Aboubacar Tuo
email: aboubacar.tuo@cea.fr

Romaric Besançon
email: romaric.besancon@cea.fr

Olivier Ferret
email: olivier.ferret@cea.fr

Julien Tourille
email: julien.tourille@cea.fr

Better Exploiting BERT for Few-shot Event Detection

Keywords: Few-shot Event Detection, Meta-learning, BERT

Recent approaches for event detection rely on deep supervised learning, which requires large annotated corpora. Few-shot learning approaches, such as the meta-learning paradigm, can be used to address this issue. We focus in this paper on the use of prototypical networks with a BERT encoder for event detection. More specifically, we optimize the use of the information contained in the different layers of a pre-trained BERT model and show that simple strategies for combining BERT layers can outperform the current state-of-the-art for this task.

Introduction

Event extraction aims to automatically extract structured information about events from text. It can be compared to filling a form with entities, each field of this form corresponding to an argument of the event. Earlier methods for event extraction were based on handcrafted rules [START_REF] Ahn | The stages of event extraction[END_REF]. These methods were gradually replaced by machine learning algorithms with the development of statistical learning and neural networks in recent years. In this context, [START_REF] Li | Joint event extraction via structured prediction with global features[END_REF] proposes a structured prediction model based on numerous lexico-syntactic features, [START_REF] Nguyen | Event Detection and Domain Adaptation with Convolutional Neural Networks[END_REF] uses convolutional networks to exploit contextual information, [START_REF] Nguyen | Joint Event Extraction via Recurrent Neural Networks[END_REF] defines models based on recurrent networks, and [START_REF] Liu | Jointly Multiple Events Extraction via Attention-based Graph Information Aggregation[END_REF], [START_REF] Nguyen | Graph Convolutional Networks with Argument-Aware Pooling for Event Detection[END_REF], and [START_REF] Yan | Event Detection with Multi-Order Graph Convolution and Aggregated Attention[END_REF] exploit graph convolution models to capture syntactic dependencies between different parts of sentences.

While the objective of event extraction is to identify all arguments connected to a particular event, datasets since ACE 2005 [START_REF] Walker | ACE 2005 Multilingual Training Corpus[END_REF] have introduced the concept of event trigger, designating the word or group of words that indicate as clearly as possible the presence of an event in a sentence. The intention is to define a lexical anchor to help in the search for arguments. We focus in this paper on the detection and the classification of those triggers according to a restricted set of predefined types, a task generally called Event Detection or Trigger Detection.

Supervised learning methods are costly since they require large corpora that are manually annotated. Hence, a current challenge is to investigate methods that reduce the development cost of these systems. In this context, we investigate Few-Shot Learning (FSL) for trigger detection.

Few Shot Event Detection (FSED) has been recently the focus of several studies with various configurations: generalization of models to new types of events using keyword lists [START_REF] Bronstein | Seed-Based Event Trigger Labeling: How far can event descriptions get us?[END_REF][START_REF] Lai | Extending Event Detection to New Types with Learning from Keywords[END_REF], data enrichment with external resources [START_REF] Deng | OntoED: Low-resource Event Detection with Ontology Embedding[END_REF], Zero-Shot Learning with the use of class descriptions or external resources [START_REF] Zhang | Zero-shot Label-Aware Event Trigger and Argument Classification[END_REF], and FSL [START_REF] Shen | Adaptive Knowledge-Enhanced Bayesian Meta-Learning for Few-shot Event Detection[END_REF][START_REF] Chen | Honey or Poison? Solving the Trigger Curse in Few-shot Event Detection via Causal Intervention[END_REF][START_REF] Cong | Few-Shot Event Detection with Prototypical Amortized Conditional Random Field[END_REF]. Other studies have also focused on Few-Shot Event Classification, which restricts FSED to assigning an event type to a candidate trigger already identified in a sentence [START_REF] Lai | Learning Prototype Representations Across Few-Shot Tasks for Event Detection[END_REF][START_REF] Lai | Extensively Matching for Few-shot Learning Event Detection[END_REF][START_REF] Deng | Meta-Learning with Dynamic-Memory-Based Prototypical Network for Few-Shot Event Detection[END_REF].

In this paper, our contribution focuses on a better exploitation of the BERT language model representations for FSED, more specifically by studying the importance of these different representations and by evaluating different ways to associate them.

Method

Problem Formulation

We cast FSED as a sequence labeling task [START_REF] Ramshaw | Text chunking using transformation-based learning[END_REF], using the IOB format (Inside Outside Beginning), which can be addressed as a multi-class classification task.

Recent studies in FSL use meta-learning, which is often defined as learning to learn. The main idea behind meta-learning is to train models on several tasks, each with a limited number of instances, so that the learned model can quickly perform similar tasks on new data. The methods that have emerged in recent years for solving FSL tasks with the help of meta-learning fall into three main categories: model-based methods [START_REF] Yan | Multi-task transfer methods to improve one-shot learning for multimedia event detection[END_REF][START_REF] Santoro | Meta-learning with memory-augmented neural networks[END_REF], optimization-based algorithms [START_REF] Finn | Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks[END_REF][START_REF] Nichol | On First-Order Meta-Learning Algorithms[END_REF][START_REF] Ravi | Optimization as a model for few-shot learning[END_REF], and metric-based methods [START_REF] Vinyals | Matching networks for one shot learning[END_REF][START_REF] Sung | Learning to compare: Relation network for few-shot learning[END_REF][START_REF] Snell | Prototypical networks for few-shot learning[END_REF]. Among the latter, we adopted prototypical networks [START_REF] Snell | Prototypical networks for few-shot learning[END_REF] in our study, similarly to most works about FSED.

We adopt the standard N-way, K-shot episodic formulation, as described in [START_REF] Vinyals | Matching networks for one shot learning[END_REF]. An episode E is composed of a support set and an associated query set. During each episode, the model is defined by relying on a subset S of the available labeled data, the support set, which contains N types of events and K annotated instances per type (K being generally small, e.g. 1, 5, or 10):

S = {(x 1 1 , t 1 1 , y 1), . . . , (x 1 k , t 1 k , y 1), . . . , (x N 1 , t N 1 , y N), . . . , (x N k , t N k , y N)} where x n i = {w 1 , . . . , w L } is a sequence of tokens of length L containing a trigger of type n, t n
i , the position of the trigger, and y n , the corresponding sequence of labels. The training in this context is done by updating the weights of the model based on the prediction on the instances of the query set, which has the same structure as the support set.

Model Architecture

We use a Prototypical Network model with episodic learning to combine metalearning and FSL. An overview of our model, composed of three modules, is presented in Figure 1. Encoder module. Given a sentence x = {w 1 , . . . , w L } of length L, the objective of this module is to construct a representation e i of each word w i ∈ x in a ddimensional space. Importantly, during the episodic learning phase, only the encoder part of the model is actually updated. We use the BERT [START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF] language model as our encoder, with -Max-pool: max-pooling on each dimension p for m consecutive layers. The p-th element of the embedding e i is given by: (e i) p = max((

H i = [h 1 i , h 2 i , . . . , h 12
h 1 i) p , . . . , (h m i) p) -Concat: concatenation of m consecutive BERT layers e i = [h 1 i || h 2 i || . . . ||h m i] or e i = [h 12 i || h 11 i || . . . || h 12-m+1 i]
-Weighted: linear combination of the 12 BERT layers. e i = 12 k=12 α k h k i , where the α k are randomly initialized and learned.

-ATT: linear combination of BERT layers for each dimension using an attention mechanism. The objective is to identify the most important layers for each dimension. The p-th element of e i is given by (e i) p = 12 k=1 α k (h k i) p where the α k are learnt from a linear combination of the 12 layers and a softmax normalization.

Prototypical module. The objective of this module is to build a prototype for each class and then, to classify new examples according to their similarity to these prototypes. We take the average of the examples in the support set as prototypes for each class, as proposed by [START_REF] Snell | Prototypical networks for few-shot learning[END_REF]. Since we are using the IOB format, we build a prototype for classes B and I, as well as for class O (the null class for all event types), which refers to words that are not triggers of any event. Hence, we obtain 2N + 1 prototypes for an episode composed of N types.

Classification module. This module classifies the words of a query sequence according to their similarity to the prototypes. The probability of a given word to belong to a particular class is computed according to its similarity to the class' prototype. The model is trained using the cross-entropy loss.

Experiments and Results

Experimental Setup

Evaluation dataset. We experiment on the FewEvent corpus [START_REF] Deng | Meta-Learning with Dynamic-Memory-Based Prototypical Network for Few-Shot Event Detection[END_REF] for FSED. This corpus is composed of 70,852 event mentions divided into 100 types. We use the same split as [START_REF] Cong | Few-Shot Event Detection with Prototypical Amortized Conditional Random Field[END_REF] for comparison purposes. This split includes 80 types in the training set, 10 types in the test set, and the remaining 10 types in the validation set.

Model parameters. We use the BERT-base pre-trained model as our encoder.

To evaluate the impact of our modifications of this encoder, we rely on two models presented in [START_REF] Cong | Few-Shot Event Detection with Prototypical Amortized Conditional Random Field[END_REF]: Proto-dot, a prototypical model based on the dot product for its similarity function, which is our baseline model, and PA-CRF, an improvement of the previous model using CRFs (Conditional Random Field) [START_REF] Lafferty | Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data[END_REF] to estimate the transition probabilities between different IOB labels as proposed by [START_REF] Hou | Few-shot slot tagging with collapsed dependency transfer and label-enhanced task-adaptive projection network[END_REF]. The PA-CRF model is the main contribution of [START_REF] Cong | Few-Shot Event Detection with Prototypical Amortized Conditional Random Field[END_REF] and is, to our knowledge, the best performing model for FSED. We take as input 128-word sentences (with padding if needed) and train the model with a learning rate of 10 -5 .

Evaluation. To test our model, we construct 3,000 episodes E i {S i , Q i } with N types of events randomly sampled for each episode. We then select K examples per class in the support set and one example per class in the query set. The examples in the support set are used to build prototypes and the examples in the query set are classified based on their similarity to these prototypes. We consider an event trigger to be correct if its type and position in the sentence are correctly predicted, as in previous work about event detection [START_REF] Cong | Few-Shot Event Detection with Prototypical Amortized Conditional Random Field[END_REF][START_REF] Cui | Edge-Enhanced Graph Convolution Networks for Event Detection with Syntactic Relation[END_REF][START_REF] Liu | Exploiting Contextual Information via Dynamic Memory Network for Event Detection[END_REF].

Results and Discussion

We compute the micro F1-score to evaluate the performance and report the means and standard deviations over 5 runs in Table 1 with different values of N and K. For the encoders Average, Concat, and Max-pool, we only consider the last 4 layers (as suggested in [START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF]) for the results reported in Table 1. We compare our model to our implementation of [START_REF] Cong | Few-Shot Event Detection with Prototypical Amortized Conditional Random Field[END_REF], which gives the best current performance on the same task (BERT line in Table 1) and report the results provided in their article (BERT [Cong] line in Table 1).

Whatever the model used (Proto-dot or PA-CRF), all the encoder improvements, except the Concat configuration for the 10 ways condition of PA-CRF, significantly improve the performance compared to the classical BERT encoder. Thus, a better exploitation of the information of the BERT model leads to outperform the improvements brought by the more sophisticated model of [START_REF] Cong | Few-Shot Event Detection with Prototypical Amortized Conditional Random Field[END_REF], representing the current state of the art. Among all the tested strategies, those allowing the model to learn the weights of the linear combination of BERT's layers generally yield better results, with the Weighted strategy proving to be the best in almost all configurations.

Finally, the fact that the gains observed for the Proto-dot model are also found for the PA-CRF model, which is a more elaborate version of the Protodot model, shows that the proposed improvements are complementary to those that can be made to the other modules (prototypical and classification modules).

Influence of the episodic formulation N ways k shots. We observe logically that the task is more difficult when the number of types (N) increases and that the results are improved with a larger number of annotated examples (K). Furthermore, we assess the robustness of the evaluation protocol by experimenting with different numbers of evaluation episodes for the encoder Average (between 500 and 5,000). The score variation between our different runs remains within a range of ± 0.5 points.

Layer analysis. We perform experiments to determine the influence of the number of layers selected for the encoders Average, Concat, and Max-pool, which do not have the capability to perform this selection on their own, contrary to Weighted and ATT. We report in Figure 2 the results obtained by these three models for the 5 ways 5 shots task, taking into account n successive layers starting from the first layer (Figure 2a) or the last one (Figure 2b). We observe that the encoder Average is more stable than the other two and that its performance tends to increase steadily with the number of layers. Its best results are also competitive with the Weighted strategy, which shows that taking into account all the layers is beneficial, even with a very simple strategy such as averaging. We can also observe that the other strategies do not exploit all the information. This is particularly noticeable for Max-pool, which probably tends to increasingly smooth out the outstanding dimensions as the number of layers increases. Concerning Concat, it seems that the strategy creates large layered representations that are probably not very informative for the model.

In this context, Figures 2a and 2b also show that the combination of the last layers seems more interesting than the combination of the first ones. This observation may reflect the intrinsic presence of more useful information for the task in these layers, or simply be explained by a more important influence of the learning linked to the task at their level because of their closeness to the model output. Finally, Figure 2c reports the limiting case of considering only one layer, with, from first to last layers, a strong increase of results until layer 4, which reaches a performance comparable to Average but with a larger variance, and then, a soft decrease.

Conclusions and Perspectives

In this article, we have studied different ways to better exploit the information contained in the BERT pre-trained model for the task of detecting events from a few examples. We have shown that the improvements brought by our proposals outperform the state-of-the-art results on this task. We plan to pursue the improvement of the encoder by studying other representation models and by enriching these representations with external knowledge or lists of examples of triggers. Furthermore, we will study how the improvements of the encoder can be combined with improvements of the prototypical and classification modules.

Fig. 1 :

 1 Fig. 1: Our few-shot event detection model based on prototypical networks.

 i], its representations for the word w i and h j i ∈ R d . The main objective of our work is to study different options for selecting and combining the 12 layers of BERT to obtain more relevant token representations for the event detection task. More precisely: -Average: embedding e i of the word w i = average of the representations of m consecutive layers. e i = 1 m m k=1 h k i or e i = 1 m 12 k=12-m+1 h k i depending on whether the layers are aggregated from the first or the last layer.

 (a) From first layers to last layers. (b) From last layers to first layers. (c) Performance by layer.

Fig. 2 :

 2 Fig. 2: Figures 2a and 2b present the influence of the number of layers selected for the encoders Average, Concat, and Max-pool on the performance of the model. Figure 2c presents the performance of the model for only one single layer.

Table 1 :

 1 Results: mean and standard deviation of the micro F1-score over 5 trials. bold, the best performance on average; underlined, the second best. * denotes the best statistically significant model compared to the second best using the significance test of[START_REF] Dror | Deep dominance -how to properly compare deep neural models[END_REF].

	Model Encoder	5 ways 5 shots	5 ways 10 shots	10 ways 5 shots	10 ways 10 shots
		BERT [Cong]	58.82 ± 0.88	61.01 ± 0.23	55.01 ± 1.62	58.78 ± 0.88
		BERT	61.22 ± 0.90	60.84 ± 1.58	58.14 ± 1.69	59.85 ± 2.01
		average	64.34 ± 1.94	65.37 ± 0.66	61.85 ± 2.05	63.93 ± 1.08
	Proto-dot	max-pool	64.10 ± 1.78	65.80 ± 0.91	61.15 ± 1.51	63.37 ± 1.03
		concat	61.99 ± 0.46	61.94 ± 0.97	57.47 ± 0.65	59.02 ± 1.39
		weighted	65.62 ± 1.55	67.15 ± 0.88* 62.63 ± 1.18* 65.22 ± 0.98*
		ATT	65.64 ± 0.90	65.63 ± 0.46	62.22 ± 0.52	64.23 ± 0.99
		BERT [Cong]	62.25 ± 1.42	64.45 ± 0.49	58.48 ± 0.68	61.54 ± 0.89
		BERT	63.63 ± 2.01	63.66 ± 1.54	62.11 ± 1.58	62.47 ± 1.29
		average	65.09 ± 0.40	66.70 ± 0.45	62.32 ± 1.51	65.38 ± 1.71
	PA-CRF	max-pool	63.95 ± 1.99	66.94 ± 1.20	61.74 ± 1.95	64.77 ± 1.84
		concat	64.30 ± 1.99	64.31 ± 1.80	62.01 ± 1.28	61.88 ± 1.05
		weighted	66.26 ± 1.16* 66.97 ± 0.95* 63.90 ± 1.23* 67.21 ± 1.27*
		ATT	63.65 ± 1.35	66.40 ± 1.03	62.41 ± 1.73	64.32 ± 1.64

This publication was made possible by the use of the FactoryIA supercomputer, financially supported by the Île-de-France Regional Council.