
HAL Id: cea-04371312
https://cea.hal.science/cea-04371312

Submitted on 5 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Local impacts on road networks and access to critical
locations during extreme floods

Simone Loreti, Enrico Ser-Giacomi, Andreas Zischg, Margreth Keiler, Marc
Barthelemy

To cite this version:
Simone Loreti, Enrico Ser-Giacomi, Andreas Zischg, Margreth Keiler, Marc Barthelemy. Local impacts
on road networks and access to critical locations during extreme floods. Scientific Reports, 2022, 12,
pp.1552. �10.1038/s41598-022-04927-3�. �cea-04371312�

https://cea.hal.science/cea-04371312
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:1552  | https://doi.org/10.1038/s41598-022-04927-3

www.nature.com/scientificreports

Local impacts on road networks 
and access to critical locations 
during extreme floods
Simone Loreti1,2*, Enrico Ser‑Giacomi3, Andreas Zischg1,2, Margreth Keiler1,2,4,5 & 
Marc Barthelemy6,7*

Floods affected more than 2 billion people worldwide from 1998 to 2017 and their occurrence is 
expected to increase due to climate warming, population growth and rapid urbanization. Recent 
approaches for understanding the resilience of transportation networks when facing floods mostly 
use the framework of percolation but we show here on a realistic high-resolution flood simulation 
that it is inadequate. Indeed, the giant connected component is not relevant and instead, we propose 
to partition the road network in terms of accessibility of local towns and define new measures 
that characterize the impact of the flooding event. Our analysis allows to identify cities that will 
be pivotal during the flooding by providing to a large number of individuals critical services such 
as hospitalization services, food supply, etc. This approach is particularly relevant for practical risk 
management and will help decision makers for allocating resources in space and time.

Floods are the most frequent and life-threatening natural hazards related disasters1–4 and are expected to increase 
in occurences and damages due to a large variety of factors such as climate warming with intensification of 
precipitation extremes, population growth, and rapid urbanization5–12. As other natural disasters, floods reduce 
accessibility and serviceability of the road transportation network, which is one of our most valuable infrastruc-
ture assests13. These disruptive effects on the road system are intimately related to the vulnerability and resilience 
of the transportation network and are traditionally analysed with a number of methodologies, such as systems 
dynamics models, stochastic and optimization processes14, network science14–17, demand and supply models16,17, 
and approaches based on traffic data15.

Network science is a multidisciplinary field18–21 which offers robust and elegant tools and measures to inves-
tigate the topological features and properties of a network22,23. In network science, a well-established framework 
for assessing the robustness of any kind of disrupted network is percolation theory20,24,25, which was recently 
applied to road networks, to investigate the disruptive effects of earthquakes26–29 and traffic congestion30–33, as 
well as of flooding events34–44. Abdulla et al.34 modelled the flood propagation over one of the neighborhoods 
road network of Houston, US, as a percolation mechanism. In the proposed process, they randomly removed 
(flooded) the network’s nodes based on their elevation and their vicinity to already flooded nodes (using Baye’s 
rule). Despite they mentioned to simulate a percolation process, which would traditionally include the computa-
tion of the giant connected component, they actually calculated the Latora and Marchiori’s global efficiency45 as 
a measure of network connectivity. Both Abdulla and Birgisson35 and Abdulla et al.36 investigated the potential 
failure of the Houston road network undergoing fluvial floods, by employing different removal sequences of 
nodes in a flood-related percolation process. For the entire set of nodes they first calculated four centrality 
measures, i.e. degree, betweenness, closeness and eigenvector centrality, which then served to rank their nodes. 
Following the nodes ranking from the highest to the lowest rank, the authors performed the nodes’ removal 
sequence for each centrality measure and measured the network connectivity through the giant component size. 
Eventually, they found that the greatest damage to the network was caused by the removal sequence associated 
to the betweenness centrality measure, in agreement with results about the resilience of air-transportation 
weighted networks (see for example Dall’Asta et al.46). Abdulla et al.36 also presented a flood diffusion model and 
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investigated the effects of the initial conditions of the flood diffusion on the road network connectivity. To mimic 
different initial conditions of the flood, the authors performed the flood diffusion from different sets of nodes, 
correspondent to those nodes which ranked the highest values of centrality measures, i.e. degree, betweenness, 
closeness and eigenvector centrality. By measuring the size of the giant component for each fraction of removed 
(flooded) nodes, they found that the road networks connectivity was particularly vulnerable to the flood propa-
gation which started from nodes with high values of betweenness. However, their framework did not include 
any hydrological or hydraulic model, nor was validated. Abdulla and Birgisson37 examined the impact of random 
and targeted disruptions on the Houston road network. To represent the perturbative action of floods on the 
road network they used the same mechanism of targeted disruption as in Abdulla et al.34. Through the calculation 
of the giant component size, they compared the disruptive effects of targeted and random failure on the road 
network. For low percentage of nodes removal (i.e. between 15 and 30%), they found that the network was more 
robust against targeted failure than towards random one, while for a higher percentage of nodes removal (i.e. 
between 30 and 70%), the network was instead more robust against random failure than targeted disruptions. 
The also found similar connectivity profiles (giant components size) by varying the road network size. They 
concluded by emphasizing the suitability of the giant component in assessing the robustness of road networks. 
Fan et al.38 presented a percolation-based diffusion model of flood propagation and recession, similar to the 
susceptible–exposed–infected–recovered (SEIR) disease transmission model. However, their model was not built 
up directly over the road network, but over an overlapping “network grid”, composed of squared cells and each 
of them containing a different number of road segments. Therefore, the flood propagation occurred among grid 
cells, with a probability of flooding proportional to the number of neighbouring flooded cells and to a constant 
transmission rate. With a similar idea, they also simulated the recession phase of the flood. Despite the mention 
to a percolation-based process, the authors did not calculated the giant connected component or the equivalent 
size of outbreak20, but they characterised the entire process of flood diffusion mainly by calculating the fraction 
of flooded cells. In addition, all the model parameters, i.e. the transmission rate, the recovery rate, and the 
exposed rate were estimated through a curve fitting with real data. Farahmand et al.39 proposed a probabilistic 
approach to the failure of road networks (inversely proportional to the distance between roads and channels 
network, and directly proportional to a channel’s vulnerability function), which was assessed through the cal-
culation of the giant component size of the network. During the process of nodes removal, they found dramatic 
decreases (leaps) in the connectivity profile represented by the giant component size, suggesting the presence of 
critical roads. Dong et al.28 proposed a probabilistic links removal to mimic earthquakes-induced failures and 
addressed the corresponding effects on the Portland (USA) road network through a non-conventional percola-
tion process. Instead of using the traditional giant connected component, they introduced ‘robust components’ 
defined as the union of connected components in a network, containing at least one critical facility (as a hospital), 
showing a two-phase transition. In their perspective, the giant connected component does not fairly represent 
the functionality of a network undergoing such a disaster, claiming that measures of network’s robustness should 
consider critical infrastructures. In another work, Dong et al.40 employed the same idea of robust component 
for assessing the robustness of a road network affected by a flood, resulting in an almost gradual transition. They 
simulated the fluvial flood in the entire county by assigning a probability of failure to each link, which was pro-
portional to the distance between the link and the floodway (but not considering any flood depth). For each 
value of link removal probability, they calculated the robust component and observed a complete shutter of the 
robust component at a threshold of pc = 0.8 . They also reported a sudden drop of the robust component when 
2% of the roads were inundated ( p = 0.02 ), resulting in a loss of accessibility to hospitals for a 22% of the network. 
Even if the papers related to the “robust components” might apparently represent a step towards non-percolation 
approaches, these authors are still removing gradually an increasing fraction of nodes from zero to one and 
monitor a cluster size for each fraction of removed nodes. Instead of monitoring the size of the largest connected 
cluster as in the traditional percolation, they monitor the size of the disjoint union of all clusters containing at 
least a hospital and consider it as if it were a single large component. The hospitals serve uniquely in this work 
as markers for constructing the clusters that will constitute the robust component. Dong et al.41 proposed to 
apply a standard percolation process, i.e. with a random removal of the network nodes, for assessing the robust-
ness of twelve U.S. cities and three states’s road networks, when subject to disaster-induced failures. For all the 
cities and states networks, they showed a discrepancy between the results generated with a simulation-based 
approach and an analytical one, i.e. the generating function formalism47,48, due to the spatially embedded nature 
of the road networks (indeed, by decreasing the node degree assortativity, the discrepancy diminished). Therefore, 
they claimed about the inadequacy of the generating functions formalism for assessing the robustness of road 
networks. However, the Dong et al.41 study and conclusions were limited to the random failure mechanism of 
the network, which is far from real disruptive processes observed in some natural disasters, as floods. Inspired 
by percolation theory, Ganin et al.42 analysed the increase of traffic delay in six US cities’s road networks with 
the increased severity of the road links disruptions, by employing a mechanism of random links removal. A low, 
medium and high percentage of disrupted road links represented, respectively, accidents (low), power failures 
or sever flooding events (medium), and snow, ice, or dust storms (high). The authors, therefore, used the traffic 
delay for assessing the towns resilience, as alternative quantity to the traditional giant component size. Wang 
et al.43 compared three types of disruptions to both USA and China’s road networks: random, flood-induced and 
localized failures. They presented the flood-induced failure as a new typology of network disruption, with inter-
mediary features between a random and a localized disruption, and resulting in an abrupt first-order phase 
transition. Yadav et al.44 studied different failure scenarios on the London Rail Networks (LRN) system, both as 
a supra-single network and a multi-layer interdependent network49,50. The failure mechanisms included a random 
failure of the overall network, a local random failure, a targeted failure based on centrality measures and one 
scenario representing a flood event. The flood-like failure consisted in dividing the nodes into three groups based 
on their proximity to the river Thames and, within each group, randomly removing them from the network.
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In most of these previous studies related to the application of percolation-based flood modeling on the road 
system34–44, the network’s functionality was expressed through the size of the largest connected component P∞ 
and its evolution when roads are removed. A summary of those studies and their key features related to the 
percolation-based process is provided in Table 1. However, P∞ is an aggregated quantity that does not capture 
the entire network’s information and more importantly, does not reflect the local reality. Therefore, more precise 
information is necessary, in particular at a local scale, for a realistic evaluation of the disruption’s effects. Here, we 
present a realistic and extreme flood scenario51 based on physically plausible rainfall scenarios and a high spatio-
temporal resolution, and show that it cannot be described adequately by a percolation transition and the behavior 
of the giant component. Indeed, the giant component size P∞ never reaches zero during the flooding process 
and the percolation threshold is never reached. This demonstrates the need for alternative useful measures of 
the impact of flooding events on the road network. Here we propose such measures and partition the network 
into towns, through a Voronoi tessellation, which allows us to extend the concept of network’s functionality to 
the entire network and at a local level. This approach led us to define time-dependent measures alternative to 
percolation, both at a local and at a global scale, which provide a realistic assessment of a flood-induced disruptive 
event on a transportation network. In order to demonstrate the relevance of these new measures, we use them 
on a realistic flood simulation and also compare the results to a null random model.

Results
Flooding is not a percolation transition.  In order to test our approach and our new metrics, we will 
consider a portion of the Swiss road network built up from the swissTLM3D dataset52 and shown in Fig. 1a. This 
area comprises the major towns of Bern, Thun, Interlaken and Brienz and two Swiss lakes, the Thun Lake and 
the Brienz Lake. This portion of road network was selected in such a way to include the largest extension of the 
disrupted zone, represented by the blue flooded roads, and a surrounding area (limited by the green perimeter) 
where the effects of the disruptions were expected to occur as well. We use a realistic flood model51 based on 
physically plausible rainfall scenarios, with a high spatio-temporal resolution (a spatial resolution of 50 m and 
temporal resolution of a hour) and we model the impact of the rainfall in a deterministic way, based on physical 
laws and ground morphology and properties. In addition, this model takes into account both flood protection’s 
works and the elevation difference between the river’s water surface and the bridge over it. In contrast to other 
simplified models such as in34–44, the model here takes into account all the relevant field features (additional 
information in the “Flood failure”). The flooded roads (in blue in Fig. 1a) result from these simulations51, while 
both the green and red external borders were created from an alpha-shape perimeter of the flooded roads (with 
shrinking factor 0.5) by broadening the perimeter outwards over a distance of 5000 m and 1000 m, respectively 
(see Fig. 1a). We compare our results to a random null model where we remove the roads at random, i.e. by 
randomly reshuffling the water levels simulated by Zischg et al.51 over the entire set of roads. In this way, the 
null model has the same number of flooded roads per hour as in the real-like floods, allowing the comparison 
between the (time-dependent) random-like flood and the real-like one. In the following, we will coin the simula-
tion result as a real-like flood and the null model as a random flood.

For these flooding processes, we first monitor the quantity P∞ (see Fig. 1b), defined as the fraction of nodes 
that belongs to the giant connected component. The simulations start at time t0 = 0 h where there is no flood, 
the network is intact and P∞ is maximum and equal to 1. During the flooding, an increasing number of roads 
is covered by water until the maximum flood extension (MFE) is reached at tMFE = 75 h. After this peak, the 
flood withdraws and the flooded roads eventually dry up, becoming accessible again. We monitor this “recovery” 
phase until t = 166 h ≈ 1 week. Note that not all flooded roads were removed from the network, but only those 
ones covered by more than 0.3 m, which corresponds to the height at which vehicles start to float56. The results 
presented in Fig. 1b first show that the magnitude of the P∞ ’s variations is affected by the choice of the border 
delimiting the flooded area, which points to the problem of defining the area of study. Nevertheless, the P∞ ’s 
minimum is reached at the same time tMFE for all choices of borders and for both flood scenarios. A recovery 
phase then follows, characterised by a slow growth of P∞ , which yet does not reach the initial stage of p∞ = 1 . 
The curves corresponding to the random flood grow faster that those ones obtained for the real-like flood, mostly 
due to the retention effect of lakes which slows down the flood withdrawal. Indeed, the flood duration for the 
roads adjacent to the lakes is higher than for those ones which are only affected by river flooding. Although we 
added additional time to the simulations to consider the slow process of lake emptying, the full recovery would 
need more time. Focusing on the real-like case, we observe jumps of P∞ during the flooding process ( t < tMFE ), 
which are due to the presence of natural elements, such as lakes or mountains, that constrain the road network. 
Flooding of those constrained roads has then a dramatic impact on the giant component size and creates these 
discontinuities in P∞ . The existence of these discontinuities depends obviously on the border definition: for the 
5000 m case, the behavior of P∞ is much smoother as there are multiple paths connecting nodes in this larger 
network. Again, this rises the question on the choice of the embedding region when studying a percolation related 
quantity such as P∞ . Also, we observe that these discontinuities are washed out in the random case, leading to 
an artificially smooth evolution of the giant component size. We do not see jumps in the recovery phase since 
those roads whose disruption would cause the jumps in the flood’s growing phase have not been dried up yet 
(or completely) at the last time step of the simulations. In previous studies where floods were considered in the 
framework of percolation, as in37,39,40,43, we note that the authors reported a complete (or nearly complete) dis-
integration of the giant connected component, showing the decrease of P∞ (or RC in40) from one to zero. This 
process was carried out by removing a fraction of nodes from zero to one in37,39,40 and from zero to around 0.8 
in43. This is in sharp contrast with our observations for both real-like and random floods, where P∞ undergoes 
a reduction of less than 30% (depending on the choice of borders). This would suggest that percolation might 
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References Figure(s) x-axis y-axis Failure mechanism Place

Abdulla et al.34 4 0 < p < 0.5 Efficiency45 Probabilistic, based on nodes elevation and 
vicinity to flooded nodes Houston

Abdulla and Birgisson35 3 0 < p < 1 0 < P∞ < 1

Random
Betweenness
Degree
Closeness
Eigenvector

Houston

Abdulla et al.36

7 0 < p < 0.2

0.6 < P∞ < 1

0.5 < P∞ < 1

0.6 < P∞ < 1

0.3 < P∞ < 1

0.45 < P∞ < 1

Diffusion (random seed)
Diffusion (betweenness seed)
Diffusion (degree seed)
Diffusion (closeness seed)
Diffusion (eigenvector seed)

Houston

8 0 < p < 0.2

0.2 < P∞ < 1

0.05 < P∞ < 1

0.4 < P∞ < 1

0.4 < P∞ < 1

0.5 < P∞ < 1

Random
Betweenness
Degree
Closeness
Eigenvector

Abdulla and Birgisson37 4, 7, 8, 9, 10 0 < p < 1 0 < P∞ < 1
Random
Fluvial flood proxy as in34 Houston

Fan et al.38 3 0 < t < 10 c(t) Probabilistic SEIR model Harris County, USA

Farahmand et al.39 4 0 < p < 1 0 < P∞ < 1
Probabilistic, based on road-channel prox-
imity and channel’s vulnerability Harris County, USA

Dong et al.40 4 0 < p < 1 0 < RC < 1
Probabilistic, based on the distance between 
road and floodway Harris County, USA

Dong et al.41 8, 9, 11 0 < p < 1 0 < P∞ < 1
Random (generating functions)
Random (simulations) 12 cities, 3 states in USA

Ganin et al.42 5 0 < p < 1 Traffic delay Probabilistic, based on the road length Six cities in USA

Wang et al.43

3 (a−b) 0 < 1−p < 0.8

0 < P∞ < 1

0 < P∞ < 1

0 < P∞ < 1

Random (from entire network)
Normal flood
Localised (random walk)

USA, China

4 (b) 5 < R < 285 0.93 < P∞ < 1 Normal flood New York

5 5 < R < 285

0 < P∞ < 1

0 < P∞ < 1

0 < P∞ < 1

0 < P∞ < 1

0 < P∞ < 1

0.2 < P∞ < 1

0.7 < P∞ < 1

0 < P∞ < 1

Not specified

Guangxi
Henan
Sichuan
Hunan
Florida
Illinois
Michigan
Minnesota

Sup. 2 0 < 1−p < 0.8

0 < P∞ < 1

Not specified
0 < P∞ < 1

0 < P∞ < 1

0.1 < P∞ < 1

Random (from entire network)
Normal floods
Uniform random floods
Pearson-III random floods
Localised (random walk)

USA, China

Sup. 3a

0 < 1−p < 0.04

0 < 1−p < 0.06

0 < 1−p < 0.06

0 < 1−p < 0.15

0 < 1−p < 0.08

0 < P∞ < 1

Not specified
0.75 < P∞ < 1

0.75 < P∞ < 1

0.8 < P∞ < 1

Random (from entire network)
Normal floods
Uniform random floods
Pearson-III random floods
Localised (random walk)

Guangxi
Henan
Hunan
Sichuan
Zhejiang

Sup. 4a

0 < 1−p < 0.03

0 < 1−p < 0.04

0 < 1−p < 0.04

0 < 1−p < 0.03

0 < 1−p < 0.03

0 < 1−p < 0.04

0 < 1−p < 0.05

0 < 1−p < 0.03

0 < 1−p < 0.08

0 < P∞ < 1

Not specified
0.9 < P∞ < 1

0.9 < P∞ < 1

0.6 < P∞ < 1

Random (from entire network)
Normal floods
Uniform random floods
Pearson-III random floods
Localised (random walk)

Florida
Illinois
Iowa
Michigan
Minnesota
New York
Ohio
Tennessee
Texas

Sup. 7 5 < R < 285 0.75 < P∞ < 1 Normal flood Sichuan

Sup. 9 5 < R < 285

0.2 < P∞ < 1

0.2 < P∞ < 1

0.2 < P∞ < 1

0.4 < P∞ < 1

0.1 < P∞ < 1

0.1 < P∞ < 1

Not specified

Zhejiang
Florida
Minnesota
New York
Tennessee
Texas

Continued
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not be the correct framework, and P∞ not the most relevant quantity, for understanding the impact of flooding 
on transportation networks.

In addition, we note that a flood event displays different dynamics. Indeed, during the simulation we can 
also compute for each hour the number of flooded roads, F(t), which resulting curve is shown in Fig. 2a. The 
curve displays a peak at the maximum flood extension tMFE and divides the flood into two phases, the growing 
phase ranging from t = 0 to tMFE and the recovery phase (or flood’s withdrawal phase) for t > tMFE . Interestingly 
enough, we note that the fraction of disconnected nodes is smaller than 7% , which is significantly smaller than 
what is usually assumed in percolation type approaches. The beginning of the growing phase can be well fitted 
by an exponential function with a time scale of order 14 h. The end of this phase displays a saturation effect and 
is better fitted by a generalized logistic function (see Supplementary Table 1 for details on the various fits and 
“Supplementary Text” for details on the generalised logistic function). These results suggests that the evolu-
tion of the number of flooded roads could be described—at least in the first phase—by a generalized Verhulst’s 
equation57 of the form

where the intrinsic growth rate is here β1 ≈ 0.145 . The recovery phase is well fitted by an exponential decay 
with a time scale of order 75 h, consistent with the observed slow decay. It would be interesting to construct a 
simple model for deriving these equations and results, to better understand the critical parameters governing 
these time scales. Indeed, the form of these equations might suggest a more complex flood propagation model 
on road networks than those ones presented in36,38. In addition, the Abdulla et al.36 model does not include any 
hydrological or hydraulic component, nor a validation, while the Fan et al.38 model, which is applied to grid 
cells instead of roads, does not consider the water depth, nor the difference in height among the nodes (in their 
flooding probability). Another related measure is the number of disconnected nodes in the whole network, 
N∞(t) (defined in Eq. (6) in the “Methods”), which time evolution is shown in Fig. 2b for both flood scenarios. 
Despite the amount of flooded roads per hour is the same in both flood scenarios, we observe a faster increase 

(1)
dF(t)

dt
= β1(F − C1)

(

1−

(

F − C1

D1

)γ1
)

for t0 < t < tMFE

Table 1.   This is a summary of the reviewed articles which discuss the application of percolation processes 
to road networks, as proxies of flooding events. In the table header, Figure(s) indicates the Figure’s number in 
the reference paper which is related to the percolation process, while x-axis and y-axis represent the axes of 
the percolation process’s graphic. The x-axis covers a number of roles, as fraction of removed nodes, p, time, 
t (days), surface runoff, R ( mm

day ), and number of removed nodes, nrm , while the y-axis mostly represents the 
giant connected component, P∞ . In a few cases the percolation-based process (y-axis) is represented by the 
global efficiency of Latora and Marchiori45, or by the Fan et al.38 fraction of flooded grid cells, c(t), by the Dong 
et al.28 robust component, RC, or by the traffic delay in Ganin et al.42. About the last two columns, i.e the failure 
mechanism and place, please refer to the corresponding reference papers for further details. Note to the reader 
(a): both in Figure Sup. 3 and in Sup. 4, in Wang et al.43, each range of 1−p values refers to the Chinese province 
or American state on the same table row (Guangxi, Henan, Hunan, etc., or Florida, Illinois, Iowa, etc.), while 
each range of P∞ values refers to the failure mechanism on the same table row. However, to relate the unique 
range of P∞ , here shown in this table, to all the Chinese provinces mentioned in Sup. 3 (if reading Figure Sup. 
3), or to all the American states mentioned in Sup. 4 (if reading Figure Sup. 4), the minimum value of P∞ 
was selected among those ones associated to the provinces or states in43 and shown here as the overall lower 
endpoint of P∞ . Therefore, for each failure mechanism, the corresponding range of P∞ contains the minimum 
value of P∞ among all the values of the Chinese provinces or American states.

References Figure(s) x-axis y-axis Failure mechanism Place

Yadav et al.44

2 0 < p < 1

0 < P∞ < 1

0 < P∞ < 1

0 < P∞ < 1

Random
Degree
Betweenness

LR (sing.)
SF (single)
ER (single)

0 < P∞ < 1

0.1 < P∞ < 1

0.1 < P∞ < 1

Random
LR (multi)
SF (multi)
ER (multi)

0 < P∞ < 1

0.1 < P∞ < 1

0.1 < P∞ < 1

Degree
LR (multi)
SF (multi)
ER (multi)

0 < P∞ < 1

0.1 < P∞ < 1

0.1 < P∞ < 1

Betweenness
LR (multi)
SF (multi)
ER (multi)

3 0 < nrm < 65 (Removal from flood risk 
maps)

0.7 < P∞ < 1

0.5 < P∞ < 1

0.7 < P∞ < 1

0.1 < P∞ < 1

0.1 < P∞ < 1

Flood (river proximity + rand.)
Random-global
Random-local
Targeted after flood
Targeted before flood

LR

5 0 < nrm < 31 (removal from flood risk 
maps)

0.8 < P∞ < 1

0.7 < P∞ < 1

0.4 < P∞ < 1

Flood (river proximity + random)
Undergr.
Overgr.
DLR

0.2 < P∞ < 1

0.6 < P∞ < 1

0 < P∞ < 1

Targeted after flood
Undergr.
Overgr.
DLR
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Figure 1.   (a) Definition of borders. Given the set of endpoints (nodes) of the flooded roads at the maximum 
flood extension, a tight 2-D boundary53 surrounding those points was drawn. The boundary was created with 
a shrink factor53 equal to sf = 0.5 , which is between a convex hull ( sf = 0 ) and the “tightest single-region 
boundary” ( sf = 1 ). That boundary corresponds to the dash-dot line called “border: 0 m”. Larger boundaries, 
corresponding to “border: 1000 m” and “border: 5000 m”, were created by radially expanding54 the “border: 
0 m” by a distance of 1000 and 5000 m, respectively. (b) Evolution during the flood of the fraction P∞ of nodes 
belonging to the giant connected component computed for both real-like floods51 and randomly generated 
floods and for both the 1000 and 5000 m-borders shown in (a). The curves representing the random floods were 
computed by averaging the values of 20 realizations. Here, they are shown with 1-standard deviation error bars. 
More precisely, those average values resulted from the arithmetic mean performed over the 20 values of P∞ 
(related to the 20 realizations of random floods), at each time-step, while the vertical bars around the average 
values represented the standard deviation performed over the 20 values of P∞ , still at each time step. Therefore, 
both mean and standard deviation (1-std) of the 20 values of P∞ are here shown, for each time step (obviously, 
those 20 values are different at each time step). This figure was produced with Matlab55.
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of N∞(t) during the growing phase and a slower decrease during the recovery phase in the real-like flood, than 
in the random flood. This difference is due to the retention effect of the lakes, which implies a storage of flood 
water and a consequent time lag in releasing the same water. Therefore, important roads located along the right 
and left shorelines of both lakes (and connecting the upstream with downstream areas) are inundated earlier in 
time than the rest of the basin and are drying up much later because the lakes are going back to their normal level 
very slowly (much more slowly than the river floodplains). These differences highlight once again the danger of 
using simple random model for describing floods.

Realistic measures of the local impact of flooding.  We saw above that describing the flooding process 
by percolation could actually be misleading and that the results could depend on a variety of factors such as the 
choice of borders for example. Maybe more importantly, we note that during floods, individuals will tend to 
reach the closest town centers where they can find (at least the basic) supplies, services or assistance. When the 

Figure 2.   (a) Time evolution of the number of flooded roads, F(t). During the Zischg et al.51 simulations, roads 
were marked as flooded if the water depth was greater than 0.3 m, which is considered as the limit of water’s 
depth for driving a car (with average ground clearance)56. In terms of number of flooded roads, the earliest times 
of the flooding event are well characterised by an exponential growth. However, this function does not describe 
the saturation phase here observed, which is instead typical of logistic-like functions. A fair approximation of 
the entire growing phase is given by a generalised logistic function, which fits particularly well the saturation 
phase, up to the maximum flood extension. The recovery phase, that is the phase of flood withdraw, follows 
instead a slow exponential decay. (b) Time evolution of the number of disconnected nodes, N∞(t) . This metric 
is here illustrated for both the real-like flood simulated by Zischg et al.51 and the randomly generated flood. For 
the real-like flood, the dynamics of N∞(t) is well approximated by an exponential growth and decay, respectively 
for the increasing and recovery phases of the flood. Although both N∞(t)—calculated for the two types of 
floods—reach a similar peak at tMFE , the number of nodes which disconnect from the rest of the network is 
generally larger for real-like floods than in random floods, in both phases of flood’s increase and withdraw. This 
occurs since real-like floods are more spatially concentrated (i.e. less dispersed) than random floods, with a 
higher probability of surrounding and isolating nodes. Therefore, modelling and simulating a flood event with a 
random blockage of roads would be misleading, generally resulting in an underestimation of N∞(t) , in several 
moments of a flooding event. This figure was produced with Matlab55.
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closest town cannot be reached anymore due to flooding, individuals will have to reroute to the next closest town 
in order to fulfill their needs. The rerouting process from a town to another can be viewed as a varying “attraction 
basin” of the neighbouring town, as illustrated in Fig. 3. Some towns will see their attraction basin decrease, 
while others will gain some nodes and attract additional individuals. In order to capture these important effects 
that occur during disruptive events, we first identify the nodes that correspond to towns and identify their attrac-
tion basin as their Voronoi cell (for details, see “Methods”). The Voronoi cell of a town c will be denoted as Kc(t) 
and is defined as Kc(t)

.
= {i | min

c′
(dic′(t)) = dic(t)} (its size is denoted by |Kc(t)| ). The shortest distance dic(t) 

from a node i to the town c is computed using Dijkstra’s algorithm over the graph of non-flooded roads at time 

(a)

(b)

Figure 3.   Temporal evolution of towns during a flood event. (a) Part of a weighted road network, illustrating 
a typical network’s i-node and two c-nodes, which represent two town centers. Single-road lengths droads and 
single-road travel times τroads were used as network weights. (b, top): Definition of towns, i.e. assignment of the 
road network’s nodes to the nearest town centers at t0 . In (b, middle), all nodes “tend to reach” the closest town 
centers, even if different from their initially assigned ones at time t0 . That means that the two nodes at the top 
left corner, which were yellow at t0 , become green at t1 , since now closer to the town center c1 . As consequence, 
the towns’ sizes change over time. In (b, bottom) further flood advancement wipes out other roads, isolating a 
number of nodes (as singlets or small clusters) from their closest town centers. In this example, at time t0 , the 
size of the two towns would be |K1(t0)| = 5 , |K2(t0)| = 6 . At time t1 , we would count |K1(t1)| = 7 , |K2(t1)| = 4 , 
while at time t2 , we would have |K1(t2)| = 3 , |K2(t2)| = 3 , and a total number of disconnected nodes equal to 
N∞(t2) = 5 . This figure was produced with PowerPoint58.
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t. We can then define the town’s loss Lc(t) = 1− |Kc(t)|/|Kc(t0)| (see “Methods” for details on these metrics). 
These metrics are shown in Fig. 4a–c for each of the 67 towns composing the network.

The evolution of |Kc(t)| over the entire flood period (Fig. 4a) displays both losses of nodes for certain towns 
and an increase of their attractivity for others. In order to visualize in Fig. 4a which towns undergo a size reduc-
tion or increase, we represent them in different colors according to their behavior. We find that about half of the 
towns ( 54% ) are not affected by the flood, about 31% undergo an overall size reduction, and about 15% display 
an overall size increase. Although we do not have any spatial information from Fig. 4a, the distribution of non 
affected towns indicates that the flood impact on the transportation network is limited within the area defined 
in Fig. 1 (i.e. within a perimeter of 5000 m), and does not involve the entirety of the network here considered. 
A second information we can infer from the affected towns is about their mechanism of size variation. Indeed, 
Fig. 4a shows clearly that this mechanism is a mutual process among towns (at least two), as illustrated by two 
neighbouring towns, Thun and Thierachern, shown in Fig. 4a,b. Although the maximum size variation of Thun 
involves about twice as many nodes as for Thierachern, the two |Kc(t)| curves are partially mirrored, which means 
many nodes lost by Thun are acquired by Thierachern. A third interesting point is related to the types of dynam-
ics of |Kc(t)| . We observe towns exhibiting large size variations, reaching a sharp peak (maximum or minimum), 
and towns displaying smaller jumps and plateaus (e.g. Bern). Also, the maximum size changes can occur at times 
t  = tMFE , even during the phase of flood withdrawal, as for the case of Thun and Thierachern. This is probably 
an effect of the spatio-temporal variability, implying that local peaks of road closures can occur earlier or later 
than the overall peak (whole river basin). In the case of Thun and Thierachern, this is an effect of the time lag 
of the lake Thun which needed to be filled first before being able to trigger inundations along the shorelines.

Figure 4b shows Lc(t) for all the 67 towns. As seen above, this measure can reach negative values, meaning 
that a town can gain nodes from neighboring ones, due to the rerouting mechanism. As in the previous plot, we 
group the Lc(t) curves into three categories for better readability: towns undergoing losses, incorporating new 
nodes, or constant. Both prior to the flood onset and after the recovery phase, Lc(t) is expected to be zero or 
close to zero, while in the interval between these two extremes, Lc(t) is expected to take values 0 < Lc(t) < 1 (for 
a town loss) or −1 < Lc(t) < 0 (for a town gain). Although this behaviour is observed for most of the towns in 
Fig. 4b, some of them (dotted lines) do not show the same tendency for Lc(t) to return to zero during the flood’s 
recovery phase, i.e. limt→tend Lc �= 0 . Indeed, the lake levels do not return to the initial level during the timeframe 
of the simulations but need a few days longer and some streets remain interrupted until the end of the simula-
tion period. Also, Fig. 4b confirms the finding of Fig. 4a that the largest size variations of each town (the largest 
values of Lc(t) , both positive and negative) do not always occur at the maximum flood extension. For example, 
the largest positive value of Lc(t) , recorded among all the towns, occurs around t = 60 h and belongs to the town 
of Gelterfingen, around halfway between Bern and Thun. The largest negative value, instead, was recorded for the 
town of Thierachern a few hours after the maximum flood extension. This means that emergency services and 
assistance should be dynamically allocated over the flood timespan. In this specific example, Gelterfingen would 
have a priority over Thierachern, or Thun, which both peak later. We also note the order of magnitude of the vari-
ations of Lc which for some cities can reach values as large as 60% . Such a large increase potentially represents a 
very large logistic burden during the flood, a crucial information that needs to be integrated in risk management.

The quantity Lc(t) is a quantity which changes over time, and we define the expansion/shrinking rate as 
ζc(t) = |Lc(tMFE)| (see “Methods” for detail). This quantity can be used for each town as an overall indicator of the 
size variation during the flood’s growing phase, and gives an aggregated and more concise information about the 
impact of the flood on a given city. We show in Fig. 4c the value of this indicator and we thus observe that some 
cities will indeed experience an important growth which is of utmost importance for preparation planning as 
they will constitute a set of resilient towns serving a large number of individuals. We also note that there are some 
small discrepancies between Lc(t) and ζc which are due to the peaks (or in general to the largest values) of |Kc| 
which can occur at a different time than tMFE . For example, the two towns which exhibit the largest values of Lc(t) , 
both positive and negative, i.e. Gelterfingen and Thierachern, do not score the largest values of ζc (see Fig. 4c).

Rerouting entailed by a road disruption generally results in a longer path than the initial one (see Fig. 3). In 
other words, for a node i, the distance to its closest town c′ at time t, i.e. after rerouting, is longer than the distance 
to its closest town at t0 : dic′(t) ≥ dic(t0) . A simple way to characterise the detour experienced by an individual 
living close to a city c is then to compute the quantity ηi(t) =

dic′ (t)
dic(t0)

− 1 , in analogy to the ‘detour index’59,60. The 
larger ηi(t) , and the larger the rerouting for connecting the node i to its closest town’s center c′ (which is different 
from the initially assigned town’s center c). At each time t of the disruptive event, the average rerouting from an 
initially assigned town center to a new closest one, can be captured by the average detour defined as

where m is the number of nodes. This quantity, Eq. (2), is a measure of the global cost or (in)efficiency of a 
network undergoing a disruptive event, since the rerouting would represent a time consuming and costly worka-
round to roads blockage. The global metrics η(t) and the loss averaged over all cities, L(t) = 1/n

∑n
c=1 Lc(t) , 

are shown in Fig. 4(d, top) and Fig. 4(d, bottom), respectively. Both these metrics are global indicators of the 
entire network performance, and, in contrast with P∞ , they encode the local information coming from the 
entire network. Large values of η(t) and L(t) correspond to a large rerouting and a large loss of nodes for most 
towns. Ideally, the most efficient and robust network would therefore display a value |η(t)− η(t0)| = 0 , and 
|L(t)− L(t0)| = 0 , for all t. Despite sudden and abrupt variations of η(t) during the real-like flood, the network 
shows a significant higher efficiency than in a random flood scenario which causes large and gradual variations 

(2)η(t) =
1

m

∑

i=1

(

dic′(t)

dic(t0)
− 1

)
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Figure 4.   Temporal evolution of (a) the town’s size, |Kc(t)| (Eq. 5), (b) the town’s loss, Lc(t) (Eq. 7), (c) the town expansion/shrinking 
ratio ζc (Eq. 9) and (d) the average detour η(t) (Eq. 2) together with the average town loss L(t) (Eq. 8). The local metrics |Kc(t)| , 
Lc(t) and ζc capture the dynamics of each of the 67 towns composing the network (with a perimeter of 5000 m). Due to the re-routing 
mechanism illustrated in Fig. 3, the towns size increases, diminishes or remains constant. For a better visualisation we grouped the 
towns with overall size increase in green, (i.e. if |maxt |Kc(t)| − |Kc(t0)|| > |mint |Kc(t)| − |Kc(t0)|| ), the towns with overall 
size decrease in fuchsia (i.e. if |maxt |Kc(t)| − |Kc(t0)|| < |mint |Kc(t)| − |Kc(t0)|| ) and the towns without size variations in 
gray (i.e. if |maxt |Kc(t)| − |Kc(t0)|| = |mint |Kc(t)| − |Kc(t0)|| = 0 ). The global metrics η(t) and L(t) , representing the 
network’s (in)efficiency and robustness, respectively, are here illustrated for both flood scenarios. For randomly generated floods, the 
average values of η(t) and L(t) were calculated over 20 realizations. This figure was produced with Matlab55.
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of η(t) over the entire flooding event. Surprisingly, the high efficiency of the network in the real-like flood 
appears simultaneously with a lower robustness (represented by L(t) ) than in the random flood which suggests 
that a low rerouting can be achieved through a larger redistribution of the town’s Voronoi cells. However, the 
difference in L(t) between the two types of floods is not so pronounced as for η(t) . A last remarkable difference 
between the two flood scenarios can be observed in the latest hours of the recovery phase: in the random flood, 
L(t) and η(t) tend to zero (even though η(t) does not arrive to zero), while in a real-like flood, they reach a non-
zero positive value (and a peak shifted in time). Basically, this is due to the retention effect of lakes that causes 
flooding on roads later in time, and which lasts for a few additional days up to return of the lakes’ water levels 
to their initial ones.

Discussion
The discussion on a realistic flood simulation presented here allowed us to show the inadequacy of percolation 
theory for evaluating the robustness of a transportation network, when subject to a realistic flooding event. The 
standard percolation process is characterised by a simultaneous and independent potential removal, usually 
using a probability 1− p , of the entire set of edges. This means that all the edges undergo the removal process 
given by a probability 1− p , and not just a subset. In this framework, the size of the giant component, P∞ is a 
decreasing function of the growing fraction of removed nodes (or links) up to a certain threshold that depends 
on the specific network and where P∞ = 0 . In a real-like flooding, instead, the process of water propagation 
through the network can be thought as a localized attack both in time and space, where only a subset of the 
network’s edges can be affected. Therefore, the network cannot be completely disrupted if it is larger than the 
flooded area. The realistic simulation of the flooding shows that, in general, we do not observe P∞ = 0 , even in an 
extreme event and at the peak of the flooding. Possible uncertainties in a flood propagation would not affect our 
observation, since a realistic mechanism of edges removal would not lead to P∞ = 0 , if the considered network 
is large enough. Therefore, the absence of an observed transition limits severely the relevance of percolation for 
studying this type of catastrophic event. In addition, we showed that the relevance of the giant component is 
debatable and we introduced metrics based on the idea that the crucial point for individuals during a disaster is 
the possibility to reach a town, even if it is not the closest one in the normal regime (see Supplementary Figure 1 
for a representative visual comparison between the percolation approach and one of the proposed metrics).

The approach presented here answers questions relevant to flood risk management such as the spatio-temporal 
aspects of the flood’s impacts and where and when resources should be allocated during a flooding event. Our 
study displays the whole dynamics of the flooding and the sequence of important events, the location and time 
of the first relevant impact, how the road closures spread, which towns become less accessible, etc. In addition, 
our metrics about the dynamics of rerouting and rising/shrinking towns contains the relevant information for 
risk management decision makers, in order to allocate resources in space and time (e.g. hospitalization services, 
food supply, etc.). Already at the earliest moments of the flood, it could be beneficial to transfer resources to 
towns with a low potential of inundation and a large expansion/shrinking ratio ζc.

Our study showed that the standard percolation approach might have limits of applicability to real-world 
systems, such as in this case of flood-induced disruption of a single road network. Future studies might investigate 
whether such limits could occur in other real-world scenarios and potentially provide a more general theory 
of percolation or a more formal description of its limits of applicability. For example, still in transportation 
networks, what happens if we apply the percolation framework to disrupted multi-layer networks49,50 which 
include road networks? Also, how can we address the issue related to the border size selection? Indeed, the size 
of the border determines the number of opportunities for deviating routes: a tiny border would eliminate many 
alternative routes, whereas a large border would enable a large number of possible alternatives. Therefore, future 
studies could investigated how far or how close the system can be delimited without losing potential routing 
alternatives. Also, the influence of the network topography on the flood’s impact could be further investigated 
in the future. Indeed, in our case, we studied the flood impacts on a road network situated in mountainous 
and hilly regions, while other authors considered quite flat areas, as Abdulla et al.34–37 with the Houston road 
network. Another direction for future works is related to a simple model for deriving Eq. (1) and understanding 
its parameters. Such a simple mechanistic model might include basic principles of hydrology and hydrodynam-
ics and, at least, should account for the difference in height among each pair of nodes, in order to provide the 
water flows directions. This simple model might also fulfil the criteria of universality, i.e. being applicable to a 
vast variety of scenarios and road networks. Indeed, so far, the Abdulla et al.36 and Fan et al.38 models of flood 
propagation (in a road network) seem to be case-dependent, and their parameters have to be estimated for any 
network and scenario. Another limitation that could be addressed in future studies is related to the use of realistic 
time-varying travel times. Indeed, travel times and the distribution of traffic congestion change during a flood 
and the corresponding network weights (represented by travel times) should be updated at each time step, in 
order to get more reliable results.

Methods
Definition of town center on a transportation network.  The definitions of the new proposed meas-
urements (alternative to percolation) are built up around the concept of town center (or city center), which could 
be intuitively thought as the core area of a town, for social, business, and cultural activities. Despite the common 
idea of an extended area, the town center was here redefined as a node of a road network, as representative spot 
for the town center. For each Swiss municipality, two entities were employed for selecting the proxy node of a 
town center, i.e. the road network and polygons called (town or city) central zones by the Swiss Federal Office61. 
Since several Swiss towns included a multitude of those polygons, which were all named as central zones, the 
largest polygon was selected as town center, often corresponding to the historical town center, while the other 
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smaller polygons were neglected. The largest polygon was chosen by assuming it could include the largest quan-
tity of services, useful for a population. Then, the roads overlapping and intersecting the largest polygon were 
selected, and the centroid of their endpoints was employed to infer the proxy node. The node representing the 
town center, was defined as the closest node to the roads endpoints’ centroid, calculated from the roads which 
overlapped the largest polygon. Obviously, other definitions of town center’s node are possible and can be used. 
For example, the small central zones and their overlapping roads could be also included in calculating the roads 
endpoints’ centroid, but with the risk of obtaining a centroid far from the largest polygon.

Definition of town and temporal evolution of a flood on a transportation network.  The town 
centers’ nodes previously described in “Definition of town center on a transportation network” represent an 
essential ingredient for the new metrics definitions. All those metrics are indeed based on the shortest distances 
dic and on the quickest paths τic among all the pairs of i-nodes of the road network and c-nodes of the town 
centers. At each time, we thus have matrices dic and τic where i = 1, . . . ,m , c = 1, . . . , n . The quantities m and n 
represent the total numbers of road network’s nodes and town center’s nodes, respectively. The shortest distances 
and the quickest travel times were calculated with the Dijkstra algorithm62, by employing single-road lengths 
droad [m] and single-road travel times τroad [s] as network weights (see Fig. 3a). The single-road lengths were 
collected from the Swisstopo database52, while the single-road travel times were approximated by the following 
formula:

where, f = 0.8 is the reduction speed factor which considers the relationships between speed limits and traffic 
flows63, vlim is the speed limit (km/h) from Supplementary Table 2, and the number 3.6 was used to convert vlim 
from (km/h) into (m/s). Once the elements dic and τic are computed, the minimum value in each row of the cor-
responding matrices D and T is selected, i.e. the town center’s node with minimum distance to the ith-node. This 
corresponds to assign an ith-node to the closest town center’s node, at t0 . As a consequence, at time t0 , all nodes 
in the network are associated to their closest town centers’ nodes (Fig. 3(b, top)), creating n sets of nodes 
Kc(t0) = {i | min

c′
(dic′(t0)) = dic(t0)} . These sets, K1,K2, . . . ,Kn , correspond to Voronoi cells on the network and 

could be written also for travel times τic . We defined the generic c-th town as:

such that |
⋃n

c=1 Kc| = m . During the flood, the elements of D and T could change due to the disruptions of the 
road network and we recompute them at each time step t0, t1, t2, . . . , where t0 is the time just before the flood 
start, with no disruptions (Fig. 3(b, top)), and t1 is the first time with disruptions (Fig. 3(b, middle)). During the 
flood, some roads are disconnected and some nodes have to be rerouted, resulting in a reorganization of the 
Voronoi cells of each town. We indicate the size of a town c which can be variable by

New metrics.  Detour index.  Rerouting entailed by a road disruption generally results in a longer path than 
the initial one, i.e. dic′(t) ≥ dic(t0) , where c′ �= c is the closest town’s center at time t, to which the i-node would 
be reassigned. Then, one of the simplest ways to measure the deviation of a path’s distance at time t from its 
original value at t0 , would be straightforwardly the ratio between the two distances, or the detour, ηi(t) =

dic′ (t)
dic(t0)

− 1 , 
in analogy to the “detour index”59,60. Since dic′(t) ≥ dic(t0) , we would measure ηi(t) ≥ 0 ∀i , with ηi(t) = 0 indi-
cating the absence of rerouting to the closest neighbouring town. Therefore, the larger the ηi(t) , the larger the 
rerouting for connecting the i-node to the closest town’s center c′ (which is different from the initially assigned 
town’s center c). At each time t of the disruptive event, the average rerouting from an initially assigned town 
center to a new closest one, can be captured by the average detour, defined as in Eq. (2). We would consider Eq. 
(2) as a measure of global (in)efficiency of a network undergoing a disruptive event, since the rerouting would 
represent a time consuming and costly—i.e. inefficient—workaround to roads blockage. However, η(t) would 
differ from the well-established Latora and Marchiori’s45 or from the Vragović’s64 global network efficiencies, 
which are basically averages of 1dij  and 

dEuclid.ij

dij
 , respectively, over all pairs of nodes. Indeed, the average in Eq. (2) 

would be only over those pairs of nodes which include the towns’ center nodes, and not over all pairs of nodes.

Disconnected nodes.  The distances and their variations over time, as well as the relative travel times, can also be 
employed to quantify the total number of disconnected nodes in the entire network:

(3)τroad =
droad

f vlim
3.6

(4)Kc ≡ Kc(t0)
.
= {i | min

c′
(dic′(t0)) = dic(t0)}

(5)Kc(t)
.
= {i | min

c′
(dic′(t)) = dic(t)}

(6)

N∞(t) =

m
∑

i = 1

bic

where bic =

{

1, if dic(t) = ∞ (or τic(t) = ∞)

0, otherwise
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Town loss.  Our understanding of the flood’s effects can be further enriched by metrics related to the size’s 
variations of each town, |Kc(t)| . The size reduction of a town during a flood is intuitively expected and can be 
expressed, analogously to ηi(t) for the distances, through a ratio between the size of the damaged (and dimin-
ished) town at time t, and the original size at time t0:

For example, we can have a reduction of the town size from an initial |Kc| = 2500 nodes to |Kc(t)| = 2000 
nodes at time t, or rather a size loss equal to Lc(t) = 0.2 , i.e. a 20% less than the initial size at time t0 . In parallel to 
ηi(t) , we can also define a global measure for Lc(t) , the average town loss, simply by averaging Lc(t) over all towns:

Expansion/shrinking ratio.  While Eq. (7) provides information at each time t during the entire flood event, the 
size variations of every town can be even characterized by a single representative value, which relates the town 
size at the time of the maximum flood extension, tMFE , to the town size at t0 . We call it the expansion/shrinking 
rate:

Although we would expect the maximum network’s disruption at tMFE , where the flood reaches the maximum 
extension, it might be that some towns could reach their maximum disruption at another time t  = tMFE . There-
fore, max

t
(|Kc(t)|) might be different from |Kc(tMFE)| , and Eqs. (7) and (9) could eventually indicate different 

size variations for the same town.

Flood failure.  A realistic and extreme flood scenario51 based on physically plausible rainfall scenarios and 
a high spatio-temporal resolution was used to generate the road network disruptions. The spatio-temporal pat-
terns of rainfall of a 3-day probable maximum precipitation event were generated with a Monte Carlo proce-
dure that considers only physically plausible patterns. The hydrological model simulated the outflows from the 
subcatchments. A 1D hydrodynamic flood model simulated the water fluxes from the tributaries through the 
main river network and the lakes. The 1D hydrodynamic model provided the boundary conditions for the 2D 
flood simulation models that had been set up for each floodplain. The 2D hydrodynamic model had a spatial 
resolution of 50 m and computed the flood depths for each timestep (hourly) and thus provided the necessary 
information for the impact model. The impact model simulated the water depths at the road edges. The model 
considers the location of the bridges in the third dimension, i.e., road bridges located above the simulated water 
surface elevation are considered as not affected by the flood. In addition, the model has been validated with 
historic events.
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