechanism on a 32-bit microcontroller faster than with Genetic Algorithm.

Related work

Parameter optimization has recently gained in popularity in the fault injection community. Different approaches have been proposed to speed up the equipment calibration step. When possible, reducing the parameter space by identifying the regions of interest helps considerably. For example, using a scanning electron microscope, Courbon et al. [START_REF] Courbon | Increasing the efficiency of laser fault injections using fast gate level reverse engineering[END_REF] find the most sensitive areas of the die to focus with Laser Fault Injection (LFI). Similarly, Schellenberg et al. [START_REF] Schellenberg | On the complexity reduction of laser fault injection campaigns using obic measurements[END_REF] measure the optical beam induced current, as imaging technique, in order to localize flip-flops of an hardware AES accelerator. Madau et al. [START_REF] Madau | An em fault injection susceptibility criterion and its application to the localization of hotspots[END_REF] propose to acquire EM emission traces, so as to detect EM hotspots and reduce the parameter space of EM Fault Injection (EMFI) equipment. Finally, to reduce the dimensionality of the problem, Carpi et al. [START_REF] Boix | Glitch it if you can: parameter search strategies for successful fault injection[END_REF] split the optimization problem into two stages, one focusing on voltage parameters and the other one on proper timing.

Another way to find the best settings faster is to use better optimization algorithms than RS or GS. Genetic algorithm (GA) is a popular metaheuristic algorithm based on the evolutionary theory, which has been applied to EMFI [START_REF] Maldini | Optimizing electromagnetic fault injection with genetic algorithms[END_REF] but also VFI [START_REF] Bozzato | Shaping the glitch: optimizing voltage fault injection attacks[END_REF][START_REF] Boix | Glitch it if you can: parameter search strategies for successful fault injection[END_REF][START_REF] Picek | Evolving genetic algorithms for fault injection attacks[END_REF] to find the best configurations. Picek et al. [START_REF] Picek | Fault injection with a new flavor: Memetic algorithms make a difference[END_REF] use Memetic algorithm, which is an extension of the traditional GA with a local search technique, also to explore more efficiently the VFI parameter space. More recently, Wu et al. [START_REF] Wu | A fast characterization method for semi-invasive fault injection attacks[END_REF] have proposed a characterization method for LFI setups based on deep learning to tune the pulse width and the power of the laser.

Related Work Optimization Technique Dimension Reduction FI Technique

Our contribution

Bandit Optimization VFI Bayesian Optimization [START_REF] Picek | Fault injection with a new flavor: Memetic algorithms make a difference[END_REF] Memetic Algorithm VFI [START_REF] Maldini | Optimizing electromagnetic fault injection with genetic algorithms[END_REF] Genetic Algorithm EMFI [START_REF] Bozzato | Shaping the glitch: optimizing voltage fault injection attacks[END_REF][START_REF] Picek | Evolving genetic algorithms for fault injection attacks[END_REF] Genetic Algorithm VFI [START_REF] Boix | Glitch it if you can: parameter search strategies for successful fault injection[END_REF] Genetic Algorithm VFI [START_REF] Wu | A fast characterization method for semi-invasive fault injection attacks[END_REF] Deep Learning LFI [START_REF] Madau | An em fault injection susceptibility criterion and its application to the localization of hotspots[END_REF] Grid Search EMFI [START_REF] Courbon | Increasing the efficiency of laser fault injections using fast gate level reverse engineering[END_REF][START_REF] Schellenberg | On the complexity reduction of laser fault injection campaigns using obic measurements[END_REF] Grid Search LFI Table 1: Comparison of the related work according to the optimization technique, the dimension reduction of the parameter space, and the fault injection technique.

Nevertheless, the main limitation of metaheuristic algorithms is the introduction of additional hyperparameters that must be configured, such as the size of the population, the mutation rate, or the fitness function. Moreover, depending on the optimization problem, metaheuristic algorithms can suffer from premature convergence. Similarly, find the right number of hidden layers and neurons of the deep neural network is tedious.

More efficient optimization techniques have been proposed over the past decade, such as Bayesian optimization or Bandit optimization. Although already used for hyperparameter optimization of machine learning algorithms, these techniques have never been applied to fault injection. Accordingly, we propose for the first time to apply SMAC (Bayesian optimization) and Successive Halving (Bandit optimization) to improve the calibration of fault injection equipment. Moreover, we also reduce the dimensionality of the parameter space by splitting the optimization in two stages, but unlike [START_REF] Boix | Glitch it if you can: parameter search strategies for successful fault injection[END_REF], we decide to use an external program to find the best configurations.

Fault Injection Optimization Approach

In this section, we detail our general approach for fault injection optimization. This strategy aims to reduce the time spent on searching for the best equipment settings, by reducing the dimensionality of the parameter space. Speeding up the parameter space exploration is particularly important as security evaluations are often time-constrained.

Common Approach

The most common strategy to optimize fault injection consists to calibrate the fault injection equipment directly with the target application. Most of the time, only the critical part of the target application, that can potentially lead to security holes with fault injections, is evaluated. But for large applications, identifying the critical sections is tedious, therefore, it is nearly impossible during a black-box, time-constrained, security evaluation to find the right equipment settings and the right timing to inject the fault. In addition, the lack of feedback for some application further complicates the equipment calibration [START_REF] Van Den Herrewegen | Fill your boots: Enhanced embedded bootloader exploits via fault injection and binary analysis[END_REF], and significantly increases the amount of work required.

Our Approach

In an effort to tackle these issues, we propose to reduce the dimensionality of the parameter space by breaking down the problem of fault injection optimization into two stages, so as to simplify and speed up the parameter space exploration. First, 1) the Calibration stage optimizes the equipment calibration independently of the target application, using an external program and then, 2) the Exploitation stage finds the right timing to inject a fault in order to exploit a vulnerability on the target application. Figure 1 presents our fault injection optimization strategy.

Fault probability

During the calibration stage, only faults resulting in a faulty output are considered as effective, while faults resulting in a crash, a timeout or a normal output are not taken into account. The fault probability is used as a metric to compare performance between configurations. The fault probability of a given configuration is the number of effective faults divided by the number of tests for this particular configuration.

Fault Characterization test

The external program, called fault characterization test in this article, is not the application itself, but rather a series of instructions, arranged in such a way as to maximize the number of effective faults on the target microcontroller, in order to quickly find the settings with the highest fault probability. Fault characterization tests have been already applied to highlight fault effects on various microcontrollers with different fault injection techniques [START_REF] Balasch | An in-depth and black-box characterization of the effects of clock glitches on 8-bit mcus[END_REF][START_REF] Colombier | Laser-induced single-bit faults in flash memory: Instructions corruption on a 32-bit microcontroller[END_REF][START_REF] Dureuil | From code review to fault injection attacks: Filling the gap using fault model inference[END_REF][START_REF] Moro | Electromagnetic fault injection: towards a fault model on a 32-bit microcontroller[END_REF][START_REF] Riviere | High precision fault injections on the instruction cache of armv7-m architectures[END_REF][START_REF] Trouchkine | Fault injection characterization on modern cpus[END_REF][START_REF] Werner | An end-to-end approach for multi-fault attack vulnerability assessment[END_REF]. The main advantage of using a fault characterization test is that we can completely ignore the injection timing during the optimization of our setup for the target microcontroller, which helps the exploration of the parameter space. In addition, a characterization test is often smaller than the target application, reducing the time required in the long run. Furthermore, a fault characterization test simplifies the equipment calibration by giving instant feedback on the effectiveness of the fault injection parameters, in comparison with an equipment calibration directly with black-box applications [START_REF] Van Den Herrewegen | Fill your boots: Enhanced embedded bootloader exploits via fault injection and binary analysis[END_REF].

Optimization Techniques

We use different optimization techniques for each step of our approach. During the calibration stage, we use hyperparameter optimization techniques such as SMAC or SH, to quickly explore the equipment parameter space, way faster than with GS or RS (due to the curse of dimensionality [START_REF] Dewancker | A stratified analysis of bayesian optimization methods[END_REF]). Then, once the best settings are identified, the right timing to inject the fault can be found with a simple random/grid search on the target application during the exploitation stage.

Hyperparameter Optimization Techniques

In this section, we comprehensively explain the two hyperparameter optimization techniques, Successive Halving and SMAC, which are used to improve the convergence speed towards the best fault injection settings during the calibration stage.

Parameter Space and Equipment Configuration

The parameter space Θ depends on the fault injection technique and the setup used. For example, our VFI setup has 9 free parameters defining the glitch waveform (8 voltage levels and the glitch duration, more detailed information is provided in section 5.2, Figure 2). Each configuration 𝜃 ∈ Θ describes how to adjust each parameter of the given fault injection equipment (e.g. the positions 𝑥, 𝑦, 𝑧 of an electromagnetic probe tip). Depending on the number of equipment configurations possible within the parameter space, and the target microcontroller, the complexity of the search will vary. Successive Halving or SMAC can significantly help to reduce the time spent identifying configurations that induce exploitable faults.

Successive Halving

The Successive Halving (SH) algorithm has been originally proposed by Karnin et al. [START_REF] Karnin | Almost optimal exploration in multi-armed bandits[END_REF] to solve multi-armed bandits problems, but it can also be applied for hyperparameter optimization [START_REF] Yang | On hyperparameter optimization of machine learning algorithms: Theory and practice[END_REF]. The main purpose of the algorithm (algorithm 1) is to identify the best arm correctly (the best configuration) within a fixed budget 𝑇, that is a limited amount of time or resources (e.g. the total number of fault injections). The total budget is evenly allocated across log 2 (𝑛) elimination rounds, where 𝑛 is the number of initial configuration instances ì Θ 0 . The algorithm evaluates the configurations in a uniform manner. At the end of each round, the worst ones are eliminated. Then, on each successive round, the remaining configurations are evaluated twice as much as the previous round, and the process repeats until only one remains.

Algorithm 1: Successive Halving

Input: Total budget 𝑇, fault injection parameter space Θ, 𝑛 initial configuration instances ì Θ 0 ⊂ Θ Output: Optimized configuration 𝜃 𝑖𝑛𝑐 ∈ ì Θ log 2 (𝑛)
for 𝑟 = 0 to log 2 (𝑛) -1 do The main concern is, for a fixed budget 𝑇, whether to consider many configurations (large 𝑛) with smaller number of trials for each; or a small number of configurations (small 𝑛) with larger number of trials for each. A solution, proposed by Aziz [START_REF] Aziz | On Multi-Armed Bandits Theory and Applications[END_REF], is to take a budget 𝑇 = 𝑛 log 2 (𝑛), resulting in an aggressive selection of configurations after just a single shot in the first round. Although only a conjecture has been presented to give an upper bound on the simple regret, the particular parameterization 𝑇 = 𝑛 log 2 (𝑛) of the algorithm 1 is better empirically than more complex solutions, also based on successive halving, such as HyperBand [START_REF] Li | Hyperband: A novel bandit-based approach to hyperparameter optimization[END_REF].

𝑡 𝑟 ← 𝑇 | ì Θ 𝑟 | log 2 (

SMAC

Sequential Model-Based Algorithm Configuration (SMAC), proposed by Hutter et al. [START_REF] Hutter | Sequential model-based optimization for general algorithm configuration[END_REF], is a general framework for Sequential Model-Based Optimization (SMBO), also known as Bayesian Optimization. SMAC has been successfully applied for hyperparameter optimization of hard combinatorial problem solvers and various machine learning algorithms. Contrary with classical Bayesian-based approaches, SMAC supports all types of parameters, including continuous, discrete, categorical, but can also handles non-deterministic processes which is a key feature to optimize fault injection parameters. In section 4, we will see that SMAC outperforms common approaches used to optimize the fault injection equipment. In the following, we explain the SMAC algorithm in detail.

Sequential Model-Based Optimization Unlike previous approaches, SMBO keeps track of past results to fit iteratively a probabilistic model, in order to select the next fault injection configurations which could potentially maximize the number of effective faults on the target microcontroller.

SMBO, as detailed in algorithm 2, is structured around two key components, a probabilistic model and a selection function, also called the surrogate model and the acquisition function respectively. The probabilistic model M is fitted (FitModel) to previous results R = {(𝜃 1 , 𝑜 1), ..., (𝜃 𝑛 , 𝑜 𝑛)} where 𝜃 𝑖 is a possible configuration of the fault injection equipment, and 𝑜 𝑖 is the observed fault probability with configuration 𝜃 𝑖 . The model aims to predict the fault probability 𝑜 𝑖+1 of a new configuration 𝜃 𝑖+1 to determine if 𝜃 𝑖+1 is worth being evaluated. The new configurations ì Θ 𝑛𝑒𝑤 are selected from the fault injection parameter space Θ by the acquisition function (SelectConfigurations) which keeps balance between exploitation (sampling where the model predicts the highest fault probability) and exploration (sampling where the model has no prior distribution). On top of that, SMBO adds an intensification mechanism (Intensify), which determines 1) the budget allocated for each configuration 𝜃 𝑖 and 2) the best known configuration so far 𝜃 𝑖𝑛𝑐 [START_REF] Hutter | Sequential model-based optimization for general algorithm configuration[END_REF].

SMAC uses Random Forests (RF) as surrogate model instead of more commonlyused Gaussian process models, which explains how SMAC supports discrete and categorical parameters. RF [START_REF] Breiman | Random forests[END_REF] is an ensemble method that grows many individual decision trees, which together, can be used to solve both classification and regression problems. For the latter, decision trees take continuous values (e.g. fault probability) rather than class labels at their leaves (also called regression trees). SMAC computes the performance (fault probability) mean 𝜇 𝜃 and variance 𝜎 2 𝜃 for a new configuration 𝜃 as the empirical mean and variance of the individual regression trees of the RF, for 𝜃. By default, and to maintain a low computational cost, SMAC builds 𝐵 = 10 regression trees with a maximum depth of 20. Each tree is grown to the largest extent possible, based on a training set of 𝑛 results sampled at random with replacement from the previous results R (also called bagging). Then, at each node, 𝑚 features (e.g. fault injection parameters) are randomly selected from the initial features, and the one minimizing the reduced squared sum loss among the training set is chosen to split the node.

Finally (fault probability) over our current optimum 𝜃 𝑖𝑛𝑐 . Formally, the improvement 𝐼 (𝜃) = max(𝑓 (𝜃 𝑖𝑛𝑐) -𝑓 (𝜃), 0) compares the performance between the new configuration 𝜃 with the best known configuration so far 𝜃 𝑖𝑛𝑐 . As the objective function 𝑓 is unknown, EI is computed instead using the posterior distribution of 𝜃 given the predictive mean 𝜇 𝜃 and variance 𝜎 2 𝜃 obtained with RF and the empirical mean performance 𝑓 𝜃 𝑖𝑛𝑐 of the best configuration seen so far [START_REF] Hutter | Sequential model-based optimization for general algorithm configuration[END_REF][START_REF] Hutter | An experimental investigation of model-based parameter optimisation: Spo and beyond[END_REF]. Next, the new configurations which yield to the highest expected improvement are selected and evaluated.

Initial Configuration Instances

One main limitation of SMAC is that initial conditions can greatly affect the convergence speed, thus we propose our additional two-step procedure to select the initial configuration instances to better calibrate a given fault injection equipment. Without at least one configuration in ì Θ 𝑖𝑛𝑖𝑡 which induces an effective fault, SMAC struggles to identify the best settings. This procedure ensures that we do not start SMAC without at least one working configuration.

-Pure exploration: configurations 𝜃 ∈ Θ are sampled at random and tested until 1) at least 𝑘 𝑚𝑖𝑛 configurations that generate an effective fault have been found, and 2) 𝑛 𝑚𝑖𝑛 faults have been injected. By default, 𝑘 𝑚𝑖𝑛 = 1 and 𝑛 𝑚𝑖𝑛 = 1000. -Mutation: the set ì Θ 𝑖𝑛𝑖𝑡 of initial configuration instances includes at least the 𝑘 𝑚𝑖𝑛 configurations identified during the pure exploration step, and additional configurations generated with a gaussian mutation operator [START_REF] Beyer | Evolution strategies-a comprehensive introduction[END_REF] using the configurations found so far, so as to reach | ì Θ 𝑖𝑛𝑖𝑡 | = 𝑘 𝑖𝑛𝑖𝑡 configurations. By default, 𝑘 𝑖𝑛𝑖𝑡 = 100.

Based on the target microcontroller, 𝑘 𝑚𝑖𝑛 , 𝑛 𝑚𝑖𝑛 and 𝑘 𝑖𝑛𝑖𝑡 can be adjusted. For example, SMAC may struggle with some secure microcontrollers. Extending the pure exploration phase (i.e. 𝑘 𝑚𝑖𝑛 > 1 and 𝑛 𝑚𝑖𝑛 > 1000) can significantly help SMAC in early stages, especially when only a few configurations induce effective faults.

Equipment Calibration with Different Microcontrollers

In this section, we optimize our VFI setup for three different 32-bit microcontrollers, using SMAC, SH, GA and RS. In these experiments, SMAC outperforms other optimization techniques and consistently identifies the best settings for our VFI setup. First, we present the target microcontrollers and general information about the experiments. Then, we detail our VFI setup and the parameter space associated. Afterwards, we compare the performance (fault probability and convergence speed) of SMAC and SH with more commonly-used techniques, such as GA RS.

Target Microcontrollers

We have selected three different 32-bit microcontrollers, based on different Cortex-M cores. The die of these microcontrollers are different, thus, they will not react the same way to voltage fault injections. Therefore, the best settings for our VFI setup will be different for each microcontroller. The selected microcontrollers are:

-µC-M0 is a Cortex M0+ running at 24Mhz, based on the ARMv6-M architecture with 2 stages pipeline. -µC-M3 is a mainstream microcontroller based on the Cortex M3 running at 24Mhz, which implements the ARMv7-M architecture with 3 stages pipeline. -µC-M4 is ultra-low-power microcontroller based on the Cortex M4, running at 72Mhz. The core is based on the ARMv7E-M architecture with 3 stages pipeline and branch speculation.

Setup

General Information During the Calibration Stage (Figure 1), we use the fault characterization test detailed in Table 2. This test has been designed to maximize the propagation of bit-set or bit-reset on the fetched instruction, but also instruction skips (not detailed in this study). For each optimization technique (SMAC, SH, GA and RS), we inject 50,000 faults (≈ 6 hours). For SMAC, we use the Python library SMACv3 [START_REF] Lindauer | Smac v3: Algorithm configuration in python[END_REF], and more precisely the class SMAC4HPO. For SH, GA and RS, we do not use an external library. For SH, as described in section 3, we use the parameterization 𝑇 = 𝑛 log 2 (𝑛), with 𝑛 = 4096. For GA, each individual of the population represents a valid configuration of the fault injection equipment considered. We train a population of 50 individuals over 200 generations, where each individual is tested five times. In addition, we use a gaussian mutation operator [START_REF] Beyer | Evolution strategies-a comprehensive introduction[END_REF], a roulette-wheel selection via stochastic acceptance [START_REF] Lipowski | Roulette-wheel selection via stochastic acceptance[END_REF] and the fitness of an individual is given by its fault probability. For RS, we evaluate 10,000 configurations, where each configuration is tested five times. In the following, we detail our VFI setup and its associated parameter space.

Instruction Corruption (IC) Test adds r2, #1 subs r7, #ff adds r2, #1 subs r7, #ff

R0 0x00000000 R1 0x11111111 R2 0x22222222 R3 0x33333333 R4 0x44444444 R5 0x55555555 R6 0x66666666 R7 0x77777777 Repeat 𝑛 times
Table 2: Instruction Corruption (IC) Test for the ARMv7-M instruction set, as well as the initial values of registers.

Voltage Fault Injection Setup Our VFI setup is similar to the Bozzato et al. [START_REF] Bozzato | Shaping the glitch: optimizing voltage fault injection attacks[END_REF] test bench. We use a custom 30 MSps Digital-to-Analog Converter (DAC) to generate arbitrary glitch waveforms instead of an external arbitrary waveform generator. The DAC is a simple R-2R ladder with 8-bit resolution, which converts digital input byte into analog output voltage. The glitch waveform, sent to the DAC, is generated with a function that takes a set of 8 instantaneous voltage levels, that are then interpolated with cubic interpolation on a grid, up to 2048-by-256, that depends on the waveform size requested. This setup is cheap (≈ 100$) and yet offers great versatility to adapt to different targets with the ability to generate a large spectrum of glitch waveforms.

However, the versatility comes at a price, as the parameter space of our VFI setup, presented in Figure 2, is larger than those of more commonly-used VFI setups. Indeed, most of the time, only two parameters are used (glitch duration and glitch amplitude), while our setup has 9 free parameters (8 voltage levels and the glitch duration). Therefore, our VFI setup is a good candidate to evaluate the relevance of SMAC and SH optimization techniques.

Glitch waveform

Voltage level Supply voltage level Fig. 2: VFI parameter space, ≈ 10 18 configurations. The glitch waveform is defined with 8 voltage levels (𝑥 0 ...𝑥 7) and the duration.

Experimental Protocol

The results of the fault injection optimization with SMAC, SH, GA and RS are heterogeneous. While SMAC and SH, by design, return a single configuration (the best found), RS and GA return several configurations. Indeed, SMAC and SH progressively increase the number of test to better approximate the fault probability in order to select the best configuration whereas RS and GA always evaluate each configuration the same number of times, thus several configurations can end up with the same fault probability. Accordingly, to fairly compare the fault probability evolution over time of the configuration(s) found with SMAC, SH, GA and RS, several considerations have to be taken into account:

-SMAC: by design, with SMAC, the best configuration known so far is updated during runtime execution, thus no post-processing required. -RS: unlike SMAC, post-processing is required for RS. Every 5000 fault injections, we inject 1000 more faults to evaluate the fault probability of the best configuration(s) found so far. -GA: The same post-processing as RS is required.

-SH: We evaluate the average fault probability at each halving of the remaining configurations.

For each microcontroller considered, we optimize our VFI setup using SMAC, SH, GA and RS and we compare the fault probability evolution over time of the configuration(s) found. The best optimization technique is the one that finds the configuration with the highest fault probability, within a minimum number of fault injections.

Results

The results of the experiments are summarized in Figure 3 and Table 3. In the Figure 3, we compare the evolution of fault probability over 50,000 fault injections, to visually determine the convergence speed of each optimization technique (fast or slow). Table 3 presents the fault probability of the best settings found with each technique.

For each microcontroller, SMAC is significantly faster than other optimization techniques. In particular, in less than 10,000 fault injections, SMAC systematically identifies configurations with higher fault probability than GA, RS and SH. Therefore, SMAC can be used to calibrate an equipment faster than more commonly-used optimization techniques, hence saving valuable time during security evaluations. On the other hand, SH slowly converges towards the best configuration. However, at the end, after 50,000 fault injections, SH finds the configuration with the best fault probability for µC-M0 and µC-M3.

By design, SH uses all the allocated budget 𝑇, and removes iteratively the worst configurations at each round, which explains the slow convergence speed, in comparison with other optimization techniques. Nevertheless, we find that SH wastes many evaluations on poorly-performing configurations during the first rounds, in particular with µC-M0. Our additional procedure for SMAC, described in section 4.3, could also help SH to select the initial configuration instances ì Θ 0 , so as to reduce the time spent on Fig. 3: Evolution of fault probability over 50,000 fault injections, according to SMAC, GA, SH and RS, with VFI poorly-performing configurations. Although we have not evaluated SMAC or SH with other fault injection techniques, we believe that these optimization techniques can be easily adaptable to EMFI or LFI. Regarding the results, SMAC is more efficient than GA, RS, and SH, in particular to quickly calibrate fault injection equipment for a given microcontroller. In the following, we will show that SMAC can also be used to exploit vulnerabilities faster than GA.

SMAC to Bypass a Code Protection Mechanism

In this section, we apply our two-stage strategy with SMAC to bypass a code protection mechanism, with VFI, on a 32-bit microcontroller. The presented attack is a known attack [START_REF] Bozzato | Shaping the glitch: optimizing voltage fault injection attacks[END_REF] which downgrades the security level of the target, so as to extract the firmware. We will show that SMAC is better than GA at identifying the best settings within a limited number of fault injections, and therefore that SMAC can save valuable time during security evaluations.

STM32F103RB

The microcontroller STM32F103RB is a 32-bit ARM Cortex-M3 core operating at 24MHz. The preprogrammed bootloader offers code protection mechanisms to prevent any read or write operations from the bootloader on the user flash memory. In practical terms, once the read protection (RDP) is enabled, the bootloader returns a negative response (NACK) when a Read Memory command is issued. To disable RDP, the flash must be completely erased.

Attack

The known attack [START_REF] Bozzato | Shaping the glitch: optimizing voltage fault injection attacks[END_REF] to bypass the read protection mechanism consists in injecting a fault during the Read Memory command. Indeed, when the bootloader receives the Read Memory command, it checks the RDP value and returns the ACK or the NACK byte, depending on whether RDP is disabled or enabled, respectively. By injecting a fault during the RDP checking phase, an attacker can deceive the read protection mechanism and retrieve the content of the selected memory block. Best GA Glitch Waveform Fig. 4: Evolution of fault probability over 6000 fault injections, according to SMAC and GA, on the STM32F103RB; and the best glitch waveforms found with SMAC and GA during the calibration stage.

Calibration Stage

In order to find the best settings for our VFI equipment to glitch the STM32F103RB, we will use SMAC and GA, and compare the fault probability evolution. For both SMAC and GA, we perform the calibration stage with 6000 fault injections (24 generations for GA), with the fault characterization test in Table 2, and with the default parameters. Figure 4 presents the fault probability evolution over time of the best configuration(s) found with SMAC and GA. We have arbitrarily chosen a small number of fault injections during the calibration stage, so as to show that SMAC is definitely faster at identifying the best settings than more commonly-used optimization techniques, such as GA. Not only does SMAC converge faster than GA, but SMAC also identifies configurations twice as efficient as those found with GA (Table 4).

Exploitation Stage

We compare the average of the elapsed time to perform the attack to bypass RDP (exploitation stage) with SMAC and GA, using the best glitch waveforms found during the calibration stage. The attack is easily achieved with the best configuration found with SMAC, on average in less than 5 minutes. best configurations found with GA, we have not been able to bypass the read protection mechanism of the STM32F103RB. This shows that with only 6,000 fault injections during the calibration stage, GA clearly underperforms SMAC. Figure 5 presents the oscilloscope traces of the attack to bypass RDP on the STM32F103RB, using the best glitch waveform found with SMAC. Note that with a larger number of fault injections during the calibration stage, it is also possible to bypass RDP using GA. For example, with twice as many fault injections during the calibration stage (i.e. 12,000 instead of 6,000), GA identifies equipment settings that can successfully glitch the STM32F103RB and bypass the code protection mechanism (Table 4). But even after 12.000 fault injections, the configurations identified with GA have a lower fault probability than with SMAC.

Conclusion

Fault injection requires a preliminary step of equipment calibration in order to find exploitable and repeatable faults. In this article, we have proposed to apply state-of-the-art optimization techniques, already used for machine learning and other hard combinatorial problems, to fault injection. Bayesian Optimization (SMAC) and Bandit Optimization (Successive Halving) are used to identify the best equipment configurations which maximize exploitable faults on a target microcontroller. While Successive Halving is a simple algorithm, easily adaptable to fault injection and yet offers decent performance, SMAC is arguably the most interesting optimization technique, finding better equipment configurations faster than metaheuristic algorithms.

In addition, to simplify and speed up the equipment calibration, we have proposed to split fault injection optimization into two stages, the calibration stage and the exploitation stage. We optimize fault injection parameters independently of the target application with a fault characterization test and then, once the best configurations are identified, we find fault injection timings to exploit vulnerabilities on the target application. With SMAC and this strategy, we successfully bypass a code protection mechanism of the STM32F103RB bootloader. In particular, the calibration stage with SMAC is twice as fast as with GA. Furthermore, SMAC and SH have systematically identified better configurations than metaheuristic algorithms, and although it has not been studied in this article, finding configurations with high fault probability is even more important when multi-fault injections are necessary, as inducing more repeatable faults greatly help in carrying out complex multi-fault attacks.

As future work, it will be interesting to apply other promising optimization techniques such as HyperBand (Bandit Optimization) or Tree-structured Parzen Estimator (Bayesian Optimization). Moreover, we will investigate the applications of hyperparameter optimization techniques to find exploitable faults with other fault injection techniques, such as LFI or EMFI. Finally, our ongoing research is focused on direct applications of fault injection optimization with SMAC or Successive Halving on secure microcontrollers. For example, we believe that we can find exotic waveforms with SMAC that can bypass voltage glitch attack detectors.

Fig. 1 :

 1 Fig. 1: Overview of our fault injection optimization strategy.

Fig. 5 :

 5 Fig. 5: Oscilloscope traces of the glitch attack to bypass RDP on the STM32F103RB.

 , the acquisition function of SMAC is based on Expected Improvement (EI), which is used to quantify how much a new configuration 𝜃 should improve performance

	Algorithm 2: Sequential Model-Based Optimization
	Input: Total budget 𝑇, fault injection parameter space Θ, initial configuration instances
	ì Θ 𝑖𝑛𝑖𝑡 ⊂ Θ
	Output: Optimized parameter configuration 𝜃 𝑖𝑛𝑐
	R, 𝜃 𝑖𝑛𝑐 ← Initialize(ì Θ 𝑖𝑛𝑖𝑡);
	repeat
	/* Fit the model M based on results R */
	M ← FitModel(R);
	/* Select promising configurations ì Θ 𝑛𝑒𝑤 */
	ì Θ 𝑛𝑒𝑤 ← SelectConfigurations(M, Θ);
	/* Find the best configuration 𝜃 𝑖𝑛𝑐 */
	R, 𝜃 𝑖𝑛𝑐 ← Intensify(𝜃 𝑖𝑛𝑐 , ì Θ 𝑛𝑒𝑤);
	until total budget 𝑇 is exhausted;
	return 𝜃 𝑖𝑛𝑐 ;

Table 3 :

 3 Performance comparison between optimization techniques.

											SMAC SH GA RS
						µC-M0	Max Fault Probability 0.52 0.53 0.49 0.49 Convergence Speed Fast Slow Fast Slow
						µC-M3	Max Fault Probability 0.77 0.81 0.52 0.24 Convergence Speed Fast Slow Slow Slow
						µC-M4	Max Fault Probability 0.95 0.79 0.81 0.71 Convergence Speed Fast Slow Fast Slow
					µC-M0						µC-M3					µC-M4
		1.0		SMAC	GA	RS	SH	1.0		SMAC	GA	RS	SH	1.0		SMAC	GA	RS	SH
	Fault Probability	0.2 0.4 0.6 0.8					Fault Probability	0.2 0.4 0.6 0.8					Fault Probability	0.2 0.4 0.6 0.8	
		0.0	0	10000 20000 30000 40000 50000 Fault Injections	0.0	0	10000 20000 30000 40000 50000 Fault Injections	0.0	0	Fault Injections 10000 20000 30000 40000 50000

Table 4 :

 4 Performance comparison between SMAC and GA on the STM32F103RB with VFI.

	On contrary, with the