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Abstract. This paper tackles the task of event detection that aims at
identifying and categorizing event mentions in texts. One of the diffi-
culties of this task is the problem of event mentions corresponding to
misspelled, custom, or out-of-vocabulary words. To analyze the impact
of character-level features, we propose to integrate character embeddings,
that can capture morphological and shape information about words, to
a convolutional model for event detection. More precisely, we evaluate
two strategies for performing such integration and show that a late fu-
sion approach outperforms both an early fusion approach and models
integrating character or subword information such as ELMo or BERT.

Keywords: Information extraction · Events · Word embeddings.

1 Introduction

In this article, we concentrate more specifically on event detection, which implies
identifying instances of specified types of events in a text. The notion of event
in our work is classically defined as something that happens and covers a wide
spectrum, from terrorist attacks to births or nominations. The instances of these
events in texts, which are called event mentions or event triggers, are annotated
as words or phrases that evoke a reference type of events. The most successful
approaches developed for achieving this task are currently based on neural mod-
els, which have been intensively studied to overcome fundamental limitations,
specifically the complex choice of features [2,27,25,26,9,36,29]. All these proposed
models based on Convolutional Neural Networks (CNNs), Recurrent Neural Net-
works (RNNs), or even Graph Neural Networks (GNNs) rely on word embeddings,
a general distributed word representation that is produced by training a deep
learning model on a large unlabeled dataset. Consequently, word embeddings
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replace the hard matches of words in the feature-based approaches with the soft
matches of continuous word vectors. Hence, compared to previous rule-based
or machine learning-based approaches, neural models are supposed to be less
sensitive to the problem of unseen triggers since the distributed representations
of words they exploit can account for the similarity between words.

However, this capacity may vary depending on the reasons why a trigger was
not seen during the training of a model. We illustrate these different cases on the
ACE 2005 dataset4, a standard corpus used for evaluating event detection. An
unseen trigger may be a morphological variant of a trigger already seen in the
training set. For instance, torturing is not present in the training data but is a
variant of torture and can be considered as a trigger for the same type of events,
namely Life.Injure. Moreover, torturing is likely to be present among general
pre-trained word embeddings and if so, a neural event extraction model is likely
to successfully detect this trigger. The situation may be different when a trigger
is absent from the training data because it corresponds to a misspelled version of
a reference trigger. For instance, aquitted is part of the ACE 2005 test dataset
for referring to a Justice.Sentence event while only acquitted, the correct form
for that word, is present in the training data. In that case, we cannot assume
that the unseen word is part of general word embeddings and as a consequence,
has little chance to be detected as a trigger for a Justice.Sentence event.

From a more general perspective, the problem of missing word embeddings
when using pre-trained models in the context of event extraction is not marginal.
The ACE 2005 dataset, for instance, covers the most common events of national
and international news (from a variety of sources selected from broadcast news
programs, newspapers, news reports, internet sources, or transcribed audio) and
thus, it contains different types of discourse, professional or noisy discussions
prone to the presence of mistakes in spelling and custom words. As a result,
in this dataset, 14.8% of the words are not part of the pre-trained embeddings
provided by Google, trained with word2vec on Google News [23], 1.5% for the
GloVe embeddings [30], and 4.5% for the fastText embeddings [12]. Different
strategies were proposed and implemented for dealing with the issue of missing
words in neural language models. For static word embeddings, fastText relies on
a representation of words based on n-grams of characters. For contextual models,
ELMo [31] exploits a character-based representation built with a CNN while
BERT [3] adopts a mixed strategy based on subwords, called wordpieces, where
a word is split into subwords when it is not part of a predefined and restricted
vocabulary [21,15,13]. However, while BERT seems to be an interesting option
for a large number of tasks in Natural Language Processing, its ability to handle
noisy inputs is still an open question [32] or at least requires the addition of
complementary methods [24]. This limitation may result from the dependence of
BERT on a vocabulary. The alternative is to rely, as ELMo for instance, on a
character model in which all words, including words with abnormal character
combinations and misspellings, are processed similarly.

4 https://catalog.ldc.upenn.edu/ldc2006t06.
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Some researchers studied the application of CNNs to characters. For anti-
spam filtering, the use of character-level n-grams was already experimented out
of the context of deep learning models [14]. In [5], character-level embeddings
were automatically learned and joined with pre-trained word embeddings in a
CNN-based model for Part-of-Speech tagging. This architecture was also used
for improving the performance of a Named Entity Recognition (NER) system in
[4]. While character models have been used with success in several contexts for
tackling the absence of pre-trained embeddings for all words, the use of CNNs to
learn directly from characters was also investigated, without the need for any
pre-trained embeddings [37]. Notably, the authors use a relatively deep network
and apply it to sentiment analysis and text classification tasks. The application of
character-level convolutions to language modeling was explored in [15] by using
the output of a character-level CNN as the input to a Long Short Term Memory
(LSTM) network at each time step. The same model is easily applied to various
languages. However, the choice of CNN-based or LSTM-based character-level
word embeddings did not affect the performance significantly [16,22].

Our contributions in this article are more particularly focused on the integra-
tion of character-level features in event detection models for addressing the issue
of unknown words. More specifically, we show that an event detection model
exploiting a character-based representation is complementary to a word-oriented
model and that their combination according to a late fusion approach outperforms
an early fusion strategy.

2 Related Work

The current state-of-the-art systems for event extraction involve neural network
models to improve event extraction. [27] and [2] deal with the event detection
problem with models based on CNN. [28] improve the previous CNN models of
[27] for event detection, slightly modifying the way CNNs are applied to sentences
by taking into account the possibility to have non-consecutive n-grams as basic
features instead of continuous n-grams. Both models use word embeddings for
representing windows of text that are trained as the other parameters of the
neural network.

The authors of [25] predict at the same time event triggers and their arguments
in a joint framework with Bidirectional RNNs (Bi-RNNs) and a CNN and
systematically investigate the usage of memory vectors/matrices to store the
prediction information during the labeling of sentence features. Additionally, the
authors augment their system with discrete local features inherited from [17].

A GNN is advocated in [29] based on dependency trees to perform event
detection with a pooling method that relies on entity mentions aggregating the
convolution vectors. The authors of [20] consider also that arguments provide
significant clues to this task and adopt a supervised attention mechanism to
exploit argument information explicitly for event detection, while also using
events from FrameNet.
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Table 1. Statistics about unknown words in the ACE 2005 dataset.

All words Trigger words

train 14,021 931
test 3,553 219
unknown words in test data 930 (26.2%) 66 (30.1%)
unknown words with a known similar word 825 54

Further, some researchers have proposed other hybrid neural network models
with different types of pre-set word embeddings that combine different neural
networks to make use of each other’s abilities. A hybrid neural network (a CNN
and an RNN) [9] was developed to capture both sequence and chunk information
from specific contexts and use them to train an event detector for multiple
languages without any handcrafted features.

Some authors went beyond sentence-level sequential modeling, considering that
these methods suffer from low efficiency in capturing very long-range dependencies.
An approach that goes beyond sentence level [8] was proposed by using a document
representation using an RNN model that can automatically extract cross-sentence
clues.

Recently, different approaches that include external resources and features
at a subword representation level have been proposed. For example, Generative
Adversarial Networks (GANs) framework has been applied in event extraction
[36,10]. Besides, reinforcement learning is used in [36] for creating an end-to-end
entity and event extraction framework. An approach based on the BERT pre-
trained model [35] attempts an automatic generation of labeled data by editing
prototypes and filtering out the labeled samples through argument replacement
by ranking their quality.

The problem of ambiguous indicators for particular types of events, i.e.,
the same word can express completely different events, such as fired, that can
correspond to an Attack type of event or can express the dismissal of an employee
from a job, is approached in [19] by using an RNN and cross-lingual attention to
model the confidence of the features provided by other languages.

3 Motivation

Learning word representations from a corpus (word embeddings) allows us to
derive a flexible similarity between words that takes into account a form of
synonymy or relatedness between the words into the model. A drawback of
this kind of representation is that unknown words (i.e. words unseen in the
training corpus) are not well represented: they are generally associated with
a random embedding even if these words are morphologically close to known
words. Existing embeddings trained on very large collections of text, such as
word2vec embeddings, which have proven their efficiency as initial embeddings
for event extraction, do not take into account these morphological similarities:
no lemmatization or stemming or even case normalization is performed.

We present in Table 1 some statistics about unknown words on the dataset we
will use for training and testing our proposed approach, the ACE 2005 dataset,
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Table 2. Examples of unknown words focused on triggers.

Event Type Unknown/Closest Trigger Words

Start-Org creating/creation, opening/open, forging/forming, formed/form
End-Org crumbled/crumbling, dismantling/dismantle, dissolved/dissolving
Transport fleeing/flying, deployment/deployed, evacuating/evacuated
Attack intifada/Intifada, smash/smashed, hacked/attacked, wiped/wipe
End-Position retirement/retire, steps/step, previously/previous, formerly/former

using the standard training/validation/test split [11]. We report the size of the
vocabulary for the whole dataset, the size of the vocabulary for the trigger words,
the number of words in the test dataset not seen in the training dataset, and
among those, the number of words for which a similar word (measured by a
Levenshtein ratio of less than 0.3) can be found.

We see that there is an important number of words, even among the trigger
words, that cannot be exploited by the models because they are not seen in the
training corpus. Also, most of these words (more than 88%) have similar words
in the training corpus which could be used to approximate their representation,
as they are likely to be semantically close words. To illustrate this, we show in
Table 2 examples of unknown words focused on triggers. The examples are pairs
of words used as triggers in the test set associated with their closest trigger words
(for an event of the same type) as seen in the training set (with a distance of
Levenshtein ratio less than 0.3). We can see in this table that most of the pairs
correspond to derivational morphology links. These semantic links are lost with
the standard embedding models.

The integration of a character-based embedding model should be able to help
in dealing with such cases by allowing to bridge the gap between the unknown
words and representations of known words used for training the system. The
same problem occurs with infrequent words, that could be better represented if
they are processed at a character level.

4 Approach

Our approach lies in the standard supervised framework of event detection where
the task is modeled as a word classification task: considering a sentence, we want
to predict for each word of the sentence if it is an event trigger and associate it
with its event type. The input of the system is therefore a target word in the
context of a sentence and the output an event type or NONE for non-trigger
words. To study the influence of character-based features, we rely on the CNN
model proposed by [27] as a core model. This core architecture is used in the two
components of our overall system: the Word model and the Character model.
These two components are combined using either an early fusion approach or a
late fusion approach, as illustrated by Figure 1.
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Fig. 1. Word + Character CNN.

4.1 Word and Character CNN Models

In the Word CNN model, the context of a target word is formed by its surrounding
words in the sentence, which constitutes the input of the convolution layer. To
consider a limited-sized context, longer sentences are trimmed and shorter ones
are zero-padded. We consider a context window for every trigger candidate
where each token is associated with a word embedding and a relative position
to the trigger candidate embedding. The word and position embeddings are
concatenated and passed through the convolution layer. The concatenated output
of convolutional filter maps forms, after a max-over-time pooling operation on
each one, the representation of the input (target token and context) that finally
goes through a softmax classification layer. The Character CNN model is very
close to the Word CNN model, with two main differences: words are replaced by
characters and there is no position embedding associated with each character.

4.2 Integration of Word and Character Models

Early Fusion The first type of integration is the early fusion model, in which
the two representations of the input sequence produced by the Word and Char-
acter CNNs (i.e., the concatenation of the output vectors of their filters) are
concatenated before the fully-connected softmax classification layer. Using this
type of integration allows joint learning of the parameters of the two models in
the training phase.
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Late Fusion The late fusion integration of the Word and Character CNNs
relies on the combination of the decisions of the two models, which are trained
separately and therefore learn different characteristics of the candidate trigger.
Indeed, the word-level CNN combines word and position embeddings that can
capture syntactic and semantic information, and of course, the relative positions
of words to the candidate trigger. The character-level CNN learns more local
features from character n-grams and can capture morphological information. The
late fusion focuses on the individual strength of these two models by applying
the following rule: we always keep the Character CNN label, except if a trigger
was detected by the Word CNN but not by the Character CNN. This strategy is
motivated by the fact that the Word CNN model has good coverage whereas the
Character model is more focused on precision.

5 Experiments and Results

5.1 Dataset

The evaluation is conducted on the annotated ACE 2005 corpus. We use the same
split as previous studies with this dataset [27,25]: 40 news articles (672 sentences)
for the test set, 30 other documents (863 sentences) for the development set, and
the remaining 529 documents (14,849 sentences) for the training set. Following
the same line of work, we consider that a trigger is correct if its event type,
subtype, and offsets match those of a reference trigger. We use Precision (P),
Recall (R), and F-measure (F1) to evaluate the overall performance.

5.2 Hyperparameters

For the Word CNN, we consider a sliding window with a maximal size of 31
words. Hence, sentences are padded at the beginning and the end with a vector of
15 zeros (a common practice for the padding special character). The window sizes
for the convolutions are in the set {1, 2, 3} and 300 feature maps are used for each
window size. After each convolutional layer with orthogonal weights initialization,
a ReLu non-linear layer is applied. We employ dropout with a probability of 0.5
after the embedded window of text since they contain most of the parameters and
as a consequence, the possibility of being responsible for overfitting. A dropout
of 0.3 is also applied after the concatenation of the convolutions. The size of the
position embeddings is equal to 50, similarly to [27]. We use the Google News
word embeddings pre-trained with word2vec (size = 300).

For the Character CNN, we consider a maximum length of 1,024 for a sequence
of characters: longer sequences are trimmed and shorter ones are padded with
zeros. The window sizes for the convolutions are in the set {2, . . . , 10}, with
300 feature maps. The convolutional layer non-linearity and initialization are
the same as for the Word CNN. The size of the character embeddings is 300.
These embeddings are initialized based on a normal distribution and trained
on the event detection task. A dropout of 0.5 is applied after the embedded
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characters. When jointly trained, in the early fusion model, the features obtained
after convolutions from both models are concatenated and, similarly to the Word
CNN, a dropout of 0.3 is applied afterward, before the softmax layer. We encode
all the characters except space.

We train both networks (Word and Character CNNs) with Adam optimizer.
During the training, we optimize the embedding tables (i.e., word, position, and
character embeddings) to achieve the optimal states. Finally, for training, we use
a batch size of 256 for the Word CNN and 128 for the Character CNN. When
they are trained jointly in the early fusion model, we use a batch size of 128. All
these hyperparameters were optimized by a grid search on the development set.

5.3 Results

We compare our model with several neural-based models proposed for the same
task that do not use external resources, namely: a set of CNN-based models
including a CNN model without any additional features [27], the dynamic multi-
pooling CNN model of [2], the non-consecutive CNN of [26], and the Graph CNN
proposed by [29]; a set of RNN-based models, represented by the bidirectional
joint RNN model of [25], the DLRNN model of [8] and the DEEB-RNN model of
[38] that both rely on a document representation, and the work of [19], based on
a Gated Cross-Lingual Attention mechanism. Our reference models also include
the hybrid model proposed by [9], the model exploiting arguments through an
attention mechanism of [20], and the GAIL-ELMo model of [36], based on GANs.
We do not consider models that are using other external resources such as [1],
[18], or [35], since we only rely on the input text in our model. We also compare
this model with four baselines based on the BERT language model, applied in a
similar way to [3] for the NER task, with the recommended hyperparameters: a
learning rate of 2e-5 and the split of sentences into chunks of 128 tokens.

The best performance (75.8 F1 on the test set) is achieved by combining word
and position embeddings with the character-level features using a late fusion
strategy. This performance relates to improvements that have been reported
on other tasks when concatenating word embeddings with the output from a
character-level CNN for Part-of-Speech tagging [6] and NER [4]. From Table 3,
we can also outline that adding character embeddings in a late fusion strategy
outperforms all the word-based models, including complex architectures such as
the graph CNN and the models based on the BERT language model. Among
BERT models, it is worth noticing that the cased models perform better than
the uncased ones, which confirms that the character morphology is important for
the task, maybe because capitalization is connected to the recognition of named
entities, which are usually considered important to detect event mentions.

However, we can see that the character embeddings are not sufficient on
their own: using only the Character CNN leads to the smallest recall among all
the considered approaches. However, its precision is high (71.7), which makes
this model fairly reliable about the triggers it retrieves. Given this observation,
we can compare the two integration strategies, early and late fusions. In the
case of early fusion, where the two models are trained jointly, we notice that
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Table 3. Evaluation of our models and comparison with state-of-the-art systems for
event detection on the blind test data. †beyond sentence level, +with gold arguments.

Approaches Precision Recall F1

Word CNN [27] (without entities) 71.9 63.8 67.6
Dynamic multi-pooling CNN [2] 75.6 63.6 69.1
Joint RNN [25] 66.0 73.0 69.3

RNN with document context† [8] 77.2 64.9 70.5
Non-Consecutive CNN [26] na na 71.3
Attention-based+ [20] 78.0 66.3 71.7
GAIL-ELMo [36] 74.8 69.4 72.0
Gated Cross-Lingual Attention [19] 78.9 66.9 72.4
Graph CNN [29] 77.9 68.8 73.1
Hybrid NN [9] 84.6 64.9 73.4

DEEB-RNN3† [38] 72.3 75.8 74.0

BERT-base-uncased + LSTM [33] na na 68.9
BERT-base-uncased [33] na na 69.7
BERT-base-uncased [7] 67.2 73.2 70.0
BERT-QA [7] 71.1 73.7 72.4
DMBERT [34] 77.6 71.8 74.6
DMBERT+Boot [34] 77.9 72.5 75.1

BERT-base-uncased 71.7 68.5 70.0
BERT-base-cased 71.3 72.0 71.7
BERT-large-uncased 72.1 72.9 72.5
BERT-large-cased 69.3 77.2 73.1

Word CNN (replicated) 71.4 65.9 68.5
Character CNN 71.7 41.2 52.3
Word + Character CNN - early fusion 88.6 61.9 72.9
Word + Character CNN - late fusion 87.2 67.1 75.8

the precision is the highest among all the compared models. We assume that
in the joint approach, the power of representation of morphological properties
provided by the characters is overtaking the influence of the word and positions
embedding, and the combination reproduces the imbalance between precision
and recall observed for the Character CNN, the recall being the lowest among all
the models except the Character CNN. In the case of the late fusion, since we
have more control over the combination and we can give priority to the Character
CNN to establish the labels on the trigger candidates retrieved by the Word CNN,
the method takes advantage of the high precision of the Character CNN, allowing
an increase of the precision from 71.7 to 87.2, while still having a high recall,
also increasing the recall of the Word CNN model from 65.9 to 67.1. The late
fusion integration is therefore able to take into account the complementarities of
the two models.

Finally, for more qualitative analysis, we examine the new triggers correctly
detected by the Word + Character CNN (late fusion), in comparison with the
Word CNN. We observe that among the 37 new correctly found triggers, some are
indeed derivational or inflectional variants of known words in the training data,
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Table 4. Examples of new triggers found with the Word+Character CNN (late fusion).

Event Type New triggers correctly found Trigger words in training data

End-Position steps step
Extradite extradited extradition
Attack wiped wipe
Start-Org creating create
Attack smash smashed
End-Position retirement retire

such as illustrated in Table 4. This seems to confirm that the character-based
model can capture some semantic information associated with morphological
characteristics of the words and manage to detect new correct event mentions
that correspond to inflections of known event triggers (i.e., existing in the training
data). Also, the fact that the convolution windows in the Character CNN range
from 2 to 10 means that character n-grams in the same range are included in the
model and contribute to the model’s ability to handle different word variations.

6 Conclusion and Perspectives

We have proposed in this article a study of the integration of character embeddings
in an event detection neural-based model using a simple CNN model as core
architecture and testing early and late fusion strategies to integrate the character-
based features. The best results are achieved by combining the word-based features
with the character-based features in a late fusion strategy that gives priority to
the Character CNN for deciding the event type. This method outperforms more
complex approaches such as Graph CNN or adversarial networks and BERT-
based models. Our results demonstrate that a convolutional approach for learning
character-level features can be successfully applied to event detection and that
these features allow overcoming some issues concerning unseen or misspelled
words in the test data.

We do not integrate the character information at the embedding level as it is
usually done in models considering smaller units such as ELMO with characters,
FastText with character n-grams, or BERT with subwords. In a certain way,
they implement another kind of early fusion than ours. However, our late fusion
approach is complementary and as a perspective, we consider implementing this
late fusion framework using more complex models as core models. Another way
to deal with the problem of unseen words would be to exploit data augmentation
strategies that would focus on increasing the variability about derivational and
inflectional variants of event mentions in the training data.
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