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Abstract. Recent approaches for event detection rely on deep super-
vised learning, which requires large annotated corpora. Few-shot learning
approaches, such as the meta-learning paradigm, can be used to address
this issue. We focus in this paper on the use of prototypical networks with
a BERT encoder for event detection. More specifically, we optimize the
use of the information contained in the different layers of a pre-trained
BERT model and show that simple strategies for combining BERT layers
can outperform the current state-of-the-art for this task.

Keywords: Few-shot Event Detection · Meta-learning · BERT.

1 Introduction

Event extraction aims to automatically extract structured information about
events from text. It can be compared to filling a form with entities, each field of
this form corresponding to an argument of the event. Earlier methods for event
extraction were based on handcrafted rules [1]. These methods were gradually re-
placed by machine learning algorithms with the development of statistical learn-
ing and neural networks in recent years. In this context, [16] proposes a struc-
tured prediction model based on numerous lexico-syntactic features, [20] uses
convolutional networks to exploit contextual information, [19] defines models
based on recurrent networks, and [18], [21], and [31] exploit graph convolution
models to capture syntactic dependencies between different parts of sentences.

While the objective of event extraction is to identify all arguments connected
to a particular event, datasets since ACE 2005 [30] have introduced the concept
of event trigger, designating the word or group of words that indicate as clearly
as possible the presence of an event in a sentence. The intention is to define a
lexical anchor to help in the search for arguments. We focus in this paper on the
detection and the classification of those triggers according to a restricted set of
predefined types, a task generally called Event Detection or Trigger Detection.

Supervised learning methods are costly since they require large corpora that
are manually annotated. Hence, a current challenge is to investigate methods
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that reduce the development cost of these systems. In this context, we investigate
Few-Shot Learning (FSL) for trigger detection.

Few Shot Event Detection (FSED) has been recently the focus of several
studies with various configurations: generalization of models to new types of
events using keyword lists [2,14], data enrichment with external resources [7],
Zero-Shot Learning with the use of class descriptions or external resources [33],
and FSL [26,3,4]. Other studies have also focused on Few-Shot Event Classifi-
cation, which restricts FSED to assigning an event type to a candidate trigger
already identified in a sentence [13,15,6].

In this paper, our contribution focuses on a better exploitation of the BERT
language model representations for FSED, more specifically by studying the
importance of these different representations and by evaluating different ways to
associate them.

2 Method

2.1 Problem Formulation

We cast FSED as a sequence labeling task [23], using the IOB format (Inside
Outside Beginning), which can be addressed as a multi-class classification task.

Recent studies in FSL use meta-learning, which is often defined as learn-
ing to learn. The main idea behind meta-learning is to train models on several
tasks, each with a limited number of instances, so that the learned model can
quickly perform similar tasks on new data. The methods that have emerged
in recent years for solving FSL tasks with the help of meta-learning fall into
three main categories: model-based methods [32,25], optimization-based algo-
rithms [10,22,24], and metric-based methods [29,28,27]. Among the latter, we
adopted prototypical networks [27] in our study, similarly to most works about
FSED.

We adopt the standard N-way, K-shot episodic formulation, as described
in [29]. An episode E is composed of a support set and an associated query
set. During each episode, the model is defined by relying on a subset S of the
available labeled data, the support set, which contains N types of events and K
annotated instances per type (K being generally small, e.g. 1, 5, or 10):

S = {(x11, t11, y1), . . . , (x1k, t1k, y1), . . . , (xN1 , tN1 , yN ), . . . , (xNk , t
N
k , y

N )}

where xni = {w1, . . . , wL} is a sequence of tokens of length L containing a trigger
of type n, tni , the position of the trigger, and yn, the corresponding sequence of
labels. The training in this context is done by updating the weights of the model
based on the prediction on the instances of the query set, which has the same
structure as the support set.

2.2 Model Architecture

We use a Prototypical Network model with episodic learning to combine meta-
learning and FSL. An overview of our model, composed of three modules, is
presented in Figure 1.
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Fig. 1: Our few-shot event detection model based on prototypical networks.

Encoder module. Given a sentence x = {w1, . . . , wL} of length L, the objective
of this module is to construct a representation ei of each word wi ∈ x in a d-
dimensional space. Importantly, during the episodic learning phase, only the
encoder part of the model is actually updated. We use the BERT [8] language
model as our encoder, withHi = [h1i , h

2
i , . . . , h

12
i ], its representations for the word

wi and h
j
i ∈ Rd. The main objective of our work is to study different options for

selecting and combining the 12 layers of BERT to obtain more relevant token
representations for the event detection task. More precisely:

– Average: embedding ei of the word wi = average of the representations of
m consecutive layers. ei = 1

m

∑m
k=1 h

k
i or ei = 1

m

∑12
k=12−m+1 h

k
i depending

on whether the layers are aggregated from the first or the last layer.

– Max-pool: max-pooling on each dimension p for m consecutive layers. The
p-th element of the embedding ei is given by: (ei)p = max((h1i )p, . . . , (h

m
i )p)

– Concat: concatenation ofm consecutive BERT layers ei = [h1i ||h2i || . . . ||hmi ]
or ei = [h12i ||h11i || . . . ||h

12−m+1
i ]

– Weighted: linear combination of the 12 BERT layers. ei =
∑12

k=12 α
khki ,

where the αk are randomly initialized and learned.

– ATT: linear combination of BERT layers for each dimension using an at-
tention mechanism. The objective is to identify the most important layers
for each dimension. The p-th element of ei is given by (ei)p =

∑12
k=1 α

k(hki )p
where the αk are learnt from a linear combination of the 12 layers and a
softmax normalization.

Prototypical module. The objective of this module is to build a prototype
for each class and then, to classify new examples according to their similarity
to these prototypes. We take the average of the examples in the support set as
prototypes for each class, as proposed by [27]. Since we are using the IOB format,
we build a prototype for classes B and I, as well as for class O (the null class for
all event types), which refers to words that are not triggers of any event. Hence,
we obtain 2N + 1 prototypes for an episode composed of N types.
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Classification module. This module classifies the words of a query sequence
according to their similarity to the prototypes. The probability of a given word
to belong to a particular class is computed according to its similarity to the
class’ prototype. The model is trained using the cross-entropy loss.

3 Experiments and Results

3.1 Experimental Setup

Evaluation dataset. We experiment on the FewEvent corpus [6] for FSED.
This corpus is composed of 70,852 event mentions divided into 100 types. We
use the same split as [4] for comparison purposes. This split includes 80 types
in the training set, 10 types in the test set, and the remaining 10 types in the
validation set.

Model parameters. We use the BERT-base pre-trained model as our encoder.
To evaluate the impact of our modifications of this encoder, we rely on two mod-
els presented in [4]: Proto-dot, a prototypical model based on the dot product
for its similarity function, which is our baseline model, and PA-CRF, an im-
provement of the previous model using CRFs (Conditional Random Field) [12]
to estimate the transition probabilities between different IOB labels as proposed
by [11]. The PA-CRF model is the main contribution of [4] and is, to our knowl-
edge, the best performing model for FSED. We take as input 128-word sentences
(with padding if needed) and train the model with a learning rate of 10−5.

Evaluation. To test our model, we construct 3,000 episodes E i , {Si,Qi}
with N types of events randomly sampled for each episode. We then select K
examples per class in the support set and one example per class in the query set.
The examples in the support set are used to build prototypes and the examples
in the query set are classified based on their similarity to these prototypes. We
consider an event trigger to be correct if its type and position in the sentence
are correctly predicted, as in previous work about event detection [4,5,17].

3.2 Results and Discussion

We compute the micro F1-score to evaluate the performance and report the
means and standard deviations over 5 runs in Table 1 with different values of N
and K. For the encoders Average, Concat, and Max-pool, we only consider
the last 4 layers (as suggested in [8]) for the results reported in Table 1. We
compare our model to our implementation of [4], which gives the best current
performance on the same task (BERT line in Table 1) and report the results
provided in their article (BERT[Cong] line in Table 1).

Whatever the model used (Proto-dot or PA-CRF), all the encoder improve-
ments, except the Concat configuration for the 10 ways condition of PA-CRF,
significantly improve the performance compared to the classical BERT encoder.
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Table 1: Results: mean and standard deviation of the micro F1-score over 5 trials.
bold, the best performance on average; underlined, the second best. * denotes
the best statistically significant model compared to the second best using the
significance test of [9].

Model Encoder 5 ways
5 shots

5 ways
10 shots

10 ways
5 shots

10 ways
10 shots

Proto-dot

BERT [Cong] 58.82± 0.88 61.01± 0.23 55.01± 1.62 58.78± 0.88
BERT 61.22± 0.90 60.84± 1.58 58.14± 1.69 59.85± 2.01
average 64.34± 1.94 65.37± 0.66 61.85± 2.05 63.93± 1.08
max-pool 64.10± 1.78 65.80± 0.91 61.15± 1.51 63.37± 1.03
concat 61.99± 0.46 61.94± 0.97 57.47± 0.65 59.02± 1.39
weighted 65.62± 1.55 67.15 ± 0.88* 62.63 ± 1.18* 65.22 ± 0.98*
ATT 65.64 ± 0.90 65.63± 0.46 62.22± 0.52 64.23± 0.99

PA-CRF

BERT [Cong] 62.25± 1.42 64.45± 0.49 58.48± 0.68 61.54± 0.89
BERT 63.63± 2.01 63.66± 1.54 62.11± 1.58 62.47± 1.29
average 65.09± 0.40 66.70± 0.45 62.32± 1.51 65.38± 1.71
max-pool 63.95± 1.99 66.94± 1.20 61.74± 1.95 64.77± 1.84
concat 64.30± 1.99 64.31± 1.80 62.01± 1.28 61.88± 1.05
weighted 66.26 ± 1.16* 66.97 ± 0.95* 63.90 ± 1.23* 67.21 ± 1.27*
ATT 63.65± 1.35 66.40± 1.03 62.41± 1.73 64.32± 1.64

Thus, a better exploitation of the information of the BERT model leads to
outperform the improvements brought by the more sophisticated model of [4],
representing the current state of the art.

Among all the tested strategies, those allowing the model to learn the weights
of the linear combination of BERT’s layers generally yield better results, with
the Weighted strategy proving to be the best in almost all configurations.

Finally, the fact that the gains observed for the Proto-dot model are also
found for the PA-CRF model, which is a more elaborate version of the Proto-
dot model, shows that the proposed improvements are complementary to those
that can be made to the other modules (prototypical and classification modules).

Influence of the episodic formulation N ways k shots. We observe log-
ically that the task is more difficult when the number of types (N) increases
and that the results are improved with a larger number of annotated exam-
ples (K). Furthermore, we assess the robustness of the evaluation protocol by
experimenting with different numbers of evaluation episodes for the encoder Av-
erage (between 500 and 5,000). The score variation between our different runs
remains within a range of ± 0.5 points.

Layer analysis. We perform experiments to determine the influence of the
number of layers selected for the encoders Average, Concat, and Max-pool,
which do not have the capability to perform this selection on their own, contrary
to Weighted and ATT. We report in Figure 2 the results obtained by these
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three models for the 5 ways 5 shots task, taking into account n successive layers
starting from the first layer (Figure 2a) or the last one (Figure 2b).

(a) From first layers to last layers. (b) From last layers to first layers.

(c) Performance by layer.

Fig. 2: Figures 2a and 2b present the influence of the number of layers selected
for the encoders Average, Concat, and Max-pool on the performance of the
model. Figure 2c presents the performance of the model for only one single layer.

We observe that the encoder Average is more stable than the other two and
that its performance tends to increase steadily with the number of layers. Its
best results are also competitive with the Weighted strategy, which shows that
taking into account all the layers is beneficial, even with a very simple strategy
such as averaging. We can also observe that the other strategies do not exploit all
the information. This is particularly noticeable for Max-pool, which probably
tends to increasingly smooth out the outstanding dimensions as the number of
layers increases. Concerning Concat, it seems that the strategy creates large
layered representations that are probably not very informative for the model.

In this context, Figures 2a and 2b also show that the combination of the
last layers seems more interesting than the combination of the first ones. This
observation may reflect the intrinsic presence of more useful information for the
task in these layers, or simply be explained by a more important influence of the
learning linked to the task at their level because of their closeness to the model
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output. Finally, Figure 2c reports the limiting case of considering only one layer,
with, from first to last layers, a strong increase of results until layer 4, which
reaches a performance comparable to Average but with a larger variance, and
then, a soft decrease.

4 Conclusions and Perspectives

In this article, we have studied different ways to better exploit the information
contained in the BERT pre-trained model for the task of detecting events from
a few examples. We have shown that the improvements brought by our propos-
als outperform the state-of-the-art results on this task. We plan to pursue the
improvement of the encoder by studying other representation models and by
enriching these representations with external knowledge or lists of examples of
triggers. Furthermore, we will study how the improvements of the encoder can
be combined with improvements of the prototypical and classification modules.

References

1. Ahn, D.: The stages of event extraction. In: Workshop on Annotating and Reason-
ing about Time and Events. pp. 1–8. Sydney, Australia (2006)

2. Bronstein, O., Dagan, I., Li, Q., Ji, H., Frank, A.: Seed-Based Event Trigger Label-
ing: How far can event descriptions get us? In: ACL-IJCNLP. pp. 372–376 (2015)

3. Chen, J., Lin, H., Han, X., Sun, L.: Honey or Poison? Solving the Trigger Curse
in Few-shot Event Detection via Causal Intervention. arXiv:2109.05747 (2021)

4. Cong, X., Cui, S., Yu, B., Liu, T., Yubin, W., Wang, B.: Few-Shot Event Detection
with Prototypical Amortized Conditional Random Field. In: Findings of ACL-
IJCNLP. pp. 28–40. Online (2021)

5. Cui, S., Yu, B., Liu, T., Zhang, Z., Wang, X., Shi, J.: Edge-Enhanced Graph
Convolution Networks for Event Detection with Syntactic Relation. In: Findings
of EMNLP. pp. 2329–2339. Online (2020)

6. Deng, S., Zhang, N., Kang, J., Zhang, Y., Zhang, W., Chen, H.: Meta-Learning
with Dynamic-Memory-Based Prototypical Network for Few-Shot Event Detection.
In: WSDM. pp. 151–159. Houston, TX, USA (2020)

7. Deng, S., Zhang, N., Li, L., Hui, C., Huaixiao, T., Chen, M., Huang, F., Chen,
H.: OntoED: Low-resource Event Detection with Ontology Embedding. In: ACL-
IJCNLP. pp. 2828–2839. Online (2021)

8. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. In: NAACL-HLT. pp.
4171–4186 (2019)

9. Dror, R., Shlomov, S., Reichart, R.: Deep dominance - how to properly compare
deep neural models. In: ACL. pp. 2773–2785 (2019)

10. Finn, C., Abbeel, P., Levine, S.: Model-Agnostic Meta-Learning for Fast Adapta-
tion of Deep Networks. arXiv:1703.03400 [cs] (2017), arXiv: 1703.03400

11. Hou, Y., Che, W., Lai, Y., Zhou, Z., Liu, Y., Liu, H., Liu, T.: Few-shot slot tagging
with collapsed dependency transfer and label-enhanced task-adaptive projection
network. In: ACL. pp. 1381–1393. Online (2020)



8 A. Tuo et al.

12. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional Random Fields: Proba-
bilistic Models for Segmenting and Labeling Sequence Data. In: ICML. pp. 282–289
(2001)

13. Lai, V., Dernoncourt, F., Nguyen, T.H.: Learning Prototype Representations
Across Few-Shot Tasks for Event Detection. In: EMNLP. pp. 5270–5277 (2021)

14. Lai, V.D., Nguyen, T.: Extending Event Detection to New Types with Learning
from Keywords. In: W-NUT 2019. pp. 243–248. Hong Kong, China (2019)

15. Lai, V.D., Nguyen, T.H., Dernoncourt, F.: Extensively Matching for Few-shot
Learning Event Detection. In: Workshop NUSE. pp. 38–45 (2020)

16. Li, Q., Ji, H., Huang, L.: Joint event extraction via structured prediction with
global features. In: ACL. pp. 73–82. Sofia, Bulgaria (Aug 2013)

17. Liu, S., Cheng, R., Yu, X., Cheng, X.: Exploiting Contextual Information via Dy-
namic Memory Network for Event Detection. In: EMNLP. pp. 1030–1035 (2018)

18. Liu, X., Luo, Z., Huang, H.: Jointly Multiple Events Extraction via Attention-based
Graph Information Aggregation. In: EMNLP. pp. 1247–1256 (2018)

19. Nguyen, T.H., Cho, K., Grishman, R.: Joint Event Extraction via Recurrent Neural
Networks. In: NAACL-HLT. pp. 300–309. San Diego, California (2016)

20. Nguyen, T.H., Grishman, R.: Event Detection and Domain Adaptation with Con-
volutional Neural Networks. In: ACL-IJCNLP. pp. 365–371. Beijing, China (2015)

21. Nguyen, T.H., Grishman, R.: Graph Convolutional Networks with Argument-
Aware Pooling for Event Detection. In: AAAI (2018)

22. Nichol, A., Achiam, J., Schulman, J.: On First-Order Meta-Learning Algorithms.
arXiv:1803.02999 (2018)

23. Ramshaw, L., Marcus, M.: Text chunking using transformation-based learning. In:
Workshop on Very Large Corpora (1995)

24. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: ICLR
(2017)

25. Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., Lillicrap, T.: Meta-learning
with memory-augmented neural networks. In: ICML. pp. 1842–1850 (2016)

26. Shen, S., Wu, T., Qi, G., Li, Y.F., Haffari, G., Bi, S.: Adaptive Knowledge-
Enhanced Bayesian Meta-Learning for Few-shot Event Detection. In: Findings of
ACL-IJCNLP. pp. 2417–2429. Online (2021)

27. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In:
Advances in Neural Information Processing Systems. vol. 30 (2017)

28. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H.S., Hospedales, T.M.: Learning
to compare: Relation network for few-shot learning. 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition pp. 1199–1208 (2018)

29. Vinyals, O., Blundell, C., Lillicrap, T., kavukcuoglu, k., Wierstra, D.: Matching
networks for one shot learning. In: NeurIPS. vol. 29 (2016)

30. Walker, C., Strassel, S., Medero, J., Maeda, K.: ACE 2005 Multilingual Training
Corpus (2006)

31. Yan, H., Jin, X., Meng, X., Guo, J., Cheng, X.: Event Detection with Multi-Order
Graph Convolution and Aggregated Attention. In: EMNLP-IJCNLP. pp. 5766–
5770 (2019)

32. Yan, W., Yap, J., Mori, G.: Multi-task transfer methods to improve one-shot learn-
ing for multimedia event detection. In: BMVC. pp. 37.1–37.13 (2015)

33. Zhang, H., Wang, H., Roth, D.: Zero-shot Label-Aware Event Trigger and Argu-
ment Classification. In: Findings of ACL-IJCNLP. pp. 1331–1340. Online (2021)


	Better Exploiting BERT for Few-shot Event Detection

