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Abstract. Although fault injection is a powerful technique to exploit implemen-
tation weaknesses, this is not without limitations. An important preliminary step,
based on rigorous calibration of the fault injection equipment, greatly affects
the exploitability and repeatability of injected faults. The equipment parameter
space is usually explored with random search, grid search, and more recently
with the help of metaheuristic algorithms. In this article, we apply, for the first
time, two hyperparameter optimization techniques, Sequential Model-Based Op-
timization and Successive Halving, already used for machine learning and other
hard combinatorial problems, to fault injection. We evaluate these optimization
techniques on three different 32-bit microcontrollers, and find better glitch wave-
forms than with metaheuristic algorithms. In addition, we propose a two-stage
optimization strategy to reduce the dimensionality of the parameter space and
speed up the equipment calibration. Finally, we apply this strategy along with
Sequential Model-Based Optimization to bypass the code read protection of a
built-in bootloader, way faster than with genetic algorithms.

Keywords: Fault Injection · Voltage Glitch · Parameter Optimization

1 Introduction

Fault injection is a powerful technique to bypass security features of embedded systems,
such as code protection mechanisms [7, 15, 26]. Using electrical glitches [2], focused
light [31], electromagnetic pulses [12] or even nanofocused X-rays [1], one can locally
perturb the chip environment to alter its behavior and gain access to critical information.
Although fault injection can lead to impressive results, this is not without limitation.
One of the biggest challenges is the calibration of fault injection equipment. Each fault
injection equipment has multiple specific parameters that must be adjusted precisely,
such as the positions 𝑥, 𝑦, 𝑧 of an electromagnetic probe tip. This preliminary calibration
step is required in order to find exploitable and repeatable faults.

The parameter space is often too large to be entirely covered manually during
time-constrained security evaluation. The most commonly-used methods to explore the
parameter space are Grid Search (GS) and Random Search (RS). GS is a semi-exhaustive
search on a predetermined and progressively refined range of values. Although GS is
effective with small parameter space, this technique is inefficient to explore a high
dimensional parameter space, as the number of evaluated configurations increases ex-
ponentially with the number of parameters considered. Even though RS is slightly better
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than GS for exploring large parameter space [5], both GS and RS select next config-
urations to evaluate independently of the previous results, thus, many evaluations are
wasted on poorly-performing configurations.

Several approaches have been proposed to reduce the time spent on the equip-
ment calibration, using more complex optimization techniques, such as metaheuristic
algorithms. However, genetic and memetic algorithms are inherently chaotic and can
suffer from premature convergence [19]. Accordingly, Bayesian and Bandit Optimiza-
tion techniques are typically preferred over metaheuristic algorithms to optimize hard
combinatorial problem solvers [16] or machine learning models [20]. To the best of our
knowledge, such techniques have not been considered for fault injection yet. Therefore,
in this article, we propose to apply two efficient hyperparameter optimization techniques,
so as to simplify and speed up the calibration of a fault injection equipment for a given
target microcontroller. In addition, we also propose an optimization strategy to reduce
the dimensionality of the parameter space in order to speed up even more the equipment
calibration. To sum up, our contribution is threefold:

– We apply for the first time two hyperparameter optimization techniques, Successive
Halving and SMAC, to find the best settings and induce repeatable and exploitable
faults with our voltage fault injection (VFI) setup, on three different 32-bit micro-
controllers.

– We propose to break down the optimization problem into two stages, so as to sim-
plify but also to speed up the equipment calibration; first, 1) during the Calibration
stage, we focus on fault injection parameters only, using an external program de-
signed to maximize fault propagation, and then, once the best configurations are
identified, 2) during the Exploitation stage, we find the fault injection timing to
exploit vulnerabilities on the target application.

– Using this strategy and SMAC, we successfully bypass the code protection mecha-
nism of a built-in bootloader. Moreover, SMAC reduces the equipment calibration
time by half compared to genetic algorithms.

The outline of the rest of the article is as follows. After an overview of the related
work to overcome the limitations of GS and RS in section 2, we comprehensively explain
our fault injection optimization strategy in section 3. In section 4, we detail Successive
Halving and SMAC optimization techniques, which are used for equipment calibration.
In section 5, to evaluate the performance of these optimization techniques, we calibrate
our VFI setup for three different microcontrollers using Successive Halving, SMAC,
Genetic algorithm and RS. Finally, in section 6, we apply our fault injection strategy
using SMAC to bypass a read protection mechanism on a 32-bit microcontroller faster
than with Genetic Algorithm.

2 Related work

Parameter optimization has recently gained in popularity in the fault injection commu-
nity. Different approaches have been proposed to speed up the equipment calibration
step. When possible, reducing the parameter space by identifying the regions of interest
helps considerably. For example, using a scanning electron microscope, Courbon et
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al. [11] find the most sensitive areas of the die to focus with Laser Fault Injection (LFI).
Similarly, Schellenberg et al. [30] measure the optical beam induced current, as imag-
ing technique, in order to localize flip-flops of an hardware AES accelerator. Madau et
al. [23] propose to acquire EM emission traces, so as to detect EM hotspots and reduce
the parameter space of EM Fault Injection (EMFI) equipment. Finally, to reduce the
dimensionality of the problem, Carpi et al. [9] split the optimization problem into two
stages, one focusing on voltage parameters and the other one on proper timing.

Another way to find the best settings faster is to use better optimization algorithms
than RS or GS. Genetic algorithm (GA) is a popular metaheuristic algorithm based on the
evolutionary theory, which has been applied to EMFI [24] but also VFI [7,9,28] to find
the best configurations. Picek et al. [27] use Memetic algorithm, which is an extension
of the traditional GA with a local search technique, also to explore more efficiently the
VFI parameter space. More recently, Wu et al. [35] have proposed a characterization
method for LFI setups based on deep learning to tune the pulse width and the power of
the laser.

Related Work Optimization Technique Dimension Reduction FI Technique

Our contribution
Bandit Optimization

3 VFI
Bayesian Optimization

[27] Memetic Algorithm 7 VFI
[24] Genetic Algorithm 7 EMFI

[7, 28] Genetic Algorithm 7 VFI
[9] Genetic Algorithm 3 VFI
[35] Deep Learning 7 LFI
[23] Grid Search 3 EMFI

[11, 30] Grid Search 3 LFI

Table 1: Comparison of the related work according to the optimization technique, the
dimension reduction of the parameter space, and the fault injection technique.

Nevertheless, the main limitation of metaheuristic algorithms is the introduction of
additional hyperparameters that must be configured, such as the size of the population,
the mutation rate, or the fitness function. Moreover, depending on the optimization
problem, metaheuristic algorithms can suffer from premature convergence. Similarly,
find the right number of hidden layers and neurons of the deep neural network is tedious.

More efficient optimization techniques have been proposed over the past decade,
such as Bayesian optimization or Bandit optimization. Although already used for hy-
perparameter optimization of machine learning algorithms, these techniques have never
been applied to fault injection. Accordingly, we propose for the first time to apply SMAC
(Bayesian optimization) and Successive Halving (Bandit optimization) to improve the
calibration of fault injection equipment. Moreover, we also reduce the dimensionality of
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the parameter space by splitting the optimization in two stages, but unlike [9], we decide
to use an external program to find the best configurations.

3 Fault Injection Optimization Approach

In this section, we detail our general approach for fault injection optimization. This
strategy aims to reduce the time spent on searching for the best equipment settings, by
reducing the dimensionality of the parameter space. Speeding up the parameter space
exploration is particularly important as security evaluations are often time-constrained.

3.1 Common Approach

The most common strategy to optimize fault injection consists to calibrate the fault
injection equipment directly with the target application. Most of the time, only the
critical part of the target application, that can potentially lead to security holes with fault
injections, is evaluated. But for large applications, identifying the critical sections is
tedious, therefore, it is nearly impossible during a black-box, time-constrained, security
evaluation to find the right equipment settings and the right timing to inject the fault. In
addition, the lack of feedback for some application further complicates the equipment
calibration [33], and significantly increases the amount of work required.

3.2 Our Approach

In an effort to tackle these issues, we propose to reduce the dimensionality of the
parameter space by breaking down the problem of fault injection optimization into
two stages, so as to simplify and speed up the parameter space exploration. First, 1)
the Calibration stage optimizes the equipment calibration independently of the target
application, using an external program and then, 2) the Exploitation stage finds the
right timing to inject a fault in order to exploit a vulnerability on the target application.
Figure 1 presents our fault injection optimization strategy.

Fault probability During the calibration stage, only faults resulting in a faulty output
are considered as effective, while faults resulting in a crash, a timeout or a normal
output are not taken into account. The fault probability is used as a metric to compare
performance between configurations. The fault probability of a given configuration is the
number of effective faults divided by the number of tests for this particular configuration.

Fault Characterization test The external program, called fault characterization test in
this article, is not the application itself, but rather a series of instructions, arranged in
such a way as to maximize the number of effective faults on the target microcontroller, in
order to quickly find the settings with the highest fault probability. Fault characterization
tests have been already applied to highlight fault effects on various microcontrollers with
different fault injection techniques [4,10,14,25,29,32,34]. The main advantage of using
a fault characterization test is that we can completely ignore the injection timing during
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Fig. 1: Overview of our fault injection optimization strategy.

the optimization of our setup for the target microcontroller, which helps the exploration
of the parameter space. In addition, a characterization test is often smaller than the
target application, reducing the time required in the long run. Furthermore, a fault
characterization test simplifies the equipment calibration by giving instant feedback on
the effectiveness of the fault injection parameters, in comparison with an equipment
calibration directly with black-box applications [33].

Optimization Techniques We use different optimization techniques for each step of our
approach. During the calibration stage, we use hyperparameter optimization techniques
such as SMAC or SH, to quickly explore the equipment parameter space, way faster than
with GS or RS (due to the curse of dimensionality [13]). Then, once the best settings
are identified, the right timing to inject the fault can be found with a simple random/grid
search on the target application during the exploitation stage.

4 Hyperparameter Optimization Techniques

In this section, we comprehensively explain the two hyperparameter optimization tech-
niques, Successive Halving and SMAC, which are used to improve the convergence
speed towards the best fault injection settings during the calibration stage.

4.1 Parameter Space and Equipment Configuration

The parameter space Θ depends on the fault injection technique and the setup used. For
example, our VFI setup has 9 free parameters defining the glitch waveform (8 voltage
levels and the glitch duration, more detailed information is provided in section 5.2,
Figure 2). Each configuration 𝜃 ∈ Θ describes how to adjust each parameter of the
given fault injection equipment (e.g. the positions 𝑥, 𝑦, 𝑧 of an electromagnetic probe
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tip). Depending on the number of equipment configurations possible within the pa-
rameter space, and the target microcontroller, the complexity of the search will vary.
Successive Halving or SMAC can significantly help to reduce the time spent identifying
configurations that induce exploitable faults.

4.2 Successive Halving

The Successive Halving (SH) algorithm has been originally proposed by Karnin et al.
[18] to solve multi-armed bandits problems, but it can also be applied for hyperparameter
optimization [36]. The main purpose of the algorithm (algorithm 1) is to identify the
best arm correctly (the best configuration) within a fixed budget 𝑇 , that is a limited
amount of time or resources (e.g. the total number of fault injections). The total budget
is evenly allocated across log2 (𝑛) elimination rounds, where 𝑛 is the number of initial
configuration instances ®Θ0. The algorithm evaluates the configurations in a uniform
manner. At the end of each round, the worst ones are eliminated. Then, on each successive
round, the remaining configurations are evaluated twice as much as the previous round,
and the process repeats until only one remains.

Algorithm 1: Successive Halving
Input: Total budget 𝑇 , fault injection parameter space Θ, 𝑛 initial configuration instances

®Θ0 ⊂ Θ

Output: Optimized configuration 𝜃𝑖𝑛𝑐 ∈ ®Θ dlog2 (𝑛) e

for 𝑟 = 0 to dlog2 (𝑛)e − 1 do

𝑡𝑟 ←
⌊

𝑇

| ®Θ𝑟 | dlog2 (𝑛) e

⌋
;

foreach 𝜃𝑖 ∈ ®Θ𝑟 do
Test 𝑡𝑟 times each configuration 𝜃𝑖 ;
Compute the empirical mean 𝜇𝑟 ,𝑖 of 𝜃𝑖 ;

𝑘𝑟 ← d| ®Θ𝑟 |/2e;
/* Keep the 𝑘 𝑡ℎ𝑟 best 𝜃𝑖 with the largest 𝜇𝑟 ,𝑖 */
®Θ𝑟+1 ← BestKthConfigurations(®Θ𝑟 , 𝑘𝑟);

return 𝜃𝑖𝑛𝑐 ∈ ®Θ dlog2 (𝑛) e ;

The main concern is, for a fixed budget 𝑇 , whether to consider many configurations
(large 𝑛) with smaller number of trials for each; or a small number of configurations
(small 𝑛) with larger number of trials for each. A solution, proposed by Aziz [3], is to
take a budget 𝑇 = 𝑛 log2 (𝑛), resulting in an aggressive selection of configurations after
just a single shot in the first round. Although only a conjecture has been presented to
give an upper bound on the simple regret, the particular parameterization 𝑇 = 𝑛 log2 (𝑛)
of the algorithm 1 is better empirically than more complex solutions, also based on
successive halving, such as HyperBand [20].
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4.3 SMAC

Sequential Model-Based Algorithm Configuration (SMAC), proposed by Hutter et
al. [16], is a general framework for Sequential Model-Based Optimization (SMBO),
also known as Bayesian Optimization. SMAC has been successfully applied for hy-
perparameter optimization of hard combinatorial problem solvers and various machine
learning algorithms. Contrary with classical Bayesian-based approaches, SMAC sup-
ports all types of parameters, including continuous, discrete, categorical, but can also
handles non-deterministic processes which is a key feature to optimize fault injection
parameters. In section 4, we will see that SMAC outperforms common approaches
used to optimize the fault injection equipment. In the following, we explain the SMAC
algorithm in detail.

Sequential Model-Based Optimization Unlike previous approaches, SMBO keeps
track of past results to fit iteratively a probabilistic model, in order to select the next
fault injection configurations which could potentially maximize the number of effective
faults on the target microcontroller.

SMBO, as detailed in algorithm 2, is structured around two key components, a prob-
abilistic model and a selection function, also called the surrogate model and the acquisi-
tion function respectively. The probabilistic modelM is fitted (FitModel) to previous
results R = {(𝜃1, 𝑜1), ..., (𝜃𝑛, 𝑜𝑛)} where 𝜃𝑖 is a possible configuration of the fault injec-
tion equipment, and 𝑜𝑖 is the observed fault probability with configuration 𝜃𝑖 . The model
aims to predict the fault probability 𝑜𝑖+1 of a new configuration 𝜃𝑖+1 to determine if 𝜃𝑖+1
is worth being evaluated. The new configurations ®Θ𝑛𝑒𝑤 are selected from the fault injec-
tion parameter space Θ by the acquisition function (SelectConfigurations) which
keeps balance between exploitation (sampling where the model predicts the highest fault
probability) and exploration (sampling where the model has no prior distribution). On
top of that, SMBO adds an intensification mechanism (Intensify), which determines
1) the budget allocated for each configuration 𝜃𝑖 and 2) the best known configuration so
far 𝜃𝑖𝑛𝑐 [16].

SMAC uses Random Forests (RF) as surrogate model instead of more commonly-
used Gaussian process models, which explains how SMAC supports discrete and cate-
gorical parameters. RF [8] is an ensemble method that grows many individual decision
trees, which together, can be used to solve both classification and regression problems.
For the latter, decision trees take continuous values (e.g. fault probability) rather than
class labels at their leaves (also called regression trees). SMAC computes the perfor-
mance (fault probability) mean 𝜇𝜃 and variance 𝜎2

𝜃
for a new configuration 𝜃 as the

empirical mean and variance of the individual regression trees of the RF, for 𝜃. By
default, and to maintain a low computational cost, SMAC builds 𝐵 = 10 regression trees
with a maximum depth of 20. Each tree is grown to the largest extent possible, based on
a training set of 𝑛 results sampled at random with replacement from the previous results
R (also called bagging). Then, at each node, 𝑚 features (e.g. fault injection parameters)
are randomly selected from the initial features, and the one minimizing the reduced
squared sum loss among the training set is chosen to split the node.

Finally, the acquisition function of SMAC is based on Expected Improvement (EI),
which is used to quantify how much a new configuration 𝜃 should improve performance
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Algorithm 2: Sequential Model-Based Optimization
Input: Total budget 𝑇 , fault injection parameter space Θ, initial configuration instances

®Θ𝑖𝑛𝑖𝑡 ⊂ Θ

Output: Optimized parameter configuration 𝜃𝑖𝑛𝑐

R, 𝜃𝑖𝑛𝑐 ← Initialize(®Θ𝑖𝑛𝑖𝑡);
repeat
/* Fit the model M based on results R */
M ← FitModel(R);
/* Select promising configurations ®Θ𝑛𝑒𝑤 */
®Θ𝑛𝑒𝑤 ← SelectConfigurations(M,Θ);
/* Find the best configuration 𝜃𝑖𝑛𝑐 */

R, 𝜃𝑖𝑛𝑐 ← Intensify(𝜃𝑖𝑛𝑐 , ®Θ𝑛𝑒𝑤);
until total budget 𝑇 is exhausted;
return 𝜃𝑖𝑛𝑐;

(fault probability) over our current optimum 𝜃𝑖𝑛𝑐. Formally, the improvement 𝐼 (𝜃) =
max( 𝑓 (𝜃𝑖𝑛𝑐) − 𝑓 (𝜃), 0) compares the performance between the new configuration 𝜃

with the best known configuration so far 𝜃𝑖𝑛𝑐. As the objective function 𝑓 is unknown,
EI is computed instead using the posterior distribution of 𝜃 given the predictive mean
𝜇𝜃 and variance 𝜎2

𝜃
obtained with RF and the empirical mean performance 𝑓𝜃𝑖𝑛𝑐 of the

best configuration seen so far [16, 17]. Next, the new configurations which yield to the
highest expected improvement are selected and evaluated.

Initial Configuration Instances One main limitation of SMAC is that initial conditions
can greatly affect the convergence speed, thus we propose our additional two-step proce-
dure to select the initial configuration instances to better calibrate a given fault injection
equipment. Without at least one configuration in ®Θ𝑖𝑛𝑖𝑡 which induces an effective fault,
SMAC struggles to identify the best settings. This procedure ensures that we do not start
SMAC without at least one working configuration.

– Pure exploration: configurations 𝜃 ∈ Θ are sampled at random and tested until 1)
at least 𝑘𝑚𝑖𝑛 configurations that generate an effective fault have been found, and 2)
𝑛𝑚𝑖𝑛 faults have been injected. By default, 𝑘𝑚𝑖𝑛 = 1 and 𝑛𝑚𝑖𝑛 = 1000.

– Mutation: the set ®Θ𝑖𝑛𝑖𝑡 of initial configuration instances includes at least the 𝑘𝑚𝑖𝑛

configurations identified during the pure exploration step, and additional config-
urations generated with a gaussian mutation operator [6] using the configurations
found so far, so as to reach | ®Θ𝑖𝑛𝑖𝑡 | = 𝑘𝑖𝑛𝑖𝑡 configurations. By default, 𝑘𝑖𝑛𝑖𝑡 = 100.

Based on the target microcontroller, 𝑘𝑚𝑖𝑛, 𝑛𝑚𝑖𝑛 and 𝑘𝑖𝑛𝑖𝑡 can be adjusted. For
example, SMAC may struggle with some secure microcontrollers. Extending the pure
exploration phase (i.e. 𝑘𝑚𝑖𝑛 > 1 and 𝑛𝑚𝑖𝑛 > 1000) can significantly help SMAC in early
stages, especially when only a few configurations induce effective faults.
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5 Equipment Calibration with Different Microcontrollers

In this section, we optimize our VFI setup for three different 32-bit microcontrollers,
using SMAC, SH, GA and RS. In these experiments, SMAC outperforms other opti-
mization techniques and consistently identifies the best settings for our VFI setup. First,
we present the target microcontrollers and general information about the experiments.
Then, we detail our VFI setup and the parameter space associated. Afterwards, we com-
pare the performance (fault probability and convergence speed) of SMAC and SH with
more commonly-used techniques, such as GA and RS.

5.1 Target Microcontrollers

We have selected three different 32-bit microcontrollers, based on different Cortex-M
cores. The die of these microcontrollers are different, thus, they will not react the same
way to voltage fault injections. Therefore, the best settings for our VFI setup will be
different for each microcontroller. The selected microcontrollers are:

– µC-M0 is a Cortex M0+ running at 24Mhz, based on the ARMv6-M architecture
with 2 stages pipeline.

– µC-M3 is a mainstream microcontroller based on the Cortex M3 running at 24Mhz,
which implements the ARMv7-M architecture with 3 stages pipeline.

– µC-M4 is ultra-low-power microcontroller based on the Cortex M4, running at
72Mhz. The core is based on the ARMv7E-M architecture with 3 stages pipeline
and branch speculation.

5.2 Setup

General Information During the Calibration Stage (Figure 1), we use the fault char-
acterization test detailed in Table 2. This test has been designed to maximize the prop-
agation of bit-set or bit-reset on the fetched instruction, but also instruction skips (not
detailed in this study). For each optimization technique (SMAC, SH, GA and RS), we
inject 50,000 faults (≈ 6 hours). For SMAC, we use the Python library SMACv3 [21],
and more precisely the class SMAC4HPO. For SH, GA and RS, we do not use an external
library.

For SH, as described in section 3, we use the parameterization 𝑇 = 𝑛 log2 (𝑛), with
𝑛 = 4096. For GA, each individual of the population represents a valid configuration
of the fault injection equipment considered. We train a population of 50 individuals
over 200 generations, where each individual is tested five times. In addition, we use a
gaussian mutation operator [6], a roulette-wheel selection via stochastic acceptance [22]
and the fitness of an individual is given by its fault probability. For RS, we evaluate
10,000 configurations, where each configuration is tested five times. In the following,
we detail our VFI setup and its associated parameter space.
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Instruction Corruption (IC) Test
adds r2, #1

subs r7, #ff

adds r2, #1

subs r7, #ff

R0 0x00000000 R1 0x11111111

R2 0x22222222 R3 0x33333333

R4 0x44444444 R5 0x55555555

R6 0x66666666 R7 0x77777777

Repeat
𝑛 times

Table 2: Instruction Corruption (IC) Test for the ARMv7-M instruction set, as well as
the initial values of registers.

Voltage Fault Injection Setup Our VFI setup is similar to the Bozzato et al. [7]
test bench. We use a custom 30 MSps Digital-to-Analog Converter (DAC) to generate
arbitrary glitch waveforms instead of an external arbitrary waveform generator. The
DAC is a simple R–2R ladder with 8-bit resolution, which converts digital input byte
into analog output voltage. The glitch waveform, sent to the DAC, is generated with
a function that takes a set of 8 instantaneous voltage levels, that are then interpolated
with cubic interpolation on a grid, up to 2048-by-256, that depends on the waveform
size requested. This setup is cheap (≈ 100$) and yet offers great versatility to adapt to
different targets with the ability to generate a large spectrum of glitch waveforms.

However, the versatility comes at a price, as the parameter space of our VFI setup,
presented in Figure 2, is larger than those of more commonly-used VFI setups. Indeed,
most of the time, only two parameters are used (glitch duration and glitch amplitude),
while our setup has 9 free parameters (8 voltage levels and the glitch duration). Therefore,
our VFI setup is a good candidate to evaluate the relevance of SMAC and SH optimization
techniques.

Parameter
𝑥0...𝑥7 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

Digital
Range È80, 180É È8, 128É

Resolution 8-bit 8-bit

Analog
Range [0.6, 5.1] [0.2, 3.2]
Unit V µs

0 250 500 750 1000 1250 1500 1750
Time (ns)

0

1

2

3

4

5

6

Vo
lta

ge
 (V

)

x0

x1

x2

x3
x4 x5

x6

x7

duration

Glitch waveform
Voltage level
Supply voltage level

Fig. 2: VFI parameter space, ≈ 1018 configurations. The glitch waveform is defined with
8 voltage levels (𝑥0...𝑥7) and the duration.
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5.3 Experimental Protocol

The results of the fault injection optimization with SMAC, SH, GA and RS are het-
erogeneous. While SMAC and SH, by design, return a single configuration (the best
found), RS and GA return several configurations. Indeed, SMAC and SH progressively
increase the number of test to better approximate the fault probability in order to select
the best configuration whereas RS and GA always evaluate each configuration the same
number of times, thus several configurations can end up with the same fault probability.
Accordingly, to fairly compare the fault probability evolution over time of the config-
uration(s) found with SMAC, SH, GA and RS, several considerations have to be taken
into account:

– SMAC: by design, with SMAC, the best configuration known so far is updated during
runtime execution, thus no post-processing required.

– RS: unlike SMAC, post-processing is required for RS. Every 5000 fault injections, we
inject 1000 more faults to evaluate the fault probability of the best configuration(s)
found so far.

– GA: The same post-processing as RS is required.
– SH: We evaluate the average fault probability at each halving of the remaining

configurations.

For each microcontroller considered, we optimize our VFI setup using SMAC, SH,
GA and RS and we compare the fault probability evolution over time of the configu-
ration(s) found. The best optimization technique is the one that finds the configuration
with the highest fault probability, within a minimum number of fault injections.

5.4 Results

The results of the experiments are summarized in Figure 3 and Table 3. In the Figure 3,
we compare the evolution of fault probability over 50,000 fault injections, to visually
determine the convergence speed of each optimization technique (fast or slow). Table 3
presents the fault probability of the best settings found with each technique.

For each microcontroller, SMAC is significantly faster than other optimization tech-
niques. In particular, in less than 10,000 fault injections, SMAC systematically identifies
configurations with higher fault probability than GA, RS and SH. Therefore, SMAC can
be used to calibrate an equipment faster than more commonly-used optimization tech-
niques, hence saving valuable time during security evaluations. On the other hand, SH
slowly converges towards the best configuration. However, at the end, after 50,000 fault
injections, SH finds the configuration with the best fault probability for µC-M0 and
µC-M3.

By design, SH uses all the allocated budget 𝑇 , and removes iteratively the worst
configurations at each round, which explains the slow convergence speed, in compar-
ison with other optimization techniques. Nevertheless, we find that SH wastes many
evaluations on poorly-performing configurations during the first rounds, in particular
with µC-M0. Our additional procedure for SMAC, described in section 4.3, could also
help SH to select the initial configuration instances ®Θ0, so as to reduce the time spent on
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SMAC SH GA RS

µC-M0
Max Fault Probability 0.52 0.53 0.49 0.49
Convergence Speed Fast Slow Fast Slow

µC-M3
Max Fault Probability 0.77 0.81 0.52 0.24
Convergence Speed Fast Slow Slow Slow

µC-M4
Max Fault Probability 0.95 0.79 0.81 0.71
Convergence Speed Fast Slow Fast Slow

Table 3: Performance comparison between optimization techniques.
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Fig. 3: Evolution of fault probability over 50,000 fault injections, according to SMAC,
GA, SH and RS, with VFI

poorly-performing configurations. Although we have not evaluated SMAC or SH with
other fault injection techniques, we believe that these optimization techniques can be
easily adaptable to EMFI or LFI. Regarding the results, SMAC is more efficient than
GA, RS, and SH, in particular to quickly calibrate fault injection equipment for a given
microcontroller. In the following, we will show that SMAC can also be used to exploit
vulnerabilities faster than GA.

6 SMAC to Bypass a Code Protection Mechanism

In this section, we apply our two-stage strategy with SMAC to bypass a code protection
mechanism, with VFI, on a 32-bit microcontroller. The presented attack is a known
attack [7] which downgrades the security level of the target, so as to extract the firmware.
We will show that SMAC is better than GA at identifying the best settings within a
limited number of fault injections, and therefore that SMAC can save valuable time
during security evaluations.

6.1 STM32F103RB

The microcontroller STM32F103RB is a 32-bit ARM Cortex-M3 core operating at
24MHz. The preprogrammed bootloader offers code protection mechanisms to prevent
any read or write operations from the bootloader on the user flash memory. In practical
terms, once the read protection (RDP) is enabled, the bootloader returns a negative
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response (NACK) when a Read Memory command is issued. To disable RDP, the flash
must be completely erased.

Attack The known attack [7] to bypass the read protection mechanism consists in
injecting a fault during the Read Memory command. Indeed, when the bootloader
receives the Read Memory command, it checks the RDP value and returns the ACK
or the NACK byte, depending on whether RDP is disabled or enabled, respectively.
By injecting a fault during the RDP checking phase, an attacker can deceive the read
protection mechanism and retrieve the content of the selected memory block.
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Fig. 4: Evolution of fault probability over 6000 fault injections, according to SMAC and
GA, on the STM32F103RB; and the best glitch waveforms found with SMAC and GA
during the calibration stage.

Calibration Stage In order to find the best settings for our VFI equipment to glitch
the STM32F103RB, we will use SMAC and GA, and compare the fault probability
evolution. For both SMAC and GA, we perform the calibration stage with 6000 fault
injections (24 generations for GA), with the fault characterization test in Table 2, and
with the default parameters. Figure 4 presents the fault probability evolution over time
of the best configuration(s) found with SMAC and GA. We have arbitrarily chosen a
small number of fault injections during the calibration stage, so as to show that SMAC is
definitely faster at identifying the best settings than more commonly-used optimization
techniques, such as GA. Not only does SMAC converge faster than GA, but SMAC also
identifies configurations twice as efficient as those found with GA (Table 4).

Exploitation Stage We compare the average of the elapsed time to perform the attack
to bypass RDP (exploitation stage) with SMAC and GA, using the best glitch waveforms
found during the calibration stage. The attack is easily achieved with the best config-
uration found with SMAC, on average in less than 5 minutes. On contrary, with the
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Number of Fault Injections
6000 12000

SMAC
Max Fault Probability 0.79 0.79

Exploitation Time <5 min <5 min

GA
Max Fault Probability 0.37 0.55

Exploitation Time N/A <5 min

Table 4: Performance comparison between SMAC and GA on the STM32F103RB with
VFI.

best configurations found with GA, we have not been able to bypass the read protection
mechanism of the STM32F103RB. This shows that with only 6,000 fault injections
during the calibration stage, GA clearly underperforms SMAC. Figure 5 presents the
oscilloscope traces of the attack to bypass RDP on the STM32F103RB, using the best
glitch waveform found with SMAC.

Fig. 5: Oscilloscope traces of the glitch attack to bypass RDP on the STM32F103RB.

Note that with a larger number of fault injections during the calibration stage, it is
also possible to bypass RDP using GA. For example, with twice as many fault injections
during the calibration stage (i.e. 12,000 instead of 6,000), GA identifies equipment
settings that can successfully glitch the STM32F103RB and bypass the code protection
mechanism (Table 4). But even after 12.000 fault injections, the configurations identified
with GA have a lower fault probability than with SMAC.
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7 Conclusion

Fault injection requires a preliminary step of equipment calibration in order to find ex-
ploitable and repeatable faults. In this article, we have proposed to apply state-of-the-art
optimization techniques, already used for machine learning and other hard combinatorial
problems, to fault injection. Bayesian Optimization (SMAC) and Bandit Optimization
(Successive Halving) are used to identify the best equipment configurations which
maximize exploitable faults on a target microcontroller. While Successive Halving is a
simple algorithm, easily adaptable to fault injection and yet offers decent performance,
SMAC is arguably the most interesting optimization technique, finding better equipment
configurations faster than metaheuristic algorithms.

In addition, to simplify and speed up the equipment calibration, we have proposed to
split fault injection optimization into two stages, the calibration stage and the exploitation
stage. We optimize fault injection parameters independently of the target application
with a fault characterization test and then, once the best configurations are identified,
we find fault injection timings to exploit vulnerabilities on the target application. With
SMAC and this strategy, we successfully bypass a code protection mechanism of the
STM32F103RB bootloader. In particular, the calibration stage with SMAC is twice
as fast as with GA. Furthermore, SMAC and SH have systematically identified better
configurations than metaheuristic algorithms, and although it has not been studied in
this article, finding configurations with high fault probability is even more important
when multi-fault injections are necessary, as inducing more repeatable faults greatly
help in carrying out complex multi-fault attacks.

As future work, it will be interesting to apply other promising optimization tech-
niques such as HyperBand (Bandit Optimization) or Tree-structured Parzen Estimator
(Bayesian Optimization). Moreover, we will investigate the applications of hyperpa-
rameter optimization techniques to find exploitable faults with other fault injection
techniques, such as LFI or EMFI. Finally, our ongoing research is focused on direct
applications of fault injection optimization with SMAC or Successive Halving on se-
cure microcontrollers. For example, we believe that we can find exotic waveforms with
SMAC that can bypass voltage glitch attack detectors.
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