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This paper tackles the task of event detection that aims at identifying and categorizing event mentions in texts. One of the difficulties of this task is the problem of event mentions corresponding to misspelled, custom, or out-of-vocabulary words. To analyze the impact of character-level features, we propose to integrate character embeddings, that can capture morphological and shape information about words, to a convolutional model for event detection. More precisely, we evaluate two strategies for performing such integration and show that a late fusion approach outperforms both an early fusion approach and models integrating character or subword information such as ELMo or BERT.

Introduction

In this article, we concentrate more specifically on event detection, which implies identifying instances of specified types of events in a text. The notion of event in our work is classically defined as something that happens and covers a wide spectrum, from terrorist attacks to births or nominations. The instances of these events in texts, which are called event mentions or event triggers, are annotated as words or phrases that evoke a reference type of events. The most successful approaches developed for achieving this task are currently based on neural models, which have been intensively studied to overcome fundamental limitations, specifically the complex choice of features [START_REF] Chen | Event extraction via dynamic multi-pooling convolutional neural networks[END_REF][START_REF] Nguyen | Event Detection and Domain Adaptation with Convolutional Neural Networks[END_REF][START_REF] Nguyen | Joint event extraction via recurrent neural networks[END_REF][START_REF] Nguyen | A two-stage approach for extending event detection to new types via neural networks[END_REF][START_REF] Feng | A language-independent neural network for event detection[END_REF][START_REF] Zhang | Joint entity and event extraction with generative adversarial imitation learning[END_REF][START_REF] Nguyen | Graph Convolutional Networks With Argument-Aware Pooling for Event Detection[END_REF]. All these proposed models based on Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), or even Graph Neural Networks (GNNs) rely on word embeddings, a general distributed word representation that is produced by training a deep learning model on a large unlabeled dataset. Consequently, word embeddings This work was partly supported by the European Union's Horizon 2020 research and innovation program under grants 770299 (NewsEye) and 825153 (Embeddia).

replace the hard matches of words in the feature-based approaches with the soft matches of continuous word vectors. Hence, compared to previous rule-based or machine learning-based approaches, neural models are supposed to be less sensitive to the problem of unseen triggers since the distributed representations of words they exploit can account for the similarity between words.

However, this capacity may vary depending on the reasons why a trigger was not seen during the training of a model. We illustrate these different cases on the ACE 2005 dataset 4 , a standard corpus used for evaluating event detection. An unseen trigger may be a morphological variant of a trigger already seen in the training set. For instance, torturing is not present in the training data but is a variant of torture and can be considered as a trigger for the same type of events, namely Life.Injure. Moreover, torturing is likely to be present among general pre-trained word embeddings and if so, a neural event extraction model is likely to successfully detect this trigger. The situation may be different when a trigger is absent from the training data because it corresponds to a misspelled version of a reference trigger. For instance, aquitted is part of the ACE 2005 test dataset for referring to a Justice.Sentence event while only acquitted, the correct form for that word, is present in the training data. In that case, we cannot assume that the unseen word is part of general word embeddings and as a consequence, has little chance to be detected as a trigger for a Justice.Sentence event.

From a more general perspective, the problem of missing word embeddings when using pre-trained models in the context of event extraction is not marginal. The ACE 2005 dataset, for instance, covers the most common events of national and international news (from a variety of sources selected from broadcast news programs, newspapers, news reports, internet sources, or transcribed audio) and thus, it contains different types of discourse, professional or noisy discussions prone to the presence of mistakes in spelling and custom words. As a result, in this dataset, 14.8% of the words are not part of the pre-trained embeddings provided by Google, trained with word2vec on Google News [START_REF] Mikolov | Efficient estimation of word representations in vector space[END_REF], 1.5% for the GloVe embeddings [START_REF] Pennington | Glove: Global Vectors for Word Representation[END_REF], and 4.5% for the fastText embeddings [START_REF] Joulin | Bag of Tricks for Efficient Text Classification[END_REF]. Different strategies were proposed and implemented for dealing with the issue of missing words in neural language models. For static word embeddings, fastText relies on a representation of words based on n-grams of characters. For contextual models, ELMo [START_REF] Peters | Deep Contextualized Word Representations[END_REF] exploits a character-based representation built with a CNN while BERT [START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF] adopts a mixed strategy based on subwords, called wordpieces, where a word is split into subwords when it is not part of a predefined and restricted vocabulary [START_REF] Luong | Achieving Open Vocabulary Neural Machine Translation with Hybrid Word-Character Models[END_REF][START_REF] Kim | Character-Aware Neural Language Models[END_REF][START_REF] Jozefowicz | Exploring the limits of language modeling[END_REF]. However, while BERT seems to be an interesting option for a large number of tasks in Natural Language Processing, its ability to handle noisy inputs is still an open question [START_REF] Sun | Adv-BERT: BERT is not robust on misspellings! Generating nature adversarial samples on BERT[END_REF] or at least requires the addition of complementary methods [START_REF] Muller | Enhancing BERT for Lexical Normalization[END_REF]. This limitation may result from the dependence of BERT on a vocabulary. The alternative is to rely, as ELMo for instance, on a character model in which all words, including words with abnormal character combinations and misspellings, are processed similarly. Some researchers studied the application of CNNs to characters. For antispam filtering, the use of character-level n-grams was already experimented out of the context of deep learning models [START_REF] Kanaris | Words versus character n-grams for anti-spam filtering[END_REF]. In [START_REF] Santos | Learning character-level representations for part-ofspeech tagging[END_REF], character-level embeddings were automatically learned and joined with pre-trained word embeddings in a CNN-based model for Part-of-Speech tagging. This architecture was also used for improving the performance of a Named Entity Recognition (NER) system in [START_REF] Santos | Boosting Named Entity Recognition with Neural Character Embeddings[END_REF]. While character models have been used with success in several contexts for tackling the absence of pre-trained embeddings for all words, the use of CNNs to learn directly from characters was also investigated, without the need for any pre-trained embeddings [START_REF] Zhang | Character-level convolutional networks for text classification[END_REF]. Notably, the authors use a relatively deep network and apply it to sentiment analysis and text classification tasks. The application of character-level convolutions to language modeling was explored in [START_REF] Kim | Character-Aware Neural Language Models[END_REF] by using the output of a character-level CNN as the input to a Long Short Term Memory (LSTM) network at each time step. The same model is easily applied to various languages. However, the choice of CNN-based or LSTM-based character-level word embeddings did not affect the performance significantly [START_REF] Lample | Neural Architectures for Named Entity Recognition[END_REF][START_REF] Ma | End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF[END_REF].

Our contributions in this article are more particularly focused on the integration of character-level features in event detection models for addressing the issue of unknown words. More specifically, we show that an event detection model exploiting a character-based representation is complementary to a word-oriented model and that their combination according to a late fusion approach outperforms an early fusion strategy.

Related Work

The current state-of-the-art systems for event extraction involve neural network models to improve event extraction. [START_REF] Nguyen | Event Detection and Domain Adaptation with Convolutional Neural Networks[END_REF] and [START_REF] Chen | Event extraction via dynamic multi-pooling convolutional neural networks[END_REF] deal with the event detection problem with models based on CNN. [START_REF] Nguyen | Modeling Skip-Grams for Event Detection with Convolutional Neural Networks[END_REF] improve the previous CNN models of [START_REF] Nguyen | Event Detection and Domain Adaptation with Convolutional Neural Networks[END_REF] for event detection, slightly modifying the way CNNs are applied to sentences by taking into account the possibility to have non-consecutive n-grams as basic features instead of continuous n-grams. Both models use word embeddings for representing windows of text that are trained as the other parameters of the neural network.

The authors of [START_REF] Nguyen | Joint event extraction via recurrent neural networks[END_REF] predict at the same time event triggers and their arguments in a joint framework with Bidirectional RNNs (Bi-RNNs) and a CNN and systematically investigate the usage of memory vectors/matrices to store the prediction information during the labeling of sentence features. Additionally, the authors augment their system with discrete local features inherited from [START_REF] Li | Joint Event Extraction via Structured Prediction with Global Features[END_REF].

A GNN is advocated in [START_REF] Nguyen | Graph Convolutional Networks With Argument-Aware Pooling for Event Detection[END_REF] based on dependency trees to perform event detection with a pooling method that relies on entity mentions aggregating the convolution vectors. The authors of [START_REF] Liu | Exploiting Argument Information to Improve Event Detection via Supervised Attention Mechanisms[END_REF] consider also that arguments provide significant clues to this task and adopt a supervised attention mechanism to exploit argument information explicitly for event detection, while also using events from FrameNet. Further, some researchers have proposed other hybrid neural network models with different types of pre-set word embeddings that combine different neural networks to make use of each other's abilities. A hybrid neural network (a CNN and an RNN) [START_REF] Feng | A language-independent neural network for event detection[END_REF] was developed to capture both sequence and chunk information from specific contexts and use them to train an event detector for multiple languages without any handcrafted features.

Some authors went beyond sentence-level sequential modeling, considering that these methods suffer from low efficiency in capturing very long-range dependencies. An approach that goes beyond sentence level [START_REF] Duan | Exploiting Document Level Information to Improve Event Detection via Recurrent Neural Networks[END_REF] was proposed by using a document representation using an RNN model that can automatically extract cross-sentence clues.

Recently, different approaches that include external resources and features at a subword representation level have been proposed. For example, Generative Adversarial Networks (GANs) framework has been applied in event extraction [START_REF] Zhang | Joint entity and event extraction with generative adversarial imitation learning[END_REF][START_REF] Hong | Self-regulation: Employing a generative adversarial network to improve event detection[END_REF]. Besides, reinforcement learning is used in [START_REF] Zhang | Joint entity and event extraction with generative adversarial imitation learning[END_REF] for creating an end-to-end entity and event extraction framework. An approach based on the BERT pretrained model [START_REF] Yang | Exploring Pre-trained Language Models for Event Extraction and Generation[END_REF] attempts an automatic generation of labeled data by editing prototypes and filtering out the labeled samples through argument replacement by ranking their quality.

The problem of ambiguous indicators for particular types of events, i.e., the same word can express completely different events, such as fired, that can correspond to an Attack type of event or can express the dismissal of an employee from a job, is approached in [START_REF] Liu | Event Detection via Gated Multilingual Attention Mechanism[END_REF] by using an RNN and cross-lingual attention to model the confidence of the features provided by other languages.

Motivation

Learning word representations from a corpus (word embeddings) allows us to derive a flexible similarity between words that takes into account a form of synonymy or relatedness between the words into the model. A drawback of this kind of representation is that unknown words (i.e. words unseen in the training corpus) are not well represented: they are generally associated with a random embedding even if these words are morphologically close to known words. Existing embeddings trained on very large collections of text, such as word2vec embeddings, which have proven their efficiency as initial embeddings for event extraction, do not take into account these morphological similarities: no lemmatization or stemming or even case normalization is performed.

We present in Table 1 some statistics about unknown words on the dataset we will use for training and testing our proposed approach, the ACE 2005 dataset, [START_REF] Ji | Refining Event Extraction through Cross-Document Inference[END_REF]. We report the size of the vocabulary for the whole dataset, the size of the vocabulary for the trigger words, the number of words in the test dataset not seen in the training dataset, and among those, the number of words for which a similar word (measured by a Levenshtein ratio of less than 0.3) can be found.

We see that there is an important number of words, even among the trigger words, that cannot be exploited by the models because they are not seen in the training corpus. Also, most of these words (more than 88%) have similar words in the training corpus which could be used to approximate their representation, as they are likely to be semantically close words. To illustrate this, we show in Table 2 examples of unknown words focused on triggers. The examples are pairs of words used as triggers in the test set associated with their closest trigger words (for an event of the same type) as seen in the training set (with a distance of Levenshtein ratio less than 0.3). We can see in this table that most of the pairs correspond to derivational morphology links. These semantic links are lost with the standard embedding models.

The integration of a character-based embedding model should be able to help in dealing with such cases by allowing to bridge the gap between the unknown words and representations of known words used for training the system. The same problem occurs with infrequent words, that could be better represented if they are processed at a character level.

Approach

Our approach lies in the standard supervised framework of event detection where the task is modeled as a word classification task: considering a sentence, we want to predict for each word of the sentence if it is an event trigger and associate it with its event type. The input of the system is therefore a target word in the context of a sentence and the output an event type or NONE for non-trigger words. To study the influence of character-based features, we rely on the CNN model proposed by [START_REF] Nguyen | Event Detection and Domain Adaptation with Convolutional Neural Networks[END_REF] as a core model. This core architecture is used in the two components of our overall system: the Word model and the Character model. These two components are combined using either an early fusion approach or a late fusion approach, as illustrated by Figure 1. 

Word and Character CNN Models

In the Word CNN model, the context of a target word is formed by its surrounding words in the sentence, which constitutes the input of the convolution layer. To consider a limited-sized context, longer sentences are trimmed and shorter ones are zero-padded. We consider a context window for every trigger candidate where each token is associated with a word embedding and a relative position to the trigger candidate embedding. The word and position embeddings are concatenated and passed through the convolution layer. The concatenated output of convolutional filter maps forms, after a max-over-time pooling operation on each one, the representation of the input (target token and context) that finally goes through a softmax classification layer. The Character CNN model is very close to the Word CNN model, with two main differences: words are replaced by characters and there is no position embedding associated with each character.

Integration of Word and Character Models

Early Fusion The first type of integration is the early fusion model, in which the two representations of the input sequence produced by the Word and Character CNNs (i.e., the concatenation of the output vectors of their filters) are concatenated before the fully-connected softmax classification layer. Using this type of integration allows joint learning of the parameters of the two models in the training phase.

Late Fusion

The late fusion integration of the Word and Character CNNs relies on the combination of the decisions of the two models, which are trained separately and therefore learn different characteristics of the candidate trigger. Indeed, the word-level CNN combines word and position embeddings that can capture syntactic and semantic information, and of course, the relative positions of words to the candidate trigger. The character-level CNN learns more local features from character n-grams and can capture morphological information. The late fusion focuses on the individual strength of these two models by applying the following rule: we always keep the Character CNN label, except if a trigger was detected by the Word CNN but not by the Character CNN. This strategy is motivated by the fact that the Word CNN model has good coverage whereas the Character model is more focused on precision.

Experiments and Results

Dataset

The evaluation is conducted on the annotated ACE 2005 corpus. We use the same split as previous studies with this dataset [START_REF] Nguyen | Event Detection and Domain Adaptation with Convolutional Neural Networks[END_REF][START_REF] Nguyen | Joint event extraction via recurrent neural networks[END_REF]: 40 news articles (672 sentences) for the test set, 30 other documents (863 sentences) for the development set, and the remaining 529 documents (14,849 sentences) for the training set. Following the same line of work, we consider that a trigger is correct if its event type, subtype, and offsets match those of a reference trigger. We use Precision (P), Recall (R), and F-measure (F1) to evaluate the overall performance.

Hyperparameters

For the Word CNN, we consider a sliding window with a maximal size of 31 words. Hence, sentences are padded at the beginning and the end with a vector of 15 zeros (a common practice for the padding special character). The window sizes for the convolutions are in the set {1, 2, 3} and 300 feature maps are used for each window size. After each convolutional layer with orthogonal weights initialization, a ReLu non-linear layer is applied. We employ dropout with a probability of 0.5 after the embedded window of text since they contain most of the parameters and as a consequence, the possibility of being responsible for overfitting. A dropout of 0.3 is also applied after the concatenation of the convolutions. The size of the position embeddings is equal to 50, similarly to [START_REF] Nguyen | Event Detection and Domain Adaptation with Convolutional Neural Networks[END_REF]. We use the Google News word embeddings pre-trained with word2vec (size = 300).

For the Character CNN, we consider a maximum length of 1,024 for a sequence of characters: longer sequences are trimmed and shorter ones are padded with zeros. The window sizes for the convolutions are in the set {2, . . . , 10}, with 300 feature maps. The convolutional layer non-linearity and initialization are the same as for the Word CNN. The size of the character embeddings is 300. These embeddings are initialized based on a normal distribution and trained on the event detection task. A dropout of 0.5 is applied after the embedded characters. When jointly trained, in the early fusion model, the features obtained after convolutions from both models are concatenated and, similarly to the Word CNN, a dropout of 0.3 is applied afterward, before the softmax layer. We encode all the characters except space.

We train both networks (Word and Character CNNs) with Adam optimizer. During the training, we optimize the embedding tables (i.e., word, position, and character embeddings) to achieve the optimal states. Finally, for training, we use a batch size of 256 for the Word CNN and 128 for the Character CNN. When they are trained jointly in the early fusion model, we use a batch size of 128. All these hyperparameters were optimized by a grid search on the development set.

Results

We compare our model with several neural-based models proposed for the same task that do not use external resources, namely: a set of CNN-based models including a CNN model without any additional features [START_REF] Nguyen | Event Detection and Domain Adaptation with Convolutional Neural Networks[END_REF], the dynamic multipooling CNN model of [START_REF] Chen | Event extraction via dynamic multi-pooling convolutional neural networks[END_REF], the non-consecutive CNN of [START_REF] Nguyen | A two-stage approach for extending event detection to new types via neural networks[END_REF], and the Graph CNN proposed by [START_REF] Nguyen | Graph Convolutional Networks With Argument-Aware Pooling for Event Detection[END_REF]; a set of RNN-based models, represented by the bidirectional joint RNN model of [START_REF] Nguyen | Joint event extraction via recurrent neural networks[END_REF], the DLRNN model of [START_REF] Duan | Exploiting Document Level Information to Improve Event Detection via Recurrent Neural Networks[END_REF] and the DEEB-RNN model of [START_REF] Zhao | Document Embedding Enhanced Event Detection with Hierarchical and Supervised Attention[END_REF] that both rely on a document representation, and the work of [START_REF] Liu | Event Detection via Gated Multilingual Attention Mechanism[END_REF], based on a Gated Cross-Lingual Attention mechanism. Our reference models also include the hybrid model proposed by [START_REF] Feng | A language-independent neural network for event detection[END_REF], the model exploiting arguments through an attention mechanism of [START_REF] Liu | Exploiting Argument Information to Improve Event Detection via Supervised Attention Mechanisms[END_REF], and the GAIL-ELMo model of [START_REF] Zhang | Joint entity and event extraction with generative adversarial imitation learning[END_REF], based on GANs. We do not consider models that are using other external resources such as [START_REF] Bronstein | Seed-Based Event Trigger Labeling: How far can event descriptions get us?[END_REF], [START_REF] Li | Joint event extraction based on hierarchical event schemas from FrameNet[END_REF], or [START_REF] Yang | Exploring Pre-trained Language Models for Event Extraction and Generation[END_REF], since we only rely on the input text in our model. We also compare this model with four baselines based on the BERT language model, applied in a similar way to [START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF] for the NER task, with the recommended hyperparameters: a learning rate of 2e-5 and the split of sentences into chunks of 128 tokens.

The best performance (75.8 F1 on the test set) is achieved by combining word and position embeddings with the character-level features using a late fusion strategy. This performance relates to improvements that have been reported on other tasks when concatenating word embeddings with the output from a character-level CNN for Part-of-Speech tagging [START_REF] Santos | Deep Convolutional Neural Networks for Sentiment Analysis of Short Texts[END_REF] and NER [START_REF] Santos | Boosting Named Entity Recognition with Neural Character Embeddings[END_REF]. From Table 3, we can also outline that adding character embeddings in a late fusion strategy outperforms all the word-based models, including complex architectures such as the graph CNN and the models based on the BERT language model. Among BERT models, it is worth noticing that the cased models perform better than the uncased ones, which confirms that the character morphology is important for the task, maybe because capitalization is connected to the recognition of named entities, which are usually considered important to detect event mentions.

However, we can see that the character embeddings are not sufficient on their own: using only the Character CNN leads to the smallest recall among all the considered approaches. However, its precision is high (71.7), which makes this model fairly reliable about the triggers it retrieves. Given this observation, we can compare the two integration strategies, early and late fusions. In the case of early fusion, where the two models are trained jointly, we notice that Table 3. Evaluation of our models and comparison with state-of-the-art systems for event detection on the blind test data. † beyond sentence level, + with gold arguments.

Approaches

Precision Recall F1 Word CNN [START_REF] Nguyen | Event Detection and Domain Adaptation with Convolutional Neural Networks[END_REF] (without entities) 71.9 63.8 67.6 Dynamic multi-pooling CNN [START_REF] Chen | Event extraction via dynamic multi-pooling convolutional neural networks[END_REF] 75.6 63.6 69.1 Joint RNN [START_REF] Nguyen | Joint event extraction via recurrent neural networks[END_REF] 66.0 73.0 69.3 RNN with document context † [START_REF] Duan | Exploiting Document Level Information to Improve Event Detection via Recurrent Neural Networks[END_REF] 77.2 64.9 70.5 Non-Consecutive CNN [START_REF] Nguyen | A two-stage approach for extending event detection to new types via neural networks[END_REF] na na 71.3 Attention-based + [START_REF] Liu | Exploiting Argument Information to Improve Event Detection via Supervised Attention Mechanisms[END_REF] 78.0 66.3 71.7 GAIL-ELMo [START_REF] Zhang | Joint entity and event extraction with generative adversarial imitation learning[END_REF] 74.8 69.4 72.0 Gated Cross-Lingual Attention [START_REF] Liu | Event Detection via Gated Multilingual Attention Mechanism[END_REF] 78.9 66.9 72.4 Graph CNN [START_REF] Nguyen | Graph Convolutional Networks With Argument-Aware Pooling for Event Detection[END_REF] 77.9 68.8 73.1 Hybrid NN [START_REF] Feng | A language-independent neural network for event detection[END_REF] 84.6 64.9 73.4 DEEB-RNN3 † [START_REF] Zhao | Document Embedding Enhanced Event Detection with Hierarchical and Supervised Attention[END_REF] 72.3 75.8 74.0 BERT-base-uncased + LSTM [START_REF] Wadden | Entity, Relation, and Event Extraction with Contextualized Span Representations[END_REF] na na 68.9 BERT-base-uncased [START_REF] Wadden | Entity, Relation, and Event Extraction with Contextualized Span Representations[END_REF] na na 69.7 BERT-base-uncased [START_REF] Du | Event Extraction by Answering (Almost) Natural Questions[END_REF] 67.2 73.2 70.0 BERT-QA [START_REF] Du | Event Extraction by Answering (Almost) Natural Questions[END_REF] 71 the precision is the highest among all the compared models. We assume that in the joint approach, the power of representation of morphological properties provided by the characters is overtaking the influence of the word and positions embedding, and the combination reproduces the imbalance between precision and recall observed for the Character CNN, the recall being the lowest among all the models except the Character CNN. In the case of the late fusion, since we have more control over the combination and we can give priority to the Character CNN to establish the labels on the trigger candidates retrieved by the Word CNN, the method takes advantage of the high precision of the Character CNN, allowing an increase of the precision from 71.7 to 87.2, while still having a high recall, also increasing the recall of the Word CNN model from 65.9 to 67.1. The late fusion integration is therefore able to take into account the complementarities of the two models. Finally, for more qualitative analysis, we examine the new triggers correctly detected by the Word + Character CNN (late fusion), in comparison with the Word CNN. We observe that among the 37 new correctly found triggers, some are indeed derivational or inflectional variants of known words in the training data, such as illustrated in Table 4. This seems to confirm that the character-based model can capture some semantic information associated with morphological characteristics of the words and manage to detect new correct event mentions that correspond to inflections of known event triggers (i.e., existing in the training data). Also, the fact that the convolution windows in the Character CNN range from 2 to 10 means that character n-grams in the same range are included in the model and contribute to the model's ability to handle different word variations.

Conclusion and Perspectives

We have proposed in this article a study of the integration of character embeddings in an event detection neural-based model using a simple CNN model as core architecture and testing early and late fusion strategies to integrate the characterbased features. The best results are achieved by combining the word-based features with the character-based features in a late fusion strategy that gives priority to the Character CNN for deciding the event type. This method outperforms more complex approaches such as Graph CNN or adversarial networks and BERTbased models. Our results demonstrate that a convolutional approach for learning character-level features can be successfully applied to event detection and that these features allow overcoming some issues concerning unseen or misspelled words in the test data. We do not integrate the character information at the embedding level as it is usually done in models considering smaller units such as ELMO with characters, FastText with character n-grams, or BERT with subwords. In a certain way, they implement another kind of early fusion than ours. However, our late fusion approach is complementary and as a perspective, we consider implementing this late fusion framework using more complex models as core models. Another way to deal with the problem of unseen words would be to exploit data augmentation strategies that would focus on increasing the variability about derivational and inflectional variants of event mentions in the training data.
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 1 Fig. 1. Word + Character CNN.

Table 1 .

 1 Statistics about unknown words in the ACE 2005 dataset.

	All words Trigger words

Table 2 .

 2 Examples of unknown words focused on triggers.

	Event Type Unknown/Closest Trigger Words
	Start-Org	creating/creation, opening/open, forging/forming, formed/form
	End-Org	crumbled/crumbling, dismantling/dismantle, dissolved/dissolving
	Transport	fleeing/flying, deployment/deployed, evacuating/evacuated
	Attack	intifada/Intifada, smash/smashed, hacked/attacked, wiped/wipe
	End-Position retirement/retire, steps/step, previously/previous, formerly/former
	using the standard training/validation/test split

Table 4 .

 4 Examples of new triggers found with the Word+Character CNN (late fusion).

	Event Type New triggers correctly found Trigger words in training data
	End-Position	steps	step
	Extradite	extradited	extradition
	Attack	wiped	wipe
	Start-Org	creating	create
	Attack	smash	smashed
	End-Position	retirement	retire
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